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Preface

This compendium on preliminary design of turbopumps and related machinery pertains primarily
to the pumps used in connection with large liquid-fuel rocket engines. As a design study, its general

purpose is similar to that of the NASA monographs on space vehicle design criteria. However, while

these monographs are primarily intended to record established design practices in their respective

fields, this compendium is intended to contribute also to future developments and improvements in
this and related fields of turbomachinery.

In the title of this compendium, the word "preliminary" denotes the initial phases of design, where
the general shape and characteristics of the machine are to be determined. Therefore this

compendium does not apply primarily to machines for which the general form and method of design

are well established, for example, axial-flow turbojet engines. It also does not apply to the final

analysis of an approximately established design, usually carried out by specialists in such fields as

fluid mechanics, stress analysis, rotor dynamics, and the like, where one must employ much more

accurate methods than presented in this compendium.

Thus the word "design" in the title denotes primarily the initial, creative or form-finding phases of

the design process. The design engineer responsible for these early phases cannot be expected to be an
expert in all the special fields of knowledge involved in the design process, but should have a

dependable, although simplified, knowledge of these fields to the extent to which they determine the

general form and characteristics of the machine to be designed and developed. While the subsequent

detailed analysis by specialists may call for improvements in the initial design, this analysis can rarely

be allowed to change the fundamental design characteristics, since that would probably lead to major

delays or compromises. Therefore the initial design must be dependable in its broad, overall
characteristics, and accuracy in detail cannot be its primary objective. It is to this initial design phase

that this compendium is intended to make a modest contribution.

The first requirements for achieving dependability in the initial design process are physical

simplicity and transparency of reasoning. Furthermore it is desirable to converge as early as possible

to a fairly definite geometric form of the machine to be developed, because major errors are often

visible by geometric inconsistencies or abnormalities. Obviously the experience of the engineer in
designing forms that are desirable with respect to hydrodynamic or mechanical considerations is of

major importance and is, therefore, cultivated in this compendium as much as possible.

The relation between the prescribed operating conditions (rate of flow, pump head, speed of
rotation, etc.) and the geometric form characteristics of the machine, such as its flow cross sections,

is particularly simple and dependably determined for incompressible fluids. Therefore it should be

understandable that the pumping part of the turbopump has received primary attention, since it is

concerned essentially with incompressible fluids. However, the importance of the driver, usually a

gas turbine, makes it necessary during the preliminary design phase to consider also the flow

principles of compressible fluids. These compressible flow principles must also be considered in cases

where the pumped fluid changes its volume significantly.
As much as possible, the simplicity and reliability of incompressible flow considerations are

retained by treating the mechanics of compressible fluids as a departure from the theory of

incompressible fluids. This is accomplished by changing the fluid volume per unit of mass as a

function of a dimensionless velocity of the compressible fluid flow (suggested by Prandtl and
Busemann). Although one must expect objections to this treatment from a broader, scientific point

of view, its simplicity justifies its use to meet the limited objectives of this compendium, not to

mention the authority of the authors just cited.

iii

P_,;-CEDING pAGE BLANK NOT FILMED _AG_,_ _Pl.... IN,TENTiONALLY BLANK



Because of the inherent theoretical simplicity of axial-flow machines compared with radial-flow

machines, axial-flow machines are treated in the theoretical background (ch. 2) as well as in the

description of the design methods (ch.3) before the older radial-flow machines. The treatment of

axial-flow machines departs markedly from the classical approach, which describes primarily the
fluid mechanical action of various standard vane sections when arranged as a straight system of

parallel vanes. This approach is inadequate for the design of vane systems exposed to the danger of

cavitation. This occurs because the classical vane shapes in pumping (i.e., retarding) vane systems

usually have the greatest vane pressure differences near the low-pressure inlet side of the system and

lead to unacceptable pressure reductions below the inlet pressure of the (rotor) vane system. The so-

called mean streamline method for the analysis of experimental cascade data (ch. 2) as well as for the

design of axial-flow cascades with prescribed vane pressure distributions (ch. 3) has overcome this

cavitation problem in axial-flow vane systems. The axial-flow-compressor designer will find it
interesting to observe that the vane shapes developed in this manner, in order to minimize cavitation,

have a striking resemblance to those used in axial-flow compressor or fan stages for high, often

supersonic, inlet Math numbers of the relative flow. There compressibility effects subject the vane

surface pressures and velocities to the same restrictions as the danger of cavitation in axial-flow

pumps.
The design limitations to prevent separation or stall, first recognized and described with respect to

radial- and axial-flow machines in 1928 and 1934, were most clearly established in the late forties on

the basis of axial-flow cascade test data. Therefore this subject occupies an important place in this

compendium in the treatment of axial-flow machines and has led to a uniform presentation of the
various separation criteria or diffusion factors suggested since 1928.

The fundamental difference between radial- and axial-flow turbomachinery rotors emphasized in

this compendium is the inherent vorticity of the relative flow in radial-flow rotors. Equally inherent

and important is the fundamentally three-dimensional form of the flow and vane shape between the

axial inlet and the radial discharge of the rotor of large radial-flow pumps. It is interesting that

already in the thirties (and before) overall pump efficiencies of about 90 percent were reliably and

repeatedly achieved with pumps having the previously mentioned complications, almost as

consistently as with hydraulic turbines of essentially the same type. In spite of the fact that these
favorable results were obtained mainly on empirical and geometric bases, it seems necessary that

these pumps and their design principles receive careful attention in this compendium (ch. 4).

Scientific curiosity as well as occasional disappointment in the performance of pumps designed by

means of the aforementioned principles have led to investigations in search of some simple rationale
for the empirical design methods developed during or before the thirties. These efforts were carried

out first with respect to separation or stall limits of rotor vane systems and later with regard to design

for a prescribed pressure distribution along the rotor vanes. While these attempts are as yet not

supported by test results, they are outlined in chapter 4 in the hope that this presentation will
stimulate further work toward a firmer basis for the design of radial-flow turbomachinery rotors.

Knowledgeable readers may be disappointed in the mathematically rather elementary treatment of
theoretical considerations presented in this compendium. This type of treatment may be regrettable,

but is unavoidable because of the primarily physical and geometric orientation of this writer, whose

experience in the field of turbomachinery design was obtained chiefly at the drawing board and in the

shop serving the development of turbomachines. As a consequence, this compendium is intended

primarily to meet the needs of the design engineer who is concerned with the practical development

problems of turbomachinery and to encourage him in this undertaking. The reader is not required to
have advanced mathematical methods at his command.

It may be of interest that in recent years some of the design operations described in this
compendium have, on the basis of these elementary descriptions, been translated into computer

language. This important step has been fairly well completed for the design of axial-flow vane

systems for pumps by the mean streamline method. It has also been extended to the design of pump

rotors with an axial inlet and a more or less radial discharge. The Applied Research Laboratory of the
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Pennsylvania State University can give information on these developments. However, these

computer-aided design methods have not been included in this compendium. The design methods
described here can be, and have been, carried out with fair success by means of the drawing board
and small hand calculator alone.

This writer is greatly indebted to NASA for sponsoring this work and for providing the needed

critical reviews. In particular, the writer would like to thank Mr. Melvin J. Hartmann, Director of

Aeronautics at the Lewis Research Center, for encouraging the writing of this compendium and,

together with Mr. Calvin L. Ball, for supporting its completion. In the beginning the technical review

was directed effectively by Mr. Cavour H. Hauser and carried out by Mr. Werner R. Britsch. Later

the technical review was continued by Mr. Mark R. Laessig, Mr. Michael J. Pierzga, and Mr. Donald
M. Sandercock. These reviewers made constructive suggestions and improved many of the technical

descriptions. The general editorial work was done by Ms. Margaret J. Mallette, whose careful review

resulted in numerous improvements in the form of presentation. This compendium could not have

been completed without the constructive collaboration of the NASA staff members just mentioned

and probably of others whose contributions did not come to the direct attention of this writer. To aid

in future developments of the work reported here, constructive suggestions and corrections by

readers and users of this compendium will be very much appreciated.

George F. Wislicenus
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Units of Measurement

The design and operating characteristics of turbomachines developed throughout this compendium are

generally expressed in dimensionless form. To these one may, of course, apply any consistent system of

units. For those cases where a dimensional form is used for specific reasons, both International System
(SI) units and U.S. customary units may be observed. The author endorses the primary use of SI units.

Infrequently, however, U.S. customary units appear in illustrative examples, on figures of general

characteristic curves, and as alternative units. The U.S. customary units are retained in order to ease the

understanding for those accustomed to this system of units and to relate certain figures to the original work

which supports them. The following discussion makes some comparisons of the two unit systems.
The units used in the International System are

length (L) measured in meters (m)
time (T) measured in seconds (sec)

force (F) measured in newtons (N)

mass (M) measured in kilograms (kg)

In contrast, the traditional units of measurement customarily used in the United States of America are

length (L) measured in feet (ft)

time (T) measured in seconds (sec)

force (F) measured in pounds (lb)

mass (M) also measured in pounds (lb)

It is immediately evident that the U.S. customary system has a serious weakness in that it uses the same

unit (pound) for force as well as for mass. The original metric system had the same weakness, because

it used kilogram for mass as _ell as for force. (This weakness was eliminated in the International System

by introducing a new unit (newton) for force.)

The common weakness of the U.S. customary system and the original metric system permitted, for over

a hundred years, the use of the concept of head (in German Fallhoehe or Foerderhoehe) with the dimensmn

of a length for the ability to do or to absorb hydrodynamic work, measured in force times length. The concept

of head was obviously suggested in the field of hydraulic engineering to describe a difference in elevation
of the free water levels on the two sides of a hydraulic installation such as a powerplant with its penstocks.

This physical justification of length as the dimension of head can be supported algebraically by writing
this dimension in the form (ft)(lb)/lb or (m)(kg)/kg and cancelling lb against lb or kg against kg, ignoring

the fact that in both cases one cancels the dimension of a force against the dimension of a mass. This traditional

mistake means that mass is measured by a force, specifically its weight, which is still usually the simplest

way to measure mass rather than by comparison with a standard mass.

In the International System, the equivalent of head has the dimensions of force times length (work) per

unit of mass, which is (N)(m)/kg. Since force equals mass times acceleration, one can write the equivalent

of head in the International System in the form

(mass)(acceleration)(length)/mass

or, expressed in unit abbreviations,

(kg)(m/sec2)(m)/kg = m2/sec 2

This means the equivalent of head in the International System has the dimension of a velocity squared.

In order to avoid a conflict between the International System and the traditional systems mentioned

previously, this compendium retains the term and concept of head (denoted by the symbol H or h) with

the dimension of a length. However, this concept is always used in combination with the standard gravitational

acceleration, go = 9.81 m/sec 2 in the original metric system or go = 32.2 ft/sec 2 in the U.S. customary

system. It is immediately clear that the product Hgo has the dimension of a velocity squared, that is, the

xi



samedimensionastheequivalentof headin theInternationalSystem(providedH has the dimension of

a length). The product Hg o (or hgo) has also the same physical meaning as required in the International

System, insofar as the standard gravitational acceleration go is obviously the ratio of a unit of weight to

a unit of mass. Therefore multiplication by go changes mechanical work per unit of weight to mechanical

work per unit of mass. The use of the product Hg o (or hgo) for work per unit of mass, in place of a single,

new symbol, is justified mainly to retain the relation to the traditional concept of head (H or h) and to avoid

confusion with other symbols already in use. (One may expect that any future edition of this compendium

will depart from this practice of its first edition.)

It may be well to mention here that capital H for head is used in this compendium for total or stagnation

head as measured by an upstream-pointing pitot tube, whereas lower case h is used for the so-called static

head as measured by a piezometer hole in a surface parallel to the flow (approximately). In connection

with compressible fluids, the same symbols are used in the same manner for stagnation and static enthalpy.

In closing this discussion on units of measurement, it is desirable to illustrate what are described previously

as consistent and inconsistent applications of units of measurement. The most common case of inconsistent
use of such units is the use of revolutions per minute (rpm) with cubic feet per second (ft3/sec) or (worse)

gallons per minute (gal/min) or the use of head (in ft) without multiplication by go. These inconsistencies

are so common when using the U.S. customary system (particularly in the field of pump cavitation) that

this compendium uses the inconsistent value of suction specific speed in parentheses behind the consistent

(dimensionless) value in order to assist older engineers. The conversion of specific speeds from the consistent

(dimensionless) to traditional inconsistent values is given in sections 1.2.1 and 1.2.2 of chapter 1.
In this compendium, the speed of rotation of a machine is expressed in revolutions per second, which

is consistent with cubic feet per second, and head is expressed in feet times go. Equally consistent with

these additional units would be radians per second as a measure of the rotation of a machine or shaft and

the conversion factor 2_', which must be considered properly when dealing with the peripheral velocity.
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Symbols

Designations of units of measurement: length, L; mass, M; time, T; force, F = MLT- 2; temperature, t

A area L 2

A,B,C,D stations across or along streamlines; stations along contour or
any line

throat area of volute or diffuser (fig. 1-11) L2

axial width of rotating element (fig. 1-30) L

acoustic velocity; velocity of sound LT- J

width of passage or impeller; width (or depth) of flow normal to L

plane of flow considered; blade span normal to meridional flow

length of section line normal to meridional streamlines, and L

coordinate along such a line (fig. 2-1)

width of impeller at outer periphery L

Coriolis force F = MLT - 2

lift coefficient

lift coefficient referred to inlet velocity of vane system
or cascade considered

lift coefficient referred to vectorial mean woo or Voo of relative

inlet and discharge velocities of vane system

local vane surface pressure coefficient, usually {Pref-p)/(IArrel/2go)
specific heat at constant pressure in mechanical units Lt - 1

specific heat at constant volume in mechanical units Lt-l

coefficient in eq. (I-42)

diameter or any representative linear dimension of machine or L
characteristic linear dimension of system

diffusion factor (see eq. (2-70))

hub diameter L

hub diameters at inlet and discharge, respectively, of axial- L

flow rotor (fig. 1-20)

inlet diameter of pump or compressor rotor; inside diameter L
of any turbomachinery rotor or vane system (figs. 1-7,

1-20, and 1-25)

local diffusion factor (see eq. (2-63))

outside discharge diameter (figs. 1-7 and 1-25) L

specific diameter, D(golq)l/4/Q 1/2

twice distance of center of throat area from axis of rotation L

(fig. 1-11)

vane distance normal to flow relative to given vane system; L

generally, distance

distance between streamlines and distance from vane edges L
to contour (see fig. 2-11)

normal vane distance near outside diameter of system L

Ath

a

a

b

b

b o

C

CL

CL, 1

eL, ¢_a

Cv

C1

D

D

Dh

Dh, 1,Dh, 2

Oi

Dloc

Do

Ds
Dth

d o
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E

F

F

p_

Fu

El

f

g

go

H

Hr

HsI)

h

h

h

h a

h o

hsA

hsv

h v

I

K

K

KA

K_

L

L

l

I

M

normal vane distance at place other than measurement

location of do

modulus of elasticity

Froude number, U2/gD or V2/gD

force

axial force per unit span, i.e., force per unit span normal

to vane-to-vane extent of straight, two-dimensional

cascade (fig. 2-9)

circumferential force per unit span, i.e., force per unit span

in vane-to-vane direction of straight, two-dimensional
cascade (fig. 2-9)

force per unit span or unit distance normal to plane FL - 1= MT- 2
of flow

frequency; frequency of vibration T - I

acceleration of system as a whole LT-2

standard gravitational acceleration (of system as a whole) LT-2

total (static plus velocity) head; net pump work per unit FLF- l = L
of weight of fluid

rotor head; total work per unit of weight of fluid, L

exchanged between rotor and fluid

total (static plus velocity) head above vapor pressure at low- L

pressure side of hydrodynamic rotor

static head; static pressure divided by weight per unit L
volume of fluid

thickness of vane normal to the general direction of vane L

enthalpy per unit weight in mechanical units; h =-CpT in L
thermal units

atmospheric or ambient pressure divided by weight per unit L

volume of liquid

Busemann head correction factor (fig. 2-47)

Stodola head correction

static head above vapor pressure of liquid at low-pressure side of L

turbomachinery rotor

vapor pressure of liquid divided by weight per unit L
volume of liquid

moment of inertia of cross-sectional area L 4

cascade-effect coefficient, defined by eq. (2-56)

heat-transfer coefficient tM - 1

Ackeret separation or diffusion factor (eq. (2-62))

Wislicenus separation or diffusion factor (eq. (2-68))

lift (force) F = MLT- 2

characteristic linear dimension of system L

length; chord length of vane L

linear spacing between cavitation nuclei L

moment, torque; bending moment FL = ML2T - 2

L

FL-2= ML- IT-2

F = MLT - 2

FL - I = MT - 2

FL - 1 = MT - 2
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Chapter 1

Survey of the Field of Turbomachinery
in Dimensionless Form

1.1 Principles of Similarity
Considerations in Turbomachinery

1.1.1 Introduction

Any presentation of the design of machinery or

structures naturally deals with the relation between

the design and the prescribed or expected behavior
or performance of the machines or structures

considered. Thus a survey of a field of machinery or

structures is a survey of designs in relation to the

behavior or performance of the machines or

structures. In this compendium, the behavior or

performance is called here the performance or

operating characteristics of the machine or

structure. This chapter, therefore, presents a survey
of the design and performance or operating

characteristics of turbomachinery.

The term design form (or form of design) means

the geometric form of design, whereas the term

design (used as a noun) includes, besides the design

form, the structural material and anything else that

has an influence on, or relation to, the performance

or operating characteristics of the machine.

Furthermore all geometrically similar machines
or structures of different absolute size or

dimensions are considered as having only one and

the same design form, so that mere scaling up or

down of a machine or structure, without changing
the ratio of its various dimensions relative to each

other, is not considered changing the design form.

With this definition, a survey of design forms is

automatically dimensionless, as every single item of

the survey comprises all geometrically similar
machines or structures concerned, irrespective of
absolute size.

The term scaling is applied to the linear

dimensions of a structure or machine, meaning that

all linear dimensions are changed by the same ratio,

so that geometric similarity is preserved. The term

scaling may apply also to quantities other than

dimensions, for example, to velocities and forces. If

in a fluid the magnitudes of all velocities and of
their components are changed by the same ratio, the

velocity field is said to be scaled, and the flow is

considered to remain similar. An exactly analogous

statement can be made with respect to forces.

It is well known that geometrically similar
machines or structures of different sizes do not in

general have the same performance or operating
characteristics. Obviously turbomachines such as

pumps or turbines generally have different rates of
flow if they have different absolute dimensions or

velocities, although they may be geometrically

similar (i.e., they may have the same design form).

However, if the rate of flow Q were made

dimensionless by division by a velocity V times an

area (the square of a linear dimension D), then all

machines of the same design form might have the
same dimensionless rate of flow Q/VD 2. It is

shown later in this section that this is not always

true for turbomachines. For this to be true, both the
machines and the flow in the machines would have

to be similar. Thus a survey of a field of machines

or structures is dimensionless only if both the design

forms and the performance or operating charac-

teristics are related by similarity considerations.
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Considerations of this type are certainly not
limited to turbomachines. For instance, such

considerations are regularly used in the field of

general fluid mechanics. The flow over an airplane

wing or airfoil is an example. Geometrically similar

airfoils generally do not produce the same lift,
which obviously depends on the absolute size of the

airfoil, the velocity of flow, and the angle of attack

ot (see fig. l-l). Only at the same angle of attack can
the flow over an airfoil be similar and permit the

application of similarity considerations.
The performance (lift L) of an airfoil is usually

expressed in dimensionless form by the so-called lift
coefficient

L
CL-

to_/2)A

or (1-1)

I/2
L = C L P--_- A

This relation expresses the fact that a dynamic
force such as the lift L must be proportional to the

mass per unit volume p, to the square of the velocity

of flow V, and to a characteristic area A. In the

usual definition of CL, this area A is the area of the
airfoil measured normal to the lift force L.

If the flow over geometrically similar airfoils is

indeed similar, their lift coefficients have one and

the same value (dimensionless performance or

operating characteristics are the same). It should be
mentioned that similarity of flow requires not only

the same angle of attack but also similarity with

respect to viscosity (Reynolds number), compress-

ibility (Mach number), cavitation (cavitation

number), and gravity (Froude number).

This relation among the dimensionless

performance characteristics (lift coefficient), the

design form (dimensionless shape of the airfoil),

and the form of flow (angle of attack), which is the

Figure l-l.--FIow-deflecting vane or airfoil showing effect of

angle of attack a on form of flow.

essence of the application of similarity con-

siderations to the design of machines or structures,

is discussed in this chapter with respect to
turbomachinery.

If both the aerodynamic or hydrodynamic

characteristics and the mechanical performance

characteristics (such as the load carrying capacity,

deflection, etc.) are to be considered, then
mechanical characteristics of the solid material

(such as allowable stress and modulus of elasticity)

have to be taken into account together with the

structural form of the element considered (e.g., the

wing). These must then be related to corresponding
performance characteristics of the structure or
machine.

The simplest relation of this type obviously is the

one which states that the internal forces per unit

area, called stresses, are under similar conditions

proportional to the forces per unit area applied to

the structure, such as aerodynamic or hydro-

dynamic pressures.

In other cases, the forces applied to the structure

(such as gravitational forces) are proportional to its

volume or weight, so that the applied force is
proportional to pgo D3, where D is any repre-

sentative linear dimension of the system. If

compared with dynamically applied forces, which

are proportional to p V2D2, the ratio of dynamic to

gravitational forces is plAD2/ogo D3 = V2/go D,

which is the square of the Froude number.

This extension of similarity considerations into

the field of mechanics of solids applies, of course,

also to the field of turbomachinery and is discussed
in detail in sections 1.2.3, 1.3.3, and 1.3.4.

1.1.2 Basic Similarity Considerations on

Turbomachinery

To apply similarity considerations to turbo-

machinery, it is necessary to describe first the most

essential characteristics whereby turbomachines can

be distinguished from other types of machinery. A
more detailed description of turbomachines is

developed throughout this compendium.

Turbomachines are fluid-handling machines,

such as turbines, centrifugal- or axial-flow pumps
or compressors, and propellers. A turbomachine

comprises one or more rotating elements equipped

with the means, usually vanes, whereby forces are

transmitted from the rotating elements to the fluid

flowing through or past these elements. It is
essential that there is at all times at least one
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significantopen passage from the inlet to the

discharge of the machine. This requirement

distinguishes a turbomachine from positive-

displacement (rotating) machinery. The force
action exerted by the elements of a turbomachine

must, therefore, be fluid dynamic, in contrast with

those acting in positive-displacement machinery.

This force may be either of the inertial type, that is,

generated according to Newton's law of motion,

where force equals mass times acceleration, or of

the viscous type, obeying Newton's law of viscous
shear forces or the laws of turbulent shear forces in

fluids. It is not certain that machinery using

primarily viscous shear forces should be included

under the term turbomachinery. This compendium

is concerned only with turbomachinery in which the

force action between the rotating elements and the

fluid is primarily, but not exclusively, of the type in

which force equals mass times acceleration. All

considerations are based on this assumption.

Another consequence of the preceding

description of turbomachinery results from the fact

that there is always at least one open fluid passage

between the inlet and the discharge of the machine,

namely, that there is no rigid relation between the
motion (speed of rotation) of the machine and the

rate of flow through the machine. In contrast, the

rate of flow of positive-displacement machinery is

proportional to the speed of the machine (within the

limits of changes in internal leakages and of the

effects of compressibility of the fluid). With
turbomachinery, on the other hand, substantial

departures from this proportionality between the

rate of flow and the speed of the machine are to be

expected. In fact, the rate of flow has no rigid

relation to the rotative speed of the machine. In

order to analyze this situation further, it is

necessary to define more closely the concept of

similarity of flow.

Similarity of flow in two geometrically similar

machines or other flow structures is defined by the
condition that the velocities of flow at all pairs of

geometrically similarly located points in the

machines being compared have one and the same

ratio to each other throughout the two machines
and have the same direction relative to the machines

(i.e., that the proportionality of all velocities

applies also to all directional components of the

velocities relative to the machines compared) (see

fig. 1-2).

For the designer, the most useful application of

this definition is that the flow velocity diagrams at

geometrically similarly located points in the

f

Figure l-Z--Similarity of flow, shown by similar velocity

diagrams at any pair of similarly located points A and a.

machines must be geometrically similar for the two

machines compared (fig. 1-2). In fact, the
application of this definition may be considered as a

valid test of similarity. This, of course, applies also

to three-dimensional flow conditions and velocity

diagrams.

The accuracy of the foregoing definition depends

on the accuracy with which the fluid velocities are

defined. First, the flow through turbomachinery is

known to be unsteady, that is, to fluctuate at

frequencies related to the frequency of the vanes of

the rotating systems passing the stationary vanes or

other stationary parts of the machine. Thus any

fluid velocity quoted without reference to time is

necessarily time-averaged over a reasonable length
of time compared with the period of fluctuations.

Arriving at this average is not a simple problem, as

it may involve an averaging of the rate, momentum,

or energy of the flow. Fortunately, for small

fluctuations, these averages do not differ a great

deal from each other. Second, turbulent velocity

fluctuations have to be disregarded, because their

random nature makes a rational process of

averaging impractical at present. Usually a mean

velocity has to be defined by the time-averaged rate

of flow through a limited, that is, finite, cross
section of the flow field.

The problem of similarity of flow conditions may

best be described by the following question (ref. 1,

p. 6): Under what conditions will a geometrically

similar flow of liquid or gas occur around or within

geometrically similar boundaries? The general
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answerto this questionhastwo parts.First,as
stated by the aforementionedcondition of
similarityof flow,for asingleairfoilinaninfinitely
extendedstraightstream,the airfoil must be
geometricallysimilarandtheangleof attackmust
bethesame.Second,theforcesactingonthefluid
mustbesimilarlyarranged,becauseotherwisethe
fluid wouldbeforcedoff thegeometricallysimilar
pathin spiteof thesimilarityof thefluidpassages.

Similarvelocitydistributionsareaccompaniedby
similarforcedistributionsonlyif theforceshave
the samerelationto the fluid velocitiesat all
correspondingpointsof the systemscompared.
Thisis thecaseif mass(or inertia)forcesarethe
onlyforcesconsidered.It followsthat,underthis
condition,geometricallysimilarflow boundaries
andinflowconditionsalwaysproducegeometrically
similarflowconditions.

In the presenceof forcesother than inertia,
similarityof flow maystill bemaintainedif the
forceschangeproportionallyto theinertialforces,
forexample,if viscousforcesarekeptproportional
to inertialforcesbymaintainingthesameReynolds
numberin themachinescompared.

If theflowboundarieshavenomotionrelativeto
eachother,inertialforcesonlydo not constitute
anysignificantproblem,asgeometricallysimilar
flowboundarieswithsimilarinflowanddischarge
conditions(i.e., similarflowsat infinity) always
lead to similar flow, as definedpreviously.
Thereforesimilarityconsiderationsingeneralfluid
mechanicsusuallydealwith the departuresfrom
incompressibleflow controlledby inertialforces
only.

In thefieldofturbomachinery,oneisconfronted
with an additionalconditionof similaritywhen
dealingexclusivelywith inertial forces. This
conditionismosteasilyunderstoodonthebasisof
thesimilarityrequirementof havingsimilarfluid
velocitydiagramsat all similarlylocatedpointsin
themachinescompared.In turbomachines,these
velocity diagramscontain meridional fluid
velocitiesV m which are dependent primarily on the

rate of volume flow Q divided by a representative
area D 2. The same velocity diagrams also contain

peripheral velocities of the rotating solid parts U

which are proportional to a representative diameter

D times the speed of rotation n. Therefore, to

satisfy the requirement of similarity of velocity

diagrams, it is necessary that the so-called flow

coefficient _= Vm/U have the same value at
similarly located points in the machines compared.

This necessary condition of similarity can also be

made to be a sufficient condition by replacing the

meridional fluid velocity V m by any fluid velocity

in the machine F, which leads to an almost self-

evident condition of similarity: fluid velocities V

and peripheral velocities U of the solid parts must

have the same ratio at all similarly located points in

the machines compared. This condition at similarly

located points is expressed by the equation

F
D = constant (1-2)

and is called the kinematic condition of similarity of
flow in turbomachines.

The flow coefficient _,= Vm/U assumes a very

definite physical meaning if applied to a point

where the absolute velocity F has no peripheral

component, as shown in figure 1-3 for the inlet. In

this case, _v= cot/_, where/3 is the angle between the
meridional direction (the direction lying in an axial

and radial plane) and the relative velocity vector,
and ,¢ alone determines the form of the velocity

diagram. But the meaning of the flow coefficient is

not limited to this particular simple case. The

J"

/-
1/ r Diredion of

peripheral

velocity

U!

1

-'MeriOional direction

(direction of through
flow/

Figure l-3.--Velocity diagrams of axial-flow pump
rotor blade.



equation ,p = V m /U is a dimensionless expression of

the depth of any velocity vector diagram in the
meridional direction.

From the interpretations given previously,
V=constant × Q/D 2 and U= constant ×nD, the

kinematic condition of similarity may be written in
the form

Q 1 Q
= constant (1-3)

D 2 nD D3n

which applies throughout the machines being

compared. Accordingly the aforementioned

limitation to similarly located points becomes

unnecessary as long as D has the same meaning for
all machines being compared.

The next step consists of applying the fact that
force action between the machine and the fluid and

a corresponding exchange of work between the

rotor and the fluid are dominated by inertial forces.

(This assumption is valid if forces such as viscous or

gravitational forces are kept either negligible or

proportional to inertial forces by keeping the

Reynolds number and the Froude number

constant.) With this assumption, all fluid pressure

differences 6p in the machine are given, under

similar flow conditions and for incompressible
fluids, by the relation

pl/2
Ap=constant x 2 (1-4)

where p is the mass per unit volume of the fluid and

V is any well defined fluid velocity. This relation

follows immediately from the well-known Bernoulli

equation, which also explains the factor 1/2. The

right side of equation (1-4) can also be interpreted

as the mass flow per unit area p V times any change
in velocity (which under similar flow conditions is

proportional to V), so that this side of the equation

is proportional to a change in momentum of the

flow per unit area.
The pressure difference Ap may also be

interpreted as work or energy per unit volume (ft-
lb/ft 3 or lb/ft 2) if the unit of volume is displaced

under the pressure difference 2kv. By dividing by the

weight per unit volume goP, where go = 32.2 feet

per second squared, one obtains the work or energy

per unit weight, called a difference in head:

§1.1.2

ah - zap _ constant x --I/2 (1-5)
ogo 2go

For gases, Ah (without its relation to Ap) is a
difference in enthalpy measured in mechanical units

(ft-lb/lb) instead of thermal units (Btu/lb). The

total exchange of mechanical energy between a

turbomachine and each unit of fluid weight passing

through the machine is called the head of the

machine. It obeys the same similarity relation as
any zah:

H=constant x 2_ °

or

2goH
-- = constant

V2

(1-6)

Thus this ratio has the same value at similarly

located points in similar machines with similar flow
conditions.

In terms of the rate of volume flow Q (with V
Q/D2), equation (1-6)can be written in the form

goHD 4
-- = constant (1-7)

Q2

This expression also has the same value for all
similar machines with similar flows. The one-

quarter power of this expression is sometimes called
the specific diameter:

D(g o I-t) i/4
D s - (1-8)

QI/2

Considering the condition of kinematic similarity

(eq. (1-2)), one can replace the representative fluid

velocity V by a representative peripheral velocity of

the rotor U and thus obtain a new expression in
place of equation (1-6):

U2 ",
H = constant x --

2go

or

2g°H = _b= constant
U2 _,

(1-9)

where the constant of proportionality _bis called the

head coefficient and may be considered as a

dimensionless expression of the head of the
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machineor of the correspondingchangein
enthalpy. It always has the same value for similar
flow conditions in similar machines provided that U

is defined in the same manner in the machines

compared. Both U and _b are referred to some

diameter of the machine, for example, the outside
diameter of its rotor, so that one can write

_bo = 2goH/U2o .
If the same relation is desired in terms of the

linear dimension D and the speed of rotation n of

the machine, with U= constant x Dn, an equivalent

dimensionless expression of the head can be

written:

go H _ constant (1 - 10)
D2n 2

The energy exchange between the rotor and the

fluid, expressed in dimensionless form by the head

coefficient _b or by goH/D2n 2, can also be

described by Euler's equation of the exchange of

angular momentum between the rotor and the fluid.

This equation is derived in detail in chapter 2. For
axial-flow machines, this equation leads to the

relation

U (1-10a)H=nhAV U --
go

where h V U is the change in the peripheral velocity

component of the flow passing through the rotor

(change in peripheral momentum), and r/h is the

hydraulic efficiency, which expresses only head
losses and not losses due to leakage and drag (which

only increase the torque). The hydraulic efficiency
is, therefore, somewhat higher than the overall

efficiency.
Substituting equation (1-10a) into equation (1-9)

results in an expression for axial-flow machines:

AVu (1-11)
=2_/h U

(For axial-flow turbines, one simply replaces r/h by

1/rlh.) Equation (1-11) shows that ff describes not
only the energy exchange but also the

circumferential deflection of the flow by the rotors

in dimensionless form. The greater if, the greater

the deflection A V U. For example, _b= 1 describes

approximately the maximum conventional
deflection of the flow in axial-flow pump or

compressor rotors. A relation similar to equation

(1-11) can also be written for radial-flow rotors.

Figure 1-4 shows the so-called characteristic

curves of a centrifugal (or axial-flow) pump at two

speeds of rotation, and figure 1-5 the same curves

for two geometrically similar pumps of different

sizes at the same speed of rotation n. Included are

curves of power consumption, which are obviously

proportional to #QgoH/o, where r/ denotes the

overall efficiency.
The coordinates of the curves of head as a

function of flow may be expressed in the

dimensionless forms Q/D3n and goH/D2n 2,

according to equations (1-3) and (1-10). If Q/D3n

.__-2

:a:

Efficiency at n]_
\

_eaI at n///Y/ i

ii/ Power at n17

Rate of volume flow

I1 I

Figure 1-4.--Characteristic curves of centrifugal pump at

two speeds of rotation n! and n2.

t_
o

Rate of volume flow

Figure l-5.--Characteristic curves of two similar cen-

trifugal pumps with linear dimensions Dt and D 2 oper-
ating at same speed n.
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has the same value for similar machines, then

goH/D2n 2 also has one and the same value,

provided that the effects of viscosity, compress-

ibility, cavitation, and gravity are either negligible
or kept proportional to the head H by using

constant values of their respective dimensionless

expressions (Reynolds number, Mach number, etc.).

For the similar flow conditions described by

Q -,
- constant

D3n

and

go H

D2 n 2
-- = constant

(1-12)

Q changes linearly, and H changes with the square

of the speed of rotation. However, at a constant

speed of rotation n, Q changes with the cube and H
with the square of the linear dimension D of the

machine. The corresponding square parabola
connecting points of similar flow conditions of the

head-capacity curves for different speeds is shown

in figure 1-4, and the corresponding 2/3-power
curve for different dimensions of the machines is

shown in figure 1-5.
It should be evident that the characteristic curves

(e.g., the head-capacity curves) do not connect

points of similar flow conditions and, therefore,

cannot be derived by similarity considerations.
Generally the characteristic curves must be

determined by tests. Only their slopes at the points

of best efficiency can be approximated by
theoretical means.

The head-capacity (and other characteristic)

curves shown in figures 1-4 and 1-5 can be reduced

to one curve by using the dimensionless coordinates

Q/D3n and goH/D2n 2 or equivalent expressions

such as ¢= V/U and ¢_=2goH/U 2. This was done

to obtain the curve shown in figure 1-6 for an axial-

flow pump. Different data point symbols refer to

different speeds of the same pump. The scatter of
these points is practically within the test accuracy,

which indicates that for a pump of this size

(impeller diameter, 15 in.) and the speeds listed, the
test fluid (water) did not show any effects of

viscosity (Reynolds number) or compressibility.

The test was conducted at a sufficiently high

absolute pressure to practically eliminate cav-
itation.

The type of curve shown in figure 1-6 is,

therefore, a valid dimensionless expression of the

head-capacity curves of all geometrically similar

pumps of this design form, irrespective of speed

and size, provided that, for example, the Reynolds
number remains above certain lower limits.

As mentioned previously, the similarity relations
discussed in this chapter are valid if either of two
conditions is satisfied: if inertial forces are

dominating to the extent that all other forces, such

as viscous and gravitational forces, are negligible or
if these other forces have a constant ratio to inertial

forces and thus satisfy the Reynolds law of

similarity and the Froude law of similarity, respec-

tively. An analagous statement can be made relative

to cavitation, that is, that similarity can be

maintained if the absolute pressure is adjusted so

that the difference between all local pressures and

the vapor pressure of the liquid is proportional to
all other pressure differences in the machine caused

by inertial forces.

Although the effects of compressibility can also

be described by force actions, these effects are more

directly characterized by the changes in the volume
of the fluid handled in the machine. This means

that the volume flow Q at similarly located flow
cross sections in the machines being compared must
have the same ratio to the volume flow at some

standard place (e.g., the inlet to the machines). It

turns out that this similarity of volume flow is very

closely satisfied if the local Mach number is the

same at similarly located points in the machines
being compared.

A distinction is made previously between

.i_ ......... .g
Flow coefficient, Vrn/U

.4

Figure l-6.--Dimensionless head-capacity curve of

axial-flow pump.
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similarity relations using local velocities such as

_o= V/U=constant and those using overall
operating characteristics such as Q/D3n = constant.

The relation V/U= constant means that V/U has

the same value only at similarly located points in the

machines compared, and the relation Q/D3n
= constant means that this ratio has the same value

throughout the machines compared. For

compressible fluids, however, the relation

Q/D 3n = constant also has a definite meaning if it is

applied only to similarly located regions in the

machines compared. A region is defined as that

portion of the flow passages within a machine

through which the volume flow Q is essentially
constant.

1.1.3 Review

A design form comprises all geometrically similar

designs regardless of absolute size. Thus design
forms are dimensionless.

Geometrically similar machines have something

in common, but their performance or operating

characteristics may obviously be different because
of differences in absolute size, velocities, forces,

etc. However, size, velocity, and force can be

combined into a dimensionless performance

characteristic, for example, the lift coefficient of an
airfoil:

L
C L -

(0 V2/2)A

Geometrically similar airfoils have the same lift
coefficient only if the flow over the airfoil is

similar. Similarity of flow requires not only

geometrically similar flow boundaries but also a
kinematic flow criterion of similarity, in this case,

the angle of attack between the flow and the airfoil.

Similarity considerations may be extended to apply
to mechanical characteristics such as stresses or

elastic deformations.

Similarity of flow, particularly in turbo-

machinery, may be defined by the similarity of

velocity vector diagrams at all geometrically

similarly located points in the two or more

geometrically similar machines or flow structures

being compared. Similarity of flow requires that all

forces within the flow change proportionally to
each other. If inertial forces dominate, as is the case

in turbomachinery and flow over an airplane wing,

other forces such as viscous and gravitational forces

must change proportionally to the inertial forces;

this leads to the requirement of constant Reynolds

number, constant Froude number, etc., unless

viscous and gravitational forces are negligible.

Furthermore changes in the volume of a gas must

have the same ratio between pairs of similarly

located points in the machines compared, so that

the Mach number must be the same at similarly

located points. Finally, the pressure at similarly

located points in liquids must have the same

dimensionless relation to the vapor pressure; that is,
it must have the same cavitation number.

The velocity vector diagrams in turbomachines

generally contain fluid velocities V-constant
× Q/D 2 and peripheral velocities of the solid parts

U=constant x riD. To maintain similarity of the
velocity vector diagrams, the flow coefficient _o=

V� U must have the same value at similarly located

points; therefore (Q/D2)/nD=Q/D3n must have
the same value to obtain similar flow in

geometrically similar machines.

If Q/D3n has the same value for geometrically

similar machines (if the flow in such machines is

similar), the head H (energy exchange per unit

weight of fluid), or the change in enthalpy, is
proportional to the square of the velocities of the

rotating parts U and of the fluid V in the machine.

Thus, for similar flow, the head coefficient

_b=2goH/U 2 and the equivalent ratio 2goH/V 2

have the same value at similarly located points in

similar machines, and goH/n2D 2 as well as

goHD4/Q 2 have the same values for similar

machines operating with the same value of Q/D3n.

The ratios Q/D3n and goH/n2D 2 or goHD4/Q 2
may be considered as dimensionless, fluid-dynamic

operating or performance characteristics of

turbomachines. Other dimensionless fluid-dynamic
and mechanical characteristics are introduced in

section 1.2.

1.2 Relations Between Operating
Characteristics and Design
Characteristics

1.2.1 Basic Specific Speed

In section 1.1, the performance or operating

characteristics of turbomachines are expressed in

the following dimensionless forms:

Flow coefficient in the form
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Vmt
_= U

or as the ratio

Q

nD 3

(1-13)

Head coefficient referred to peripheral velocity in
the form

_b= 2g°H
U2

or as the equivalent ratio

go H

n2D2

(1-14)

Head coefficient referred to fluid velocity as the

ratio

2goH "

v 2

or

goHD 4

0. 2

(1-15)

Head coefficient in the form of the so-called

specific diameter

D(goH) 1/4

Ds - QI/2 (1-16)

Similarity of flow in geometrically similar
turbomachines depends primarily on the kinematic

condition of similarity:

V
0 = constant

which has the same value at similarly located points

in similar machines, or

= constant (1 - 17)
D3n

which has the same value throughout similar

machines.
If this condition for similar flow is satisfied

(along with some additional conditions given in sec.

1.1),

= 2g°----_H= constant
u 2

or

g°H =constant
n2D 2

and

2goH = constant
I,'2

or

D s - (goB) 1/4

O 1/2 = constant

(1-18)

(l-18a)

The dimensionless operating or performance

characteristics Q/DSn, goH/n2D 2, etc. can be

calculated only if the size of the machine D is
known, which means at least one of the machines to

be compared must have a known design form and
known dimensions.

It is evident from equations (1-17) and (1-18)

that, when the speed n of a machine with fixed form

and size is changed while similarity of flow is

maintained, the rate of flow Q changes with the

first power of the speed of rotation n and the head

H changes with the second power of the speed of

rotation n 2 and of the rate of flow Q2. The

resulting parabolic relation between H and Q is

shown in figure 1-4. The same equations show that,
when the size D of a machine is changed while its

speed, similarity of geometric form, and similarity

of flow are maintained, the rate of flow Q changes

with the third power of the linear dimension D 3 and

the head H changes with the second power of the

linear dimension D 2. The resulting 2/3-power

relation between H and Q is shown in figure 1-5.

Consequently, any values of H and Q can be

obtained without changing the form of the machine

or of the flow by merely changing the size D and the

speed n of the machine. For example, in a diagram

of H as a function of Q, similar flow can be

maintained by following successively along a

parabola H= constant x 0. 2 while holding the

diameter constant and along a curve of
H=constant × Q2/3 while holding speed constant

(figs. I-4 and 1-5).
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If Q, H, and n are considered as the given
operating conditions of the machine, not every pair

of values of Q and H can be reached with a given

speed n, as one can follow without restriction only a

curve H = constant x Q2/3 (fig. 1-5) and can change

only the size D at will.

It is then natural to ask the following question:

What field of operating conditions of n, Q, and H

can be covered by turbomachines of the same

geometric design form operating under similar flow

conditions? This question can be answered by

eliminating from equations (1-17) and (1-18) the

linear dimension D. It is customary to accomplish

this by dividing (Q/Dan) 1/2 by (goH/n2D2)3/4:

Q1/2 n3/2D3/2 nQ1/2

D3/Enl/2 (goB)3/4 (goB) 3/4
= constant

which satisfies, of course, the condition

H= constant x Q2/3 at n = constant. The resulting

expression for the basic specific speed, or more

concisely, the specific speed n s, is

nQl/2 (1-19)
ns = (goH)a/4

which is defined by the following statement: Any

fixed value of the basic specific speed describes all

operating conditions (n, Q, and /-/) that can be

satisfied by similar flow conditions in geometrically
similar turbomachines.

This definition is, of course, valid only if inertial

forces dominate the flow and if the flow is kept

similar also with respect to the effects of viscosity,

compressibility, cavitation, and gravity or if these
effects are negligible.

The particular form of the specific speed given by

equation (1-19) has primarily a historic rationale,

although it differs from the conventional forms by
the fact that it is dimensionless if consistent units

are used for n, Q, H, and go. The concept of the

specific speed was first introduced by Camerer in

the second decade of this century in the form of the

turbine specific speed:

np1/2

Ns, p = H5/4 (1-20)

where the power P is given as

p = rlpgo QH = constant x QH
550

The eady definition of this concept was that Ns, v is
the speed of rotation of a geometrically similar

turbine delivering 1 horsepower under a head of 1

meter. The equivalence of expressions (1-19) and

(1-20) is demonstrated by multiplying the top and

bottom expression (1-19) by H !/2.
It should be evident from the derivation and

definition of n s that any power of expression (1-19)

would correspond to the same definition and would

have the same practical meaning. For example, the

2/3 power of n s would be the ratio of a

kinematically determined (fictitious) velocity
(nQl/2) 2/3 to a dynamically determined velocity

(goH) 1/2 and might thus have a clearer physical

significance than the form (1-19). On the other

hand, the specific speed may also be written as a

ratio of two linear dimensions IQ/(go1-1)l/2] I/2 and

n/(goH) 1/2. The first one is given by the rate of

flow and the second by the speed of rotation, both
in relation to the dynamic velocity (go/-/) 1/2.

Evidently there is more than one physical

interpretation of the specific speed, and thus there

is no good reason for departing from the

conventional form of the specific speed except for

making it dimensionless as is done in equation

(1-19).

There are various dimensional specific speeds in
use. All of them eliminate the standard

gravitational acceleration go, because it is constant,

and measure n in rpm. The conventional pump

specific speed in the United States, with Q in gallons
per minute, is

n(rpm)lQ(gal/min)] 1/2 [ ft \3/4

[H(ft)] 3/4 = Lg° s--_c2 )

//60 sec ) 3/2 (7.481 gal "_1/2x\ _ ft3 / ns

= 17 200n s (I-21)

Another form is

n(rpm)[Q(ft 3/sec)] 1/2

[H(ft)]3/4

=(go s_c2 )3/4(60 secmq-fi)ns

=812ns (1-22)

1o
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Theturbinespecificspeedusedin theUnitedStates
is

n(rpm)[P(hP)] '/2 ( sec )(gS_O_) 1/2[n(ft)]5/4 =g3o/4 60 _-_ ns

=259 ns (1-23)

where the efficiency r/is equal to 0.9.

There are, of course, still other specific speeds
used in countries having the metric system, which

gives ample reason for using a dimensionless

expression for this inherently dimensionless
number.

It should be evident that the specific speed of any

given machine and of geometrically similar

machines can be varied over a wide range by

operating with dissimilar flow conditions, that is, at
different values of the dimensionless rate of flow

Q/D3n. However, this is generally not advisable

because the efficiency and other operating

characteristics are favorable only over a limited

range of Q/D3n.

It has become customary to associate a

turbomachine or a class of geometrically similar

turbomachines with its basic specific speed at the
Q/D3n value of best efficiency. In this restricted

sense the basic specific speed becomes a

dimensionless operating characteristic of any class
of geometrically similar turbomachines.

Turbomachines having the same specific speed at

the best efficiency do not have to be geometrically

similar (since the same operating condition can be

satisfied by different design forms). But

turbomachines of different specific speeds at the

best efficiency cannot be geometrically similar

(except in the rare case when the efficiency curve

plotted against Q/D3n has a completely flat top).

Thus the basic specific speed at the best efficiency is

regularly used as an index of turbomachinery design
despite the fact that in its original form the specific

speed contains only operating characteristics, not

design characteristics.

The specific speed at best efficiency does not

determine the design of a turbomachine uniquely.

Nevertheless, there is a relation between the design

form and the specific speed so defined, particularly

after certain design choices have been made such as

radial or axial flow, inward or outward flow, and

the number of stages to be used. Before relations

between the basic specific speed and the design
form are derived, it is well to consider a much

simpler use of the concept of the specific speed.

Evidently the specific speed can be calculated as

soon as the operating characteristics n,Q, and H of

a new machine are known, before any decisions

regarding the design of the machine are made. One
may then search the records of existing machines

for a machine having the desired specific speed near

its point of best efficiency and having charac-

teristics which are acceptable for the machine to be

designed (number of stages, axial or radial flow,

etc.). If such a machine is found, the problem

reduces to simply scaling the known machine up or

down in size D and speed n according to equations
(1-17) and 0-18) until the desired performance is

obtained. This performance may, of course, depend

on variables not contained in the specific speed,

which may very well determine the choices between

radial and axial flow, single-stage and multistage

machines, and so on. Sections 1.2.2 and 1.2.3

elaborate further on this aspect.

The next step is obviously to establish a relation

between the basic specific speed at the best

efficiency and the design form. The desired relation

is first derived for radial- or mixed-flow eentrifugal

pumps (or compressors), with particular reference

to the rotor or impeller design. These consid-

erations are limited to single-stage machines. In
other words, the head H is the head of the

particular single stage considered. The specific

speed is, therefore, the specific speed of that

particular stage.

Evidently

Vm'i _ "_iQ= Vm, i_ _- - = 1-

and

U l
n _ w _

Dr

in the notation given in figure 1-7. Hence

11
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RS-- m

r

,.Q./2 _ . | Vm,iD_
(goH)3/4 DTr L 4

x

1/2
1

(go/'/) 3/4

and

_ 1 ( U 2 "_3/4(Vm,i']1/2
ns 2t/47rl/Z\_J _,_-_-i /

3/2( 02") 1/2,- (1-24)

This equation may be evaluated according to

figure 1-7 with respect to D=Do, max and

U=Uo, max, D=Do, min and U =Uo, min, or any
other associated D and U values. The most critical

value of ¢/=2goH/U 2 is its maximum value at

D=Do, min and U=Uo, rain because the Euler
turbomachinery momentum equation derived in

chapter 2, section 2.3, states that the change in the

product of the peripheral flow velocity component

V U and the peripheral rotor velocity U is

proportional to the head. Thus, the lower U, the

greater the change in V U (the greater the deflection

of the flow in the peripheral direction).

Figure 1-8 shows the evaluation of equation

(1-24) with D=Do, min and U= Uo, rnin under the

empirical assumptions that Vm, i/Ui=0.36

=constant and U2,min/2goH= 1 = constant. These
assumptions are reasonable for centrifugal pump

impellers with backward-bent vanes.

Equation (1-24) appears in a simplified form if

one selects D = D i and U= U i (see fig. 1-7), so that

P/S--
,,0"2 _ 1 u_ )3,,

(goH) 3/4 21/4"/I"1/2 (_J

X (_it) 1/2 (1 -- O_.h) 1/2
(1-25)

This form of equation (1-24) is particularly useful
for axial-flow rotors where D i and Ui apply to both

the high-pressure and the low-pressure sides of the

rotor (see fig. 1-20). In this case, D h =Dhj.
As mentioned previously, the minimum diameter

on the high-pressure side of the rotor is critical with

respect to the value of 4, = 2goH/U 2. For axial-flow

rotors, the hub diameter Dh, 2 on the high-pressure

Velocitydiagramat
point I, tangentto
cylindricalstream
surfacewith diam-
eter Di

Velocitydiagramat
ik point O,tangentto

conicalsurface O-A/

\ Uo. ,,_"Vu,o }'
._ ,/'_ ;'o.."_-Vm,o/

y, "-t-Vui __-C"-L-J_ ----/-4 Uo,max
_v -_ ' .l/#J" i - . -_-- Uo

m, I / U

Figure l-7.--Mixed-flow rotor profile defining notation.
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?l

Basic
specificspeed,

n s

o.06 (IOOO)

• 12 (2000)

• 1

• 37 (6400) .60 (iO 003)

+
•85 (15ooo)

•25 (4300)

Figure l-8.--Pump impeller profiles as function of basic

specific speed• ( Values in parentheses are dimensional spe-

cific speeds with flow rate in gal/min. )

side is the minimum diameter on that side. Using

the notation in figure 1-20, one may write

equations (1-24) and (1-25) in the form

_ 1 {U22_3/4( Di ) 3/2ns 21/47rl/2 \ 2goHJ

2

this diagram are lines for 2goH/Vm, 1 =constant,
where the meridional velocity component Vm, l is
obviously the axial velocity component at the low-

pressure side of the rotor (see fig. 1-20). With these
lines figure 1-10 represents also an evaluation of the

equation

/ V2 \3/4nQ 1/2 _ 1 "m 1 ]
ns - (go/-/) 3/4 21/4r 1/2 t 2goHJ

D2 1/2
Ui _

× 1- I (1-27)

where Vm, 1 = Vm, i. Equation (1-27) is equivalent to
equation (1-25) and is useful with respect to
cavitation considerations (see sec. 1.2.2).

Equation (1-24), with its modifications for axial-

flow rotors, is by no means the only relation

between the basic specific speed and the design

characteristics of the machine. Equation (1-24)

refers particularly to the inlet conditions of a pump

or compressor impeller (discharge conditions of a
turbine rotor) and uses the pump inlet flow

coefficient Vm, i/U i. Only the head coefficient

2goH/U 2 refers to the outside (high-pressure side)
of the rotor.

Referring instead primarily to the outside (high-

pressure) cross section of the rotor, one may write

the rate of flow in the form Q= Vm,oDorb o, where

b o is the rotor width at the outside diameter D O
measured normal to the outside meridional velocity

I V \112[
Xl "m,i] [I_D_I_ 1/2

\ Vi/ \ D_ J
(1-26)

This equation was evaluated for 2goH/U2h,2

=constant= 1 and 4 and for Vmj/Ui=0.36. The

results are shown in figure 1-9. The first value nsj
is derived from 2goH/U 2 =1 and appliesh,2

approximately to pump and compressor rotors of

conventional design. The second value ns, 4 is

derived from 2goH/U2,2 =4 and applies primarily
to impulse type turbine rotors. It is possible that

much larger values than _bh,2 = 1 may also apply to
pump and compressor rotors (see sec. 1.3.2.1).

Equation (1-25), which applies primarily to axial-

flow machines, was evaluated in general form, and

the results are presented in figure 1-10. Included in

.20
• 27 .Of
.1

ns,1 1.O .55

Figure l-9.--Axial-flow rotor profiles as function of basic

specific speed ns _ns z for head coefficient 2goH/ U_ = 1;

ns,_ for 2goH/U _ "-'-4).
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Figure l-lO.--Characteristic diagram for axial-flow turbomachinery. (See fig. 1-20for notation. )

Vm, o (see fig. 1-7). With this expression of Q, the

basic specific speed assumes the form

nQ 1/2 Uo (Vm,oDoTrbo) 1/2

#i s -- (gon)3/4 -- DoTr (goB) 314

_ 23t4 ( U 2 _314

7rl/2 \ 2goH J

( Vm,o _I/2( bo _ 1/2

xt Uo ) \Do } (1-28)

Instead of limiting this relation to impeller
characteristics, one can examine the flow conditions

in the stationary passages surrounding the outside

diameter of the rotor (see fig. 1-11). Here

Q= VthAth, where Ath is the total area (so-called

throat area) of the stationary passages, that is, the

total stationary vane passage area closest to the

rotor. If the radial dimension of this passage is dth
and its average width normal to the meridional

velocity is bth , then Ath =Ndthbth , where Nis the
number of stationary passages for one stage. Thus

N= 1 for a single volute, N=2 for a twin volute,

and N= 10 for 10 guide vanes.

Furthermore, from the law of constant angular
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momentum,

Vth = VU, o Do
Dth

where Dth is the diameter corresponding to the
distance of the centroid of the throat cross section

from the axis of rotation (see fig. I-11) and Vu, o is
the peripheral fluid velocity at the outside diameter

D O of the rotor (see fig. 1-7). With

Q= VthAth = VU, o D°
Dt-----_ A th

and

Uo
17-

7rD o

one finds

/'/S--

nQ 1/2 u o

(goH) 3/4 reDo

D o

Vu. o _ A 1/2 1
th (goH) 3/_4

_ 23/4_( U2 ,_3/4
r \ 2goH/

1/2

( Vu, o Do Ath )× Uo Dth D2o
(1-29)

Assuming zero absolute rotation of the fluid at the

low-pressure side of the rotor (i.e., VU, i =0), one
can derive from Euler's turbomachinery equation

(e.g. 2-18)) an equation for radial-flow pumps

which is analogous to equation (1-11):

2g°H Vu'° (1-30)
de° - 2 - 2_h U oUo

so that

VU, o _ 1 2goH

Uo 271h U 2

Substituting this into equation (1-29) leads, for

Vu, i = 0, to the relation

§1.2.1

JJ_/////_ 1

J

j_h

/
i dth /

Figure 1-11.--Radial casing section defining notation. Throat

area hth =dth Xbth.

21/4( U2o "_1/4{ 1 D O Ath)
ns= ---_ k.2-goH. ] \ ,h Dth D 2

(For turbines 1�Oh is replaced by r/h.)

1/2

(1-31)

It is thus apparent that the basic specific speed,

which is the dimensionless expression of the

operating conditions n, Q, and H, can be translated

into dimensionless design parameters in many ways,

partly by changing the peripheral velocity of the

rotor to which it refers and partly by changing the

way in which the rate of volume flow Q is expressed
in terms of the dimensions of and the velocities in

the machine.

It should be obvious that the relations between

equation (1-24) and the subsequent equations
(1-28) and (1-29) are based on the condition of

continuity of an incompressible fluid with the

volume rate of flow Q considered constant

throughout the machine.

Other generalizations are possible regarding, for
example, the diameters D or peripheral velocities U

of the solid rotating parts. The relation between

15



§1.2.1

equations (1-25) and (1-26) is an example. This

second type of generalization applies in principle to

compressible as well as incompressible fluids. There

is no reason to believe that the types of
generalization mentioned here exhaust the

possibilities for such relations between the basic

specific speed (the operating conditions n, Q, and

H) and the corresponding design parameters

(2goH/U 2, V/U, and several ratios of linear
dimensions).

Figure 1-8 shows examples of impeller profiles

determined from equation (1-24) for the same head

and capacity. It should be noted that the size of the

rotor decreases rapidly with increasing basic

specific speed. In the absence of other restrictions,

one should thus select the maximum basic specific

speed in order to minimize the size and,

presumably, the cost of the machine for a given

volume flow rate Q and head H.
In the commercial pump field, the most obvious

upper limit in the speed of rotation stems from the

restriction of standard electric motor speeds to 3600

rpm for 60 hertz, which frequently leads to very low

basic specific speeds for pumps with low flow rates
and fairly high head values. This restriction does

not apply to steam or gas turbine drive or to geared
drive. However, the most fundamental restrictions

in the speed of rotation result from cavitation,

compressibility effects, and centrifugal stresses in

solid rotating parts. These restrictions are discussed

in sections 1.2.2, 1.2.3, 1.3.2.1, 1.3.2.2., and
1.3.3.1.

There exist also practical lower limits for the

specific speed per stage of a turbomachine, which

result from excessive skin-friction and leakage
losses. Figure 1-12 shows optimum values of the

efficiencies of single-stage turbomachines (par-

ticularly pumps) as a function of the single-stage

basic specific speed. These values represent so-

called stage efficiencies (sometimes called bowl

efficiencies), that is, they do not include losses due

to ducting the flow to and from the active vane

systems of the machine, which are of particular

importance for single-stage machines with high
specific speeds.

The efficiencies shown in figure 1-12, which gives

specific speeds per stage, fall off significantly at the

low end of the specific speed scale. Thus this drop

in efficiency determines the specific speed of the

entire unit where a change from a single-stage to a

c

E
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9O

8O

70

• 02

r 1

i

i

i

÷ ,

i
.04 .06.08.1 . .4 .6 .8

Specific speed, ns, dimensionless

I_h_l I 1 I Ill
.4 .6 .8 1 2 4 6 8 lO 2z_xl0_

Conventional pump specific speed, rpm _,_)/ft 3/

Figure 1-12.--Estimated optimum pump stage efficiencies.

multistage pump may be appropriate. If this lower

limit of specific speed per stage is applied to

multistage units, it may also set, with a practical

upper limit on the number of stages, a limit where
transition from hydrodynamic machines to

hydrostatic machines (positive-displacement

machines) is appropriate.

In review, then, the relation of the fluid velocities

V to the peripheral velocities U of the rotating
parts, called the flow coefficient

Vm i Q
• =constant x --

Ui D3n

and the corresponding relation of velocities to the
head of the machine

= 2g°---_H= constant × g°H
U 2 D2n 2

are related to the operating conditions n, Q, and H
by eliminating the linear dimension, or diameter, D

from Q/D3n = constant and goH/D2n 2 = constant.

The resulting dimensionless combination of

operating conditions n, Q, and H is called the basic

specific speed:

nQl/2
ns - (1-19)

Q_o _1)3/4

The resulting similarity relation ns=constant
supplements the relations Q/D3n=constant and

goH/D2n 2 = constant (derived in the preceding sec.

1.1). The new relation defines the requirement of
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§1.2.1-1.2.2

similarity of flow in similar machines with respect

to the operating conditions n, Q, and H only.

The three relations Q/D3n=constant,

goH/D2n2=constant, and ns=nQl/2/(goH)3/4

=constant, which result from similar flow in

similar machines, are, of course, interdependent.

Any two of these relations are sufficient to
determine the third.

The application of the basic specific speed is

usually limited to the values of n, Q, and H at which

a particular machine has its best efficiency (see fig.

1-4). It is expected that this condition exists always
under similar flow conditions, that is, at only one

value of Q/D3n (with effects of viscosity and

compressibility disregarded). Thus there is only one

basic specific speed at the best efficiency point

associated with one class of geometrically similar
machines, and it is called the specific speed of that
form of machine.

The same basic specific speed at the best

efficiency point can be achieved with machines of

different geometric forms, but different basic

specific speeds at the best efficiency point require

corresponding differences in the geometric design
form of the machines compared. Thus the basic

specific speed at the best efficiency point, itself

depending on operating conditions only, becomes

an index of the design forms of turbomachines.

Figures 1-8 and 1-9 show such relations. They are

achieved analytically by substituting

Uo
rl-

7tO o

and

Q=(Vm_O27r)(1-_)

into the specific speed equation (eq. (1-19)). The

resulting equations (eqs. (1-24) to (1-31)) establish
relations between the dimensionless expression of

the operating conditions n, Q, and H and design

parameters such as diameter ratios like Do/D i,

head coefficients of the general form 2goH/U 2,

and flow coefficients of the form Vm/U.
The head coefficients and flow coefficients

together determine, under certain assumptions, the

velocity vector diagrams that form the bases for the

vane shapes of turbomachines.

The basic specific speed has a dramatic effect on

the size of the impeller, as shown by the pump

impeller profiles in figure 1-8. An increase in basic

specific speed is, therefore, usually desirable. Such

increases are necessarily connected with cor-

responding increases in the fluid velocities and in

the peripheral velocities of the rotating parts. The
limitations of the increases in velocities due to

cavitation, compressibility of the fluid, and stresses
in the solid parts of the machine are discussed in the

following sections.

1.2.2 Cavitation Characteristics Described by

Similarity Considerations

The first generalization of similarity con-

siderations of turbomachinery going beyond the
flow considerations outlined in sections 1.1 and

1.2.1 involves cavitation in turbomachinery

handling liquids.

Cavitation is the local vaporization of a flowing

liquid caused by local pressure reductions due to the

dynamic action of the flowing liquid. The term

cavitation usually also includes the subsequent
condensation when the liquid moves from the low-

pressure zone into a zone of higher pressure.

However, the eroding effects (on the solid

boundaries) of this condensation of vapor in a rapid

stream of liquid should not be called cavitation but

rather cavitation damage.
The formation and existence of cavitation voids

(vapor- and gas-filled regions) can be related to the

vapor pressure and the pressures in the flowing

liquid in a reasonably straightforward fashion. This

section does so on the basis of simple similarity

considerations. The rate of cavitation damage is

probably determined by the forces connected with

the collapse of cavitation voids, rather than by the

overall hydrodynamic behavior and design of the

machine. Since only the latter are the principal

subjects of this compendium, the complex problem
of the forces connected with condensation in a

rapidly moving stream of liquid is not considered.

Also, these forces have not yet been described by

simple similarity considerations.

The usual so-called classical assumption on the
occurrence of cavitation states that cavitation takes

place instantaneously whenever and wherever the

local static pressure in the liquid drops to the vapor

pressure of the liquid as given in its vapor tables
(e.g., the familiar steam tables for water).

Departures from this classical behavior are

discussed in chapter 2, section 2.8. Although there

are good reasons for such departures, it is

nevertheless true that most liquids satisfy the
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§1.2.2

classical assumption very closely under most

conditions existing in turbomachinery. The present

analysis, using similarity considerations to describe

cavitation, is carried out under the classical

assumption, along with the assumption that the

local temperature and vapor pressure of the liquid

at the point of cavitation are known.
The occurrence of cavitation in turbomachines is

usually described by means of a so-called net

positive suction head NPSH, which is the total head

above the vapor pressure at the low-pressure side of

the machine outside the rotor. In this compendium,

the NPSH is designated by Hsv, where H denotes

total head (including the velocity head) and the

subscript so refers to suction and vapor pressure.
Thus

Hsv =hs + V2s - P__£_v+Az (1-32)
2go goP

where hs is the static head equal to the static

pressure divided by the weight per unit volume of

the fluid goP, Vs is the fluid velocity at the place

where h s is measured, Pv is the vapor pressure

(usually at the bulk temperature of the liquid), and

Az is the difference in elevation between the point

where h s and V s are measured and the point of
cavitation.

Whenever cavitation occurs somewhere in the

machine, vapor pressure exists at that point in the

machine. Thus Hsv is the difference in head
between the point of cavitation and a convenient

place on the suction side of the machine where the

head hs and the velocity Vs are measured. The
difference in elevation Az can be eliminated by

converting h s and thereby Hsv to the elevation of
the point of cavitation (which may have to be

estimated). If this is done, the head difference Hsv

is controlled by inertial forces in the same sense as

H and therefore, obeys the same laws of similarity

as H or any other dynamic head difference in the

machine. One may write for Hsv, then, the same

similarity relations and dimensionless expressions

as derived in sections 1.1 and 1.2.1 with respect to

H and apply them to any other dynamic head or

pressure difference in turbomachinery.

It is stated previously that Hsv is a head
difference in the machine only if vapor pressure and
thus cavitation exist somewhere in the machine.

Therefore, Hsv is useful only in connection with
cavitation and the observation of certain effects of

cavitation.

The best method of observing cavitation is the

optical method because, with experienced
observers, it is the most sensitive method and
because it discloses the location and form of the

cavitation voids. The value of Hsv can be recorded
in relation to the size, location, and form of the
cavitation voids observed and thus assumes a

definite meaning.

Obviously optical observation is possible only
with specially equipped machines. As such

machines are rarely available, it is customary to

observe cavitation in turbomachines indirectly by

its effect on the performance of the machine. Figure
1-13 shows the effect of cavitation on the head-

capacity curve. In this figure, Hsv can be correlated

definitely only with the maximum capacity

achievable with a given (reduced) value of Hsv. The

slight drop in performance that usually exists over

the entire capacity range is difficult to measure by
this method. For this reason, it is customary to test

a machine at constant capacity Q and speed n and
to observe other performance variables such as

head, power, or efficiency as a function of Hsv. The

value of Hsv is reduced in small steps from high

values, where (because of the absence of cavitation)

no effects are expected, to low values, where the
performance deteriorates drastically. On a curve so

obtained (fig. 1-14), one may then mark the Hsv
value at which the first effects of cavitation are

observed, that is, the value at which the first clear

deviation from the horizontal (zero-effect) part of

the curve occurs (point A), and one may consider

this a safe lower limit of Hsv at the particular

capacity Q and speed n of the test. (The actual

safety of operation at this point is not assured, as

ve at very high Hsv

Hsv = Hsv, 1 - __

i\
_1 /

" Maximum safe capacity at Hsv ,t -'
(not well defined) I

Ultimate capacity at Hsv 1
{well defined, but not us'able)

Rate of flow (capacityl

Figure 1-13.--Pump head-capacity curve under influ-

ence of cavitation.
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,-B lcavitationbreakdown)
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L Cavitationcharacteristicat constantcapacityQ]
B(cavitation
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breakdown_......_.e
I LCavitationcharacteristicat increased

, c...,tant capacityQ2

Totalinlet head,Hsv

Figure 1-14.--Typical effects of cavitation on head of pump at two
constant capacities and one constant speed of rotation.

local cavitation can be observed optically or

acoustically well before cavitation has any effect on

the performance of the machine (see also ch. 2, sec.

2.8).

Furthermore one may mark a second value of

Hsv (point B) at which the performance begins to
deteriorate very rapidly (cavitation breakdown),

and one may consider this the ultimate lower limit

of Hsv. Figure 1-15 shows results of an actual

cavitation test of this type (performed by the

Worthington Pump and Machinery Corp.) on an

axial-flow pump which indicate that the initial
effect of cavitation may be an increase, instead of

the usual decrease, in head and power con-

sumption. This phenomenon is not yet fully

understood but is usually explained as being caused

by a local reduction in skin friction at the onset of
cavitation. An increase in head with the onset of

cavitation is most frequently observed at capacities

below that of the best efficiency point, where the

flow has some tendency toward instabilities

(separation, stall).

In figure 1-15, the total inlet head above the

vapor pressure Hsv is made dimensionless by

division by the total pump head H. This ratio,

called the Thoma cavitation parameter OH, is one

of the first methods of making Hsv dimensionless.

Because the resulting changes in head and power are
also plotted in dimensionless form, a set of

cavitation curves of this form should not change

with the speed of rotation or the absolute size of the

machine if tests are performed under similar flow

conditions (i.e., with geometrically similar

machines at the same value of Q/nD 3 (see secs. 1.1

and 1.2.1)). If this type of dimensionless cavitation

curve changes under supposedly similar flow
conditions as a function of size or speed, one must

0
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-- r B Icavitationbreakdown)
t
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,--B(cavitationbreak_wn)
i I
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' I I l 1 I
1.5 2.0 2.5 3.0 3.5

Ratiooftotal inlet headabovevaporpressureto total
pumphead,oH

Figure 1-15.--Cavitation test points for axial-flow pump.
Specific speed, O.755.
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concludethat theflow is not truly similarat the
sameo H . Such departures from similarity under
conditions where the flow should be similar under

the classical assumptions are called scale effects and

are further discussed in chapter 2, section 2.8.

Besides using the Thoma cavitation parameter

Hsv (1-33)
OH-- H

one may introduce Hsv instead of H directly into

the similarity parameters presented in sections 1.1

and 1.2.1. This yields the following sets of ratios:

2go Hsv ",

u z

or

goHsv

n2D 2

and

(1-34)

2go Hsv

v 2

or (1-35)

goHsv D4

Q:

The flow coefficient, or dimensionless capacity,

or the ratio (1-13)

Q
nD 3 .,

is, of course, identical to that used previously. In

the very same manner as described in section 1.2.1,

the dimensionless capacity Q/D3n can be combined

with either expression (1-34) or (1-35) to eliminate

the linear dimension D and, thus, obtain the so-

called suction specific speed:

nQ 1/2
S = (1-36)

(gonsv) 3/4

Any fixed value of the suction specific speed

(S = constant) describes all suction operating

conditions (n, Q, and Hsv) that can be satisfied by
similar flow and cavitation conditions in

geometrically similar suction passages of

turbomachines. (Compare this definition with that

of the basic specific speed given with eq. (1-19).)

The dimensionless expressions (1-34) and (1-35)

of Hsv are found in the field of cavitation to be even

more important than the corresponding expressions
of the head of the machine H, which are discussed

in sections 1.1.2 and 1.2.1. With respect to cav-

itation, these expressions and the flow coefficient
are usually used in connection with the velocities

Vm, i and Ui, because these velocities exist on the
low-pressure side of the rotor, where cavitation is

expected to start.

Figures 1-16 and 1-17 show the inception value

(curve A) as well as the breakdown value (curve B)

of Hsv in its two nondimensional forms

2gHsv / V2,i and 2gHsv / U 2 plotted against the flow

coefficient V_n i/Ui. Generally the minimum value
of 2gHsv/Vml i (i.e., the condition where, the
disturbing effect of the rotating vanes is a

minimum) coincides with the flow coefficient of the

best efficiency point, although one can design for

departures from this rule if desired. Nevertheless

these plots, like plots of airfoil characteristics,

particularly pressure distributions, clearly show an

optimum in performance as a function of the
direction of the relative flow in relation to its design

direction.

e,JE

Flow coefficient, V rn, i t Ui

Figure 1-16.--Cavitation characteristics of centri-
fugal pump made dimensionless by means of

V 2m, , and UI .
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Flow coefficient, Vm, i / Ui

Figure 1-17.--Cavitation characteristics of centrifugal pump

made dimensionless by means of U{ and U_.

It is desirable to investigate the behavior of

individual elements of turbomachines, particularly

their vanes, relative to the pressure distribution and

the resulting cavitation performance as a function

of the angle of attack. This was done in water

tunnels, and a remarkably good correlation
between the changes in theoretical pressure

distribution and corresponding changes in the

optically observed cavitation performance was
obtained, particularly regarding the onset of

cavitation.

During these investigations it was desirable to
define a cavitation number that is independent of

the particular conditions existing in turbomachines.

This number is

P -Pv (1-37)
01/212

where p is the static pressure in the flow, measured
on a surface parallel to the flow away from the

influence of the tested body (vane or airfoil), Pv is

the vapor pressure in the flowing liquid, p is the

mass per unit volume of the liquid, and V is the
free-stream velocity relative to the tested body,

measured at the same place as p. Obviously ap is
included in the classical assumption of cavitation

and is equal to the minimum pressure coefficient of

the object tested, defined as

P -Pmin (1-38)
Cp,min=

§1.2.2

In terms used in the turbomachinery field, this
cavitation coefficient assumes the form

hsv (1-39)
ap- Ow2/2

where hsv is the static head above the head
corresponding to the vapor pressure. Hence

I/2 (1-40)
hsv = Hsv 2g °

where V is the local velocity of flow at the point

where hsv and Hsv are being measured or
evaluated. At the low-pressure side of the rotor

w2 (1-41)
Hsv = _o + op 2g °

(see fig. 1-7).
Since V i is a local fluid velocity, it cannot be

related directly to a rate of flow and a cross section
of the machine. To achieve this relation, one has to

use average velocities defined by some simple

relations, primarily the condition of continuity and

perhaps a conclusion from a prescribed angular

momentum. Defining V i by the equation

V2=V2u, i+V2,i , one can obtain the desired
relation by determining an average Vm, i from the

condition of continuity and Vu, i from the angular
momentum that the flow is intended to have at the

cross section considered.

However, V i so defined does not include flow

losses, in particular the existence of a boundary

layer on the walls of the space of revolution in

which V i is defined. To consider this, one
introduces a correction factor C 1 which takes into
account nonuniformities in the velocity distribution

in the low-pressure passage of the rotor as well as

pressure losses between this passage and the section

where hsv and Hsv are being measured. With this
correction factor, equation (1-41) appears in the

form

V2 a w2 (1-42)
Hsv = C1 _o + p 2go

The suction specific speed can be related to

certain design and flow parameters in the same

manner as the basic specific speed ns of the machine

(in sec. 1.2.1). The expression exactly corre-

sponding to equation (1-24) is
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S_ nQ,/2 1
(goHsv) 3/4 21/471"1/2 2g-_s v

/ Vmi'_ 1/2
(1-43)

With D=D o and U=Uo, this relation is not as

useful as the corresponding relation for the basic

specific speed (eq. (1-24)), because Hsv is not as

directly related to U o as the total head H of the

machine (or stage). Rather, Hsv may be related to

the peripheral rotor velocity in the low-pressure
passage (for pumps, the inlet), which is

Ui=U(Di/D). Substituting this into equation
(1-43) leads to

S_

(goHsv)3/4 21/4ri/2 \ 2goHsv ,I

[V "\I/2// O2_ 1/2x [ " m,t | [1 -
\ 7/ (1-44)

Further analysis of the cavitation behavior of

turbomachines shows that 2goHsv/U2i, cor-
responding to the head coefficient _bi, is not the
most useful suction head coefficient. Instead, the

head coefficient referred to the absolute inlet

velocity 2goHsv/V2i (as used in sec. 1.2.1, eq.
(1-27)) is very significant. With this coefficient,
equation (1-44) assumes the form

S_
nQ 1/2 _ 1 f__V2 "_3/4

(goHsv)3/4 21/4,xl/2 t/]\2goHsv

1/2
( Vm.i ,_3/2 Ui (1 92

(1-45)

It is evident that this expression may also be
written in the form

/ V 2 " \3/41 | mr /
S= 21/471"!/2 \2goHsv ,/

X _ 1- D/2// (1-46)

As demonstrated in section 1.2.1, the relation of

a dimensionless expression of an operating

condition, such as n s or S, to design and flow
parameters can assume many different forms

depending on the parameters that are considered

most useful. Equations (1-43) to (1-46)
demonstrate this fact with respect to the suction

specific speed. Other forms for the suction specific
speed can readily be obtained.

For example, with respect to cavitation, the

relative velocity on the low-pressure side of the

rotor may well be of major importance. The

velocity diagrams shown in figure 1-7 indicate that

v.,).+vL:v

-- 2V i VU, i + V2u,i + V2,i

Hence

w2 = 1 _ + _ (1-47)

Obviously equation (1-44) can be written in the
form

1 ( W2 ) 3/4S- 21/47rl/2 2gonsv

1/2

(1-48)

Substituting for Ui/w i from equation (1-47)yields

1 ( W_ ) 3/4S= 21/4rl/2 \2goHsv

× (Vm, i/Ui)l/2( 1 -O2/O2) 1/2

[1 -2(Vu i/Ui) + V2i/U2+ V 2 /I12] 3/4• , m,i-'-'iJ
(1-49)

which may be of considerable value since,
according to equation (1-42),

2g°Hsv V2 + op (I-50)-=c,

Thus w2/2goHsv is calculable for given velocity
diagrams (see fig. 1-18).

The general combination of equation (1-42) with

the specific speed equations involves the following
steps:

2g°Hsv V2 w2 (1-50a)
--U2 -=C 1 U--i2i +Op U--j2i
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and V;-2-V2,i+ V2m,i ' according to the velocity
diagrams in figure 1-7. Hence combining the last

expressions with equation (1-47) gives

0 2 =CI ei2 0 2

vui V 2.
+Op 1-2-_i'" + L_, 2

+ mt

or

_2i2 =(CI+ P _ U 2 +

+ep(1 --2_)

By substitution of the last expression into equation
(1-44), one obtains

S=

1

21/47rl/2
X (I'm, i/ui)l/2(l -O_/Di2) l/2

/(Cl +ap)(V2,i/U2i + Vm, i/Ui)2 2 + Op[l-2(Vu, i/Ui)]l 3/4

(l-50b)

For zero prerotation (i.e., Vu, i=O), equation
(1-50b) reduces to

1
S=

21/47rl/2

X (Vm'i/Ui)I/2(l-O2/Oi2)l/2

2 2
+op)V ,,#ui+ Op]3/4

(I-50c)

and equation (1-49) assumes the form

1 (W2) 3/4S= 21/4rl/------------_ 2gonsv

X (Vra'i/ui)l/2(l -D2/D2)I/2 (1-49a)
2 3/4

(1 +gm, i/U_

which follows in this case immediately from

+ vL,,.
It should be clear that equations (1-43) to (1-50c)

and (1-49a) represent simultaneous and inter-

dependent relations. Figure 1-18 represents these

relations in one diagram for Vu, i = 0 and Cl = 1.1.

For any particular value of C! and of ap, the
suction specific speed reaches a maximum at one

particular flow coefficient. This relation changes

relatively little with moderate rotat-]on of-the
absolute flow on the suction side of the rotor.

It may be of interest to review briefly the way in

which the concept of suction specific speed was

originally developed in the United States (the earlier

derivation by Bergeron in France was not published

and is therefore not known to this writer). This part

of section 1.2.2 is not used later and may therefore

be skipped in reading this chapter.

It is stated previously that the Thoma parameter

oH=nsv/H was the first widely used, dimen-

sionless expression of Hsv (or NPSH). This
parameter is known to be constant for similar flow

and cavitation conditions in similar turbomachines,
which means that it can be the same for machines of

the same basic specific speed (although it does not
necessarily have to be the same, as the same basic

specific speed can be achieved by machines of

dissimilar designs and flow conditions). It was thus
natural to ask in which way aH would change with

changing basic specific speed. This question implied

a comparison between dissimilar turbomachines. It

had always been empirically known that the value

of aH required for satisfactory performance

increases with increasing specific speed, but an
analytical relation was not known.

A solution of this problem was obtained by the
assumption that in the field of low and medium
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specific speeds the low-pressure and high-pressure
sides of the machine, particularly of its rotor, can

be considered and changed independently of each

other and that the head H is determined primarily

by the high-pressure side and Hsv primarily by the

low-pressure side. If this is true, H can be changed

without changing the required Hsv. Thus Hsv is

independent of H when the basic specific speed is
changed by changing only the high-pressure side of

the rotor (say, its outside diameter).

The unknown functional relation between aH

and ns was hypothetically written in the form

aH = constant × nsx

where X is an unknown exponent. Explicitly

H - constant × L(gom J

Hence

Hsv =constant L (go-_/4 _ (I-51)

For Hsv not tochange withHrequires thatHcancel

out of this expression, which is possible only when

X = 4/3. Then equation (1-51) assumes the form

Hsv = constant x --
(n_-O) 4/3

go

and, therefore,
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(n_/--Q)4/3
= constant

goHsv

which is readily recognized as the 4/3 power of the

suction specific speed (eq. (1-36)).

A test of the general validity of this reasoning was

obtained by plotting the trH values of commercial

pumps with satisfactory performance with respect

to cavitation against the basic specific speed (fig.

1-19). This plot shows remarkably good agreement
between the data points and the direction of the

lines for constant suction specific speed S. This

agreement even persists into the field of high
specific speeds, where the previously mentioned

separation between the high-pressure and low-

pressure parts of the rotor cannot be generally

accepted. On the basis of this empirical evidence, it

has become customary to regard the suction specific

speed S as independent of the basic specific speed

n s. This particular view of S cannot generally be

valid, however, because dimensionless expressions

of operating conditions, such as S, should be

functions of the specific speed, that is, of the
general design form of the machine concerned.

§1.2.2

According to figure 1-19, the suction specific

speeds of commercial pumps are limited to values
below 0.7 (12 000 in dimensional form). This is not

generally true, as condensate pumps are regularly

used up to S=1.75 (30000), which permits

considerable local cavitation. Rocket propellant

pumps with special inducers are used up to about

S=2.5 (43 000), and for liquid hydrogen much

higher values have been achieved. Again, such

pumps operate with considerable local cavitation
but without excessive detrimental effects on their

efficiency. However, one cannot assume that the

points plotted in figure 1-19 represent truly

cavitation-free performance. Most points for

suction specific speeds over 0.4 (7000) represent
operation with some local cavitation but without

significant detrimental effects on hydrodynamic

performance (efficiency). Nevertheless the existence

of local cavitation can be important with respect to

cavitation damage.

In this compendium, the suction specific speed S,

like the basic specific speed ns, is derived and used

in dimensionless form, with n measured in rps, Q in
cubic feet per second, and H in feet, and with H

Suction specific spe_, S//
S = rpm (_al/minl I/2 // / .

50OO-... 0"/i._./.. ,'L -_ / /

6' 6000 _'./ /"/d/./ / ..t" /1• 7000. i/.,/,/// / /

/

/,_ -',.o_"eL.-'_.-'/ o _ / /

2- .06 --#-" -" / /

04 / i

.o2 / ,/
400 600 800 1000 2000 4000 6000 8000 10 000 20 000

Specific speed, ns =irpm)ioallrnin)
H314

Figure 1-19,--Points of acceptable pump performance with respect to cavitation. For total pump head H for multistage pumps,

only first stage is considered; total inlet head Hsv above vapor pressure of fluid pumped is referred to centerline of impeller;for

double suction pumps, one-half of total capacity of pump is used for calculating ns and S.
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multiplied by go =32.2 feet per second squared.

Any other consistent system of units gives the same
values for S. The relation of the conventional

suction specific speed to the dimensionless S is, of

course, the same as that given by equation (1-21)

for the basic specific speed:

n(rpm)[Q(gal/min)] 1/2 _ 17 200 S (1-52)
[Hsv(ft)] 3/4

1.2.3 General Relations Between Dimensionless

Operating Conditions and Design Parameters

In the preceding sections 1.2.1 and 1.2.2,

dimensionless expressions of the operating

conditions n, Q, H, and Hsv are derived in the form
of the basic specific speed ns = nQl/2/(goH)3/4 and

the suction specific speed S=nQ1/2/(goHsv)3/4.

These dimensionless operating conditions are
related to combinations of dimensionless flow and

design parameters (eqs. (1-24) to (I-31) and (1-43)

to (1-50c)).

Certainly n, Q, H, and Hsv are not sufficient to
describe the operating conditions of turbomachines

in general. Additional variables are required to

describe the operating conditions relative to

compressibility, viscosity, stresses in the solid parts,

accelerations of the entire machine (such as

gravitational acceleration), vibrations of the

machine, and probably others.

There are various ways in which these additional

variables can be taken into account. One way,
analogous to forming the Thoma cavitation

parameter (olt=Hsv/I-1), is to form dimensionless
ratios of the variables describing the additional

phenomena to one of the variables already used in

similarity relations, such as the head of the machine

H. For example, similarity with respect to

compressibility would be satisfied if the head H of

the machine had a constant ratio to an enthalpy

difference expressing the compressibility of the gas.

An expression of this type, corresponding to the

Thoma cavitation parameter aH = Hsv/H, is

a 2
-- = constant (1-53)
go H

where a is the velocity of sound at some point in the

machine. Of course, other forms of this expression

can serve as well, for example, one in terms of a
head Mach number gVrg_oH/a.

Instead of proceeding in this manner, this

presentation uses the principle involved in forming

the suction specific speed. With respect to

compressibility, one can form a compressibility

specific speed na=nQl/2/a3/2, since nQ 1/2 is

already recognized as the 3/2 power of a velocity
representing the rate of rotation as well as the rate

of flow of the machine. The compressibility specific
speed can also be derived in the same manner as the

basic specific speed by eliminating the linear

dimension D, that is, by combining Q/nD 3
=constant with a suitable dimensionless ratio

involving the new variable to be considered, such as

a/nD or aD 2/Q. For instance,

Q n3D 3 _ n2Q

nD 3 a3 a 3

or, written in the same form as other specific
speeds,

nQl/2
(1-53a)

n a = a3/2

The compressibility specific speed n a is defined as

that combination of operating conditions which, if

held constant, permits similar flow of a

compressible fluid in geometrically similar
turbomachines provided that the specific speed is

also held constant. Since the volume rate of flow Q

changes for a compressible fluid within the

machine, Q must obviously be measured in

similarly located cross sections of the machines

compared. It is customary to use the volume rate of

flow on the low-pressure side of the machine (inlet

for compressors, discharge for turbines) and to

compute p for the stagnation conditions of this
stream.

The speed n 2/3 may be written as a generalized
Mach number of the form (nQ]/2)2/3/a. Thus the

equation n a =constant is a generalization of the

previously mentioned condition of similarity that

the effects of compressibility are the same if the

Mach number at geometrically similar locations has

the same value. The condition n a = constant has the
advantage that n a can be calculated before any

specific information is available on the design of the
machine.

Setting

uo
n = __

7tO o

and

• 4
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one finds in the same manner as for the basic

specific speed

,
no-- a 3/2 - 27r 1/2 \-a/ \Boo/

v\l/2( D____2 _ 1/2X ( m,i-o7 ) 1- Di /
(1-54)

or, for the suction side of the rotor (inlet of

compressor rotors),

_ 3/2 V \1/2

na 27rl/2 _)

(i-55)

Of course, a Mach number based on the fluid

velocity may be used in the right side of equation

(1-54) instead of one based on the peripheral

velocity of the rotor. For example, when the

meridional fluid velocity Vm, i is used,

nQ 1/2 1 I" V . \3/2

a3/2 - 27rl/2 t L-_)

×\v,.,,l\ -D J

t/a=

(1-56)

The Mach number usually considered critical is

that of the relative fluid velocity w entering a rotor

vane system. It is considered in this section with
respect to a compressor or fan. The applicable
relations are the same as those derived in section

1.2.2 for the suction specific speed. Specifically,

equation (1-49) appears in the form

ha- a3/2 27r 1/2

(Vm,i/Ui) l/2(l - D2 /D2) 1/2

2 2- , v; ,i/vi][1 2(Vui/Ui ) + lZU,i/U_ + 2 3/4

(I-57)

where the notation is that given by figure 1-7.

For zero prerotation with VU, i = O,

n a- a3/2 - 27rl/2

× (Vm,i/ui)l/2(1 - "-'hrl2/rl2_,,..,,i' 1/2
2 3/4(1+ 0

which corresponds to equation (1-49a).

(I-58)

Viscous forces can be introduced in the form of a

viscous shear stress given by

U nD

r = constant x # L) = constant x # D

= constant x #n

Its ratio to inertial forces may be written in the form

/xn V

on2D 2 nD 2

which is obviously the reciprocal of a Reynolds

number. In such an expression, one might also use
the head H of the machine to obtain the form

_n nlJ

Pgo H go H

which is the reciprocal of a head Reynolds number
and is analogous to the Thoma parameter

aH = nsv/H in the cavitation field.
One can also form a viscosity specific speed by

eliminating D from v/nD 2 and Q/nD3:

nl/4Q1/2 nQll2 (1-59)
r/v = ;,,3/4 -- (nv)3/4

This equation is dimensionally correct because the
kinematic viscosity v has the dimensions L2/T, so

that nv has the dimensions L2/T 2, like go H.

A constant value of the viscosity specific speed n v

permits similar flow of a viscous fluid in similar

turbomachines provided that the basic specific

speed n s is also held constant.

The relation with flow and design parameters is

obtained in exactly the same manner as those for

other specific speeds:

rlQ 1/2 7r1/4 (UoDo)3/4(Di_ 3/2
n_,- (nv)314 - 2 _ \-D-oo i

iv .\112/ D______i/2× I ra,il II - (I-60)
,,--o-:1 \
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or

7rl/4 ( UiDi _3/4( Vm,i \l/2

\-07)

(1-61)

If it is more desirable to refer the Reynolds

number to the meridional velocity Vm,i than to the

peripheral velocity U o or U i of the rotor, the

viscosity specific speed may be related to flow and

design parameters in the following manner:

_ nQ 1/2 _ 7rl/4(Vm,iDi) 3/4
n_ (nt))3/4 2

X(_)l/4(I D2_ 1/2
(1-62)

The foregoing modifications of similarity
relations cover the fluid-dynamic aspects of the

problem. The basic operating conditions n, Q, and
H are considered in terms of the basic specific speed

and other similarity relations given in section 1.2.1.

Also considered are departures from the basic flow

conditions due to cavitation (in sec. 1.2.2) and due

to compressibility and viscosity (in this section). In

general, two conditions have to be satisfied by the

operating conditions to have similar flow in similar
machines, one with respect to the basic flow

(n s = constant) and another with respect to each of
the departures from the ideal conditions (e.g.,

S=constant or _/4=constant with respect to

cavitation, n a =constant or go_a=constant

with respect to compressibility, and n_ =constant

or goH/_,n = constant with respect to viscosity).
It is significant that the various conditions of

similarity with respect to departures from the basic

relation n s = constant do not all have to be satisfied

at the same time. Certainly the requirement of

similarity with respect to cavitation (S= constant)
does not have to be satisfied simultaneously with

the requirement of similarity with respect to

compressibility of gases (n a =constant) as these

generally apply to different kinds of fluids (the

former to fluids capable of vaporization (liquids)
and the latter to fluids subjected to major changes

in volume (gases)). Thus only one, S=constant or

n a = constant, needs to be satisfied at a time.

Fortunately the viscosity of the fluid is rarely

important with respect to turbomachinery, because

the flow is usually fully turbulent, so that the shear

forces (i.e., fluid friction forces) follow the same
law as other inertial forces in the machine. Thus

these forces can be included in the treatment of

other hydrodynamic forces in the machine.

Therefore it is usually not necessary to consider the

condition n,=constant separately in similarity
considerations on turbomachinery, and this

condition is usually neglected.
In addition to fluid-dynamic relations, it is of

equal importance to consider some purely
mechanical relations, that is, relations involving the

mechanics of the solid parts of the machine.

First consideration must be given to the

mechanical steady-state stresses in the solid parts.

For reasons of similarity, such stresses are

proportional to the loads per unit area applied to

the structure. Hence any stresses generated by the

fluid in the solid parts of the machine are

proportional to the fluid-dynamic pressure

differences applied to these parts. For example, the

bending stresses in turbomachinery blades are
proportional to the fluid-dynamic pressure differ-

ences applied to these blades. (The distribution of

these pressure differences does not change under

similar flow conditions.)

This similarity of stresses in solid parts to

pressure differences in the fluid goes farther than

this. Centrifugal stresses a c are proportional to

Ps U2,where Ps is the mass per unit volume of the

solid parts of the machine. It is shown in section

1.3.3 that the ratio Oc/Ps U2 depends primarily on
the dimensionless geometric configuration of the

rotating part. For example, ac/ps U2 = 1 applies to

a thin freely rotating hoop. For a radial strut of

constant cross section, the maximum stress at the

axis of rotation is given by the ratio Oc/p s U 2 = 0.5.

Thus all steady-state stresses in similar solid parts

are (under similar flow conditions) proportional to

the dynamic pressure differences in the machine, as

they follow the same law, modified by the specific
mass ratio between the structural material and the

fluid:

ac =COnstant x ( _ _ofU 2
\ f/

The structural stresses o, insofar as they are

generated by dynamic forces within the machine,

could be made dimensionless. For example, the

stress a could be divided by the total-pressure rise
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acrossthemachineo/Ofgo H. However, one could
also introduce a stress specific speed by eliminating
D from a stress coefficient such as a/pn2D 2 and

from Q/nD 3 to obtain

nD 3 (o/p) 3/2

or

nQ1/2
no - (1-63)

(0/,o)3/4

In these equations, p is the mass density of the fluid
if the stresses considered are fluid-induced stresses

at', such as the bending stresses in blades or the
casing stresses present if the so-called gage pressure

on the low-pressure side of the machine is

negligible, or p is the mass density of the solid

rotating parts of the machine if the stresses

considered are stresses generated by centrifugal

forces oc.

Similar to other specific speeds, no is that

combination of operating and stress conditions

which, if held constant, permits similar stress

conditions in similar machines provided that the

basic specific speed n s is also held constant.

The specific speed n o may be related to design,

stress, and flow parameters of the machine in

exactly the same manner as done previously with
respect to fluid-dynamic characteristics of the

machine. One may write an equation analogous to

equation (1-24):

no B

nQ 1/2 _ 1 (p__U2 _3/4(Di _3/2

(0/0)3/4 21/471-1/2 \ 20 / \Doo/

/' V "'_1/2/ D2 _I/2x I " ma ] l1 -
\ ui / \ _2/

(1-64)

This expression is probably most advantageous

when centrifugal stresses oc are being considered,
since psU2/2Oc is useful in making the centrifugal

stresses in rotating parts dimensionless (0s being the

mass density of the structural parts). This is
discussed further in section 1.3.3.1.

For fluid-induced stresses of, it may be more

advantageous to make af dimensionless by means

of a fluid velocity, for example, Vm, i; this method
leads to the expression

nQl/2
no-

(af/pf) 3/4 21/47rl/2\ 2of /

3/4
ui

Vmd

(1-65)

If, instead, it is deemed desirable to make of
dimensionless by means of the relative velocity w i

at the low-pressure side of the rotor, one can derive

the following expression in exactly the same manner

as equation (1-49):

nQl/2_ 1 (pfW/2)3/4
no- 21/47rl/2 \ 2of

(of/pf) 3/4

X
(Vm,i/Ui)l/2(l -D2 /D2) 1/2

11 - 2(Vu i/Ui), + V2i/U2+ Vm,i/O_i2 3/4

(1-66)

This equation is easy to simplify for zero rotation of

the absolute flow by setting Vu, i = O.
It should be noted that steady elastic

deformations 6 are proportional to steady stresses,
specifically that 6/D = constant × (o/EL where E is

the modulus of elasticity. Steady elastic

deformations are, therefore, included in the

foregoing similarity considerations, but other

deformations (e.g., thermal deformations) are not.

The second mechanical effect that is treated in

the same manner as the previously discussed flow

and stress phenomena is the effect of the

acceleration of the system as a whole (e.g., the
effect of gravitational acceleration). Generally this

effect is considerable only for very large machines.

For example, the gravitational static-pressure

difference between the highest and the lowest points

of a large hydrodynamic machine with a horizontal

shaft may well be sufficient to require consideration
in connection with cavitation. Gravitational

deformation of helicopter blades is very common

and requires careful attention. Even in machines of

moderate size the effects of a large general

acceleration can be considerable, as, for example,

during the launch of rockets or missiles. A turbojet

engine at the tip of a helicopter blade may be

subjected to exceedingly high centrifugal and
Coriolis accelerations.
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The force due to acceleration of the system as a

whole is obviously proportional to gpD 3 , where g is

the general acceleration of the system as a whole

and, for a machine at sea level on Earth without any

acceleration of the entire system, is equal to 32.2

feet per second squared. Generally speaking, g is a
variable, equal to the true gravitational acceleration

added vectorially to the kinematic acceleration of

the system as a whole.

On dividing the inertial forces by the force due to

a general acceleration g, one obtains the square of
the familiar Froude number in the form

p(n2 D2)D 2 n2 D n2 D 2
- - (1-67)

pgD 3 g gD

Combining this expression with Q/nD 3, one can
eliminate the linear dimension D and obtain the

following:

n2D_3 Q _ nSQ
g i nD 3 g3

or

nS/2Q1/2 nQl/2

g3/2 (g/n)3/2
- ng (1-68)

which is named in this compendium the gravity

specific speed, where the word gravity refers to any

general acceleration of the system as a whole.

The gravity specific speed is that combination of

the operating conditions n, Q, and g which, if held
constant, permits similar conditions in similar

machines provided that the basic specific speed n s is
also held constant.

As previously the inertial forces can be expressed

by the head H of the machine in the form

pfgoHD 2. Dividing by the force of the general
acceleration pgD 3 leads to

Of go HD2 _ _ go H - constant (1-69)
ogD 3 0 g D

as the condition of similarity for turbomachines

under the general acceleration g. If forces in the

fluid (pressures) are being considered, the general

density 0 is set equal to pf, so that the condition of
similarity reduces to goH/gD=constant and for

g =go reduces to H/D = constant. That is, the head

must change proportionally to the linear
dimensions of the system. This is a form of

Froude's law of similarity, which is well known in

the field of large hydraulic turbines.

If the forces in the solid parts of the machine are

being considered, the effective density is p = Ps -Pf
or P=Ps, depending on whether the solid parts

considered are submerged in the fluid of density pf
or not.

Similar to the previously discussed specific

speeds, ng has the advantage over the ratio

pfgoH/pgD that it can be calculated before the size

D of the machine is known. Furthermore ng can be
related to design and flow parameters of the

machine in the same manner as the other specific

speeds:

nQ 1/2 1

ng- (g/n)3/2 - 2r 2

l" U2o \3/2/Di \3/2[Vm, i)1/2

(1-70)

or

nQ 1/2 1

ng- (g/n)312 - 2r 2

/" U2 \3/2/" V \1/2
i m,it-m)

(1-71)

or

V -_3/2[ U '_5/2
1 L.-m-2/ / il

ng = _2 gDi ] \-V_im,i l

× (1-72)

Which form is used depends on which form of the

Froude number (U 2/gD or V 2/gD) on the right side

turns out to be most convenient for the design

procedure chosen. These expressions for ng do not,

of course, exhaust the many ways in which ng can
be related to flow and design parameters.

The last mechanical relation to be considered is
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that of mechanical oscillations or vibrations. The

most obvious relation is that of the so-called critical

speed ncr of the machine to the speed of rotation n.
This relation can also be brought into the form

previously used.
It is generally known that for the same material

the natural frequency of similar vibrating structures

is inversely proportional to their linear dimensions.

This relation may be derived as follows:
The weight W of a structure is obviously

W=constantXgoPs D3, where D is any repre-
sentative linear dimension of the structure or

machine. Its deformations are 6g=COnstant

x ogD/E, where E is the modulus of elasticity, and
the stress produced by the weight of the structure is

Og = constant x W/D 2 = constant x goPs D. Thus
the deformation of the structure under its own

weight is

6g = constant x g°psD------_2 (1-73)
E

The natural frequency f of a simple structure (a

mass on a spring) is known to be

f= constant x x g_o
V t_g

(1-74)

Therefore, according to equation (1-73),

f= constant × _ 1 (1-75)

which proves the statement that the natural

frequencies of similar structures are inversely

proportional to the linear dimensions D of the

system.
The fluid-mechanical frequency of a

turbomachine is obviously proportional to its speed

of rotation n. For example, its blade passing

frequency is nN, where N is the number of blades.
The relation of the fluid-mechanical frequency to

the natural frequency of the same system treated as

a vibrating solid structure is obviously expressed by
the ratio

n nD
= constant × __ (1-76)

x/E/ps

where Ps is some average mass density of the

machine or of the part of the machine considered in

this section (e.g., its rotor).

According to the kinematic condition of

similarity,

Q
-- = constant
nD 3

or

QI/3
D = constant x --

hi�3

Substituting this into equation (1-76) gives

n nQ 1/3
- = constant x
f nl/3x/E/ps

n2/3Ql/3
= constant x (1-77)

(E/os) 1/2

This equation can be written in the form of a

specific speed by being raised to the 3/2 power:

n _)3/2 nQl/2 (1-78)
_/ =constant x iE/ps)3/4

The specific speed n v =nQl/2/(E/ps) 3/4is named

in this compendium the vibration specific speed.

The equation nv=constant describes all
combinations of operating conditions and

mechanical properties of the machine permitting
similar vibration behavior of the machines

compared (e.g., a constant ratio of the speed of
rotation to the critical speed) provided that the

basic specific speed is also held constant.
With

U
r/-

DTr

and

(Q=Vmi D2rc 1-
' 4 D2J

one finds

,A/2-1/2D. ( O2 _ 1/2
nQi/2_ U " rn, i " t 1-

7tO 2 0 2 ]

1

27rl/2

Vra t 1/2 Dt 3/2
1/2
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Therefore

nQ 1/2
?.its-

(E/ps) 3/4 21/47r 1/2

3/4 / / 1/2

(1-79)

By analogy to the cavitation parameter OH, the

similarity relation nv=constant can also be
expressed by the ratio

E/p s E
- = constant (1-80)

go H psgo H

that is, by the ratio of the modulus of elasticity to a

pressure proportional to the head of the machine,

which is a constant. Evidently

n (Psg°H_3/4
nv= s\_--E--- I (1-81)

The ratio psU2/2E in equation (1-79) has, of

course, the equally simple meaning of a velocity
pressure psU2/2 of the mechanical velocity U

divided by the modulus of elasticity E.

If, according to equation (1-75), E/p s is replaced

by constant ×(Dr) 2, the vibration specific speed

(eq. (1-79)) may be written in the form

_ nQ 1/2 constant(U) 3/2
nv (E/p)3/4- 2rl/2 D-f

/ V \1/2Di ( _ D 2_1/2
(1-82)

where U/Df is obviously a Strouhal number of the
machine.

The specific speeds described in this section and

their most important relations to design parameters

are listed in table 1-I. It is evident that all specific

speeds and their relations to design parameters
follow essentially the same scheme.

As stated previously, the specific speed, or any

variation with respect to the force considered, is the

3/2 power of a velocity ratio, that is, the kinematic

velocity (nQl/2) 2/3 divided by a velocity repre-

senting the force action to be considered. For an

ideal fluid, this velocity is (goH) 1/2, which
represents inertial forces and leads to the basic

specific speed ns; with respect to cavitation, this
velocity is (goHsv) 1/2, which represents inertial

forces connected with cavitation and, thus, leads to

the suction specific speed S; and so on. Only in the

case of the acoustic specific speed is this

representative velocity a physically existing velocity,
namely, the velocity of sound a.

With all these force-representing velocities

designated by (v) (with v always written in

parentheses) all specific speeds can be written in the
form

nQI/2

n(v ) - (v)3/2

Their various relations to flow and design
characteristics are given in table 1-II, and the

various meanings of the force-representing general
velocity (v) are given in table 1-11l. The derivations

of the various expressions in table 1-II are the same

as those given in sections 1.2.1 and 1.2.2 and in the

present section. Thus tables 1-1 to 1-111 constitute a

summary of these three sections.

1.3 Dimensionless Design
Forms as Functions of

Design Parameters

1.3.1 Introduction

Section 1.2 establishes relations between

dimensionless operating conditions of turbo-

machinery, the specific speeds, and a number of

design parameters. These design parameters are a
number of flow coefficients (ratios of fluid

velocities V to peripheral velocities of the solid

rotating parts of the machine U), a number of head

coefficients of the general form 2goH/U 2 or
2goH/V 2, certain stress coefficients of the form

oU2/2o, Mach numbers, Reynolds numbers,

Froude numbers, Strouhal numbers, and a number
of ratios of linear dimensions.

The next step obviously consists in establishing

relations between these parameters and the design

of the machine. This is clearly the general design
problem of turbomachinery and, therefore,

constitutes the general problem to be solved by this

entire compendium as well as by other publications
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TABLE 1-I. - SPECIFIC SPEEDS

Basic specific speed

n s ----

nQ1/2

(goH)3/4
j2= __1 __U2 3/4 _Vm i 1/2 __D13/2 _ Dh

21/4_ 1/2 go Ui

Suction specific speed

S
nQ 1/2 _ 1

(goHsv)3/4 21/4_ I/2 \_o_/ Vm,_
Compressibility specific speed

nQ I/2 1 (wi_ 3/2

na a3/2 2 n1/--_ \a--]

/v .V/2

__fi__/ _D.
2 2 \3/4

2%,_+%,i+v_,i /

Viscosity specific speed

n/2 _--

nQ1/2

(nu) 3/4

1/4/U D \3/4/D \3/2/V \1/2 L 2iN1/2
rr / 0 01 / i ] / m'i-I - Dh

; t--r-) \_d t C,) t 7)
Stress specific speed

n
(7

nQ 1/2 _ 1

/4 21/4 1/2

211/2

_p U_1/4 :Di_3/2/V .,,/2 Dh

--\_/ _-d [m"l -\ui/

Gravity specific speed

I2g =--

nQ I/2 _

l1 2_i_/1/2

, :U2o __3/2 ¢?i._3/2 lVm, i_'/2 _ Dh

:t o/ t c)
Vibration specific speed

nv =

nQ 1/2 i

Es)3/4 21/4_1/2

__PsU2_/4 :Di _3/2/V .\1/2 _ D2_/2
_2E-/ t_oo/ \ Ui / D2/

on the design of turbomachinery. In this chapter

one can, at best, outline the solution of this broad

problem in order to obtain a general picture of the

relation between operating conditions and design.

This outline is presented in the order of the level

of knowledge available in the various fields

concerned: first, the fluid-mechanical design of

axial-flow vane systems and machinery; second, the
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fluid-mechanical design of radial- and mixed-flow

machinery; third, the stress-determined mechanical

design of turbomachinery; and fourth, the general

influence of gravity and of vibrations on the design

of turbomachinery (as yet poorly understood).
The treatment of the first two subjects of this

outline can be reasonably definite, because the basic

specific speed and the suction specific speed are

regularly used in the design of turbomachinery,

particularly hydrodynamic machinery. Stress

considerations are extensively applied to the design

of turbomachinery, but not as yet in terms of a

stress specific speed. The treatment of the influence

of gravity and vibrations on the design of
turbomachinery becomes increasingly vague,

because a general correlation between operating

conditions and the weight or vibration parameters

of a machine has never been attempted in the same

sense as correlations involving the basic specific
speed and the suction specific speed. The gravity

specific speed and the vibration specific speed have

never been used and may never be used.

1.3.2 Flow-Determined Design Forms of

Turbomachines

1.3.2.1 Axial-flow turbomachines.--This

section describes the design forms of axial-flow

vane systems as determined by flow coefficients,

TABLE l-II.- RELATIONS OF FORCE-REPRESENTING VELOCITIES a

TO FLOW AND DESIGN CHARACTERISTICS

nQ1/2

(v)3/2 ;'i1 [_ _ D h

nQ1/2

(v)3/2

1 _" rn_i / _ Dh
2,1/2 L_v)J \ vi /

nQl/____2 = i [Vm_i l

(v)3/2 2.1/2 I_ (v) J

3/2
( Ui _L D2h _1/2

\Vm, i/_ -_2i2 /

nQ 1/2 1_ [wi]3/2
iv)3/2 2_1/2 l__J

//V \1/2

I "m_i} (1 D2h'_1/2

nQ I/2 l [ Uo13/2_'_1/2 f bo "_1/2

"U -,3/2/V \1/.2 D ,1/2 A1/2
_ _ __ __ "'thnQ 1/2 1 / o/ ( _

(v)3/2 rr [.(v)J \ UO / _,Dth / Do

aThe general velocity (v) may be compared with the head of the machine

in the form (v)2/goH , as given in table 1-HI.
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TABLE 1-III. - DEFINITIONS OF FORCE-

REPRESENTING VE LOCITIES

For the basic specific speed

(v) = (goH) 1/2

With respeet to cavitation

(v)= (goHsv)I/2

With respect to compressibility

(v) = a = velocity of sound

With respect to viscosity

(v) = (nu) 1/2 = (Uu/_D) 1/2

With respect to centrifugal stresses

(v)

-\Ps/

With respect to fluid-induced stresses

: (_f_l/2(v) --

\of/
With respect to any general acceleration

g of the system as a whole

(v) = g : g_D
n U

With respect to vibrations of the machine

at a frequency f

head coefficients, and ratios of linear dimensions.

For axial-flow machines, these parameters are

related to the basic specific speed in section 1.2.1 by

the following equations:

/'/$--

(go/-/) 3/4 21/47r 1/2 \_]

/ V \1/2/ D 2
I Vm'l } [1- "h'l '_ 1/2

X\ Ui / \ D2 /
(1-25a)

and

1 (U2)3/4( )3/2
_ "h 2 Di

ns 21/4z.1/2 2goH

(Vm'l_l/2(1-_ (1-26)
X\ Ui / \ Di /

1/2

where the subscript 1 refers to the inlet side and the

subscript 2 to the discharge side of a pump (or

compressor) rotor, as shown in figure 1-20. For

turbine rotors, the through flow is usually in the

opposite direction; that is, it enters on the side of

the maximum hub diameter. Equation (1-26) has

the advantage that ¢h,2 =2goH/U2,2 usually has

fairly well-known limiting values, about 1 for

standard pump and compressor rotors and up to

about 4 for turbine rotors and some exceptional

pump rotors.

Since equation (1-26) is derived from equation

(1-25) by using the relation Uh = Ui(Dh/Di), these

equations are not independent and constitute only

one relation. Therefore they are not sufficient to

determine Vm, I/U i and Dh,2/D i even if

2goH/U22. is assumed to be given by its empirically

determined upper limits. For liquids, the additional

required relation is usually given by the suction

specific speed in the form

SB
.O. 1/2 _ l ( V2ml )3/4

(goHsv) 3/4 21/4r 1/2 \2goHsv /

XV---_, 1 1- D2 /
(1-46a)

with the subscript 1 defined as previously (fig.

1-20). According to figure 1-18, the optimum

values of 2goHsv/V2,1 cover a very narrow band

around 3.5, so that this coefficient can usually be

considered as given. A value for Dh,l/D i is

assumed (which is not very critical as the square of

this ratio is usually less than 1/4). Equation (1-46a)

or the equivalent figure 1-18 then determines the

flow coefficient Vm, 1 /Ui, which in turn determines

Dh,2/D i from equation (1-26) and, thus, completes

the right side of this equation.

For compressible fluids, one would use in place

of equation (1-46a) an equivalent expression of the

compressibility specific speed, for example,
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Station

1 2

Ui wi, 1
wi, 2 f'_ Wh,2

1 _ I gh2 V

Inlel side _---
of pump
rotor

Dh,i

__Ui u
-- Uh, Z--

l:igure 1-20.--Axial-flow pump rotor profile defining notation.

?l(I-- ,Q,J2l (w,,)
a3/2 27rl/2 a-

3/2

X
(V m l/Ui)( 1 2 2 1/2• -Dh,1/D i)

[l-2(Vu i/Ui) + V2i/U2i + v2 /,,213/4, , " m,l/t._ij

(1-57a)

where the Mach number Wi, 1/a of the relative flow

at the blade inlet tip in a compressor rotor is usually
given from experience. The prerotation of the fluid

Vu, i would have to be known. Under these
assumptions, equation (1-57a) permits the

calculation of Vm, 1/ Ui.
It is evident that the suction specific speed S or

the compressibilty specific speed na determines the

flow coefficient Vm, t/Ui. With it the basic specific

speed determines 2goH/U 2, and with an assumed

(limiting) value of 2goH/U2,2, also Dh,2/D i.
On the basis of mechanical considerations of

shaft diameter, it is fairly easy to make the required

assumption of the hub diameter ratio Dh, I/D i at
the low-pressure side of the rotor. If there is any

rotation of the absolute flow Vu, i, l at the low-
pressure side of the rotor, this must be prescribed.

According to Euler's turbomachinery equation
presented in chapter 2, section 2.3, the head

coefficient for pumps is

_b = 2_7h AVu
U (1-11)

while for turbines rth is replaced by 1/_Th. Here

AVu= Vu, 2 - Vu• 1 and _b may be applied to any
diameter by affixing the appropriate subscripts /;

h,2; or others to _b, U, and zaV U.
The flow and head coefficients determined in this

way establish the velocity diagrams at stations 1 and

2 at the diameters D i and Dh, 2 under the
assumption that Vm, 1 =constant over the entire
radial extent of the inlet or low-pressure area

(station 1). This assumption is used in the

derivation of equations (1-25), (1-26), (1-46), and
(1-58) by use of the continuity relation

Q= Vm, I D2r (-_1- _h--AA-1D2)

What needs to be known is the rotation of the

absolute flow V U at one side of the rotor, usually

the low-pressure side, where V U = Vu, 1 .
Figure 1-21 shows three typical velocity vector

diagrams for pump or compressor rotors (for which
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usually A Vu<U) for the following three

conditions: Vu, l =0 (fig. 1-21(a)); Vu, l >0 (i.e.,

Vu, l has the same direction as the rotor motion U)
(fig. 1-21(b)); and Vu,] <0 (i.e., the absolute
rotation of the fluid at the inlet side of the pump

rotor is directed against the rotation of the

rotor)(fig. 1-21(c)).
To illustrate different possibilities, Vm, l = Vm,2

(i.e., Dh, l =Dh,2) is assumed for figures 1-21(a)

and (c), Vm, l < Vm,2 (i.e., Dh, l <Dh,2) is assumed

for figure 1-21(b). It is of interest to note that the

absolute velocity vectors V 1 and V 2 also describe

the flow leaving and entering stationary vane

systems, with V 2 being the inlet and V I the

discharge velocities of these systems, if the vane

systems in front of and behind the rotor system
have the same discharge velocity diagrams.

The velocity vector diagrams are shown without

the subscript i or h,2, as they may apply to either D i

w2

ta) U

AVU AVu

w 1 J I
we 0

V2 Vl=Vm,l=Vrn 2

. ZXVu- "V__u.u.

...._ 2 2

i W2 W_ /"

Vm,2 /
I / Vm, 1

(b) U

AVU AVU
i

_7-:"" 2 "a

w2 _'w_--_ Wl ....-_

_ V2 Vl'Vm, l: Vm,2
j ......,, ,/

" I

_c__'_- u _u,1 J

or Dh, 2, or indeed to any other diameter D.
Therefore, it is important to examine briefly the

change in the flow and head parameters and the
resulting changes in the velocity diagrams as a
function of the diameter D.

As mentioned previously, in this chapter Vm is

assumed constant with respect to the diameter or
the distance from the axis of rotation. Other

assumptions are possible and are discussed in

chapter 2 but are too complicated to be considered

in this outline.
The basic law to be considered in this section

regarding the circumferential component V U of
absolute velocities is called the law of constant

angular momentum:

VuD = constant (1-83)

with respect to changes in D, that is, changes in the
distance from the axis of rotation. This law is

assumed to hold at the inlet and the discharge

planes of a rotor. Figure 1-20 shows at its right side

the radial distribution of Vu, 2 obeying this law.

Since A V U is the difference between two values of

Vu, it must follow the same law. Only by the

application of circumferential forces, as between
the inlet (station 1) and the discharge (station 2) of a

vane system, can the product VuD be changed.
Obviously the circumferential velocities U of

solid rotating parts of the machine increase

proportionally to D, so that

U_ = constant (1-84)
D

This distribution of U is also shown in figure 1-20.

Therefore, with Vm =constant in any one flow

cross section and by use of equations (1-83) and

(1-84), it is possible to derive from the velocity inlet
and discharge diagrams in any one cylindrical

section (such as that shown in fig. 1-21) the

corresponding velocity diagrams in any other

cylindrical section.

According to equation (1-84) and Vm = constant,
the flow coefficient varies as follows:

(a) Vu./=0," Vm./ = V,,,.2.
(b) Vu,t >0," Vmj < Vm,2.
(c) Vu.i <0," V,,,.l= Vm,2.

Figure 1-21.--Typical velocity vector diagramsfor axial-flow
pump rotors.

Vm Vm Ui - Vm Di (1-85)
_o= U- Ui U Ui D

The head coefficient varies as follows:
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_b-2g°H - 2g°H U2 - 2goH D 2
u2 u2 n2

or

2goH

u 2

2goH U 2 2goH D 2_2 _ h.2

u22 t. u ,2 D2

(1-86)

where D is any diameter between D i and Dh, 2 . The
head coefficient _bcan be evaluated in terms of the

change in the peripheral velocity components A V U

according to equation (1-11), and the tangential

velocities obey equation (1-83).

The inlet and discharge velocity vector diagrams

are, therefore, available in all cylindrical sections if

they are given by equations 0-11) and (1-26),

(1-46a), or (1-58) for any one cylindrical section.

A few words are necessary to justify the terms
axial-flow surfaces, cylindrical-flow surfaces, and

cylindrical-flow sections in connection with a vane

system profile such as that shown in figure 1-20.

The existence of a noncylindrical hub (or a slightly

noncylindrical outside contour) obviously forces

departures from cylindrical flow for nearly all the

flow through such a system. Section 3.3.3 in

chapter 3 shows that a small departure from

cylindrical flow can be treated by dividing the flow

into a cylindrical and a radial component.
However, this refinement should not be considered

in the present broad outline of this design problem.

It is obvious from figure 1-20 that completely

cylindrical sections can be used only between

D=D i and D=Dh,2, although partially (or
fictitiously) cylindrical vane sections can be used

very well at diameters between Dh, 2 and Dh,1.

With the velocity vector diagrams at any point of
the inlet and discharge vane edges determined by

the design parameters and, thus, by the dimen-

sionless operating condititions n s and either S or

n a, one step remains to be accomplished, which is

the most essential step in this design process, the
design of the cylindrical vane sections from the inlet

and discharge velocity vector diagrams.

The theory of this design process is given in

chapter 2, and the design process itself is described

in chapter 3. For the present outline, it is sufficient

to indicate the existence of such a process.

The simplest approximation, called one-

dimensional, obviously consists simply in drawing a

smoothly curved centerline of the vane profile
tangent to the relative velocity vectors at the inlet

and the discharge. In reality one has to depart from

this approximation by giving the vanes more

curvature than prescribed by the one-dimensional

approximation. This is shown for pump blades in

figure 1-22, where at the inlet 31 >3w,1 and at the

discharge 32<3w,2. The magnitudes of these
departures are given by the theory of axial-flow
vane design in chapters 2 and 3.

Figure 1-22 also shows that the direction of the

blade ends so determined does not prescribe the

entire blade shape uniquely. Changing the

curvature between the inlet and the discharge
portions of the blades allows the locations of these

two portions relative to each other to be varied

substantially. Such changes affect the distribution

of the pressure difference along the blades. For

example, reduced curvature of the vane near its

leading edge reduces the vane pressure difference

over the leading portion of the vane, which is
beneficial for good cavitation characteristics or

good Mach number characteristics of the vane.

However, far more definite methods of relating the

shape of the profile centerline (called the mean

camber line) to the vane pressure distribution are
available. One such method is presented in detail in

chapters 2 and 3. The same method also gives a
systematic relation between the blade thickness

distribution and the pressure and velocity

distribution within the vane system.

[angent io
! camber line

13w 2-. 2 /

-;-, jw2

A'//

Tangent to /j.--_,"

camber line 111 --_1wocamber lines satisfying
same wI and w2 directions-----_''-_

. lJ ,_ _i -

I

Figure 1-22.--Relation between vane camber line and velocity

vectors.
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Thus the inlet and discharge velocity vector

diagrams together with the vane pressure

distribution determine the vane shape within the

accuracy of the available theory and design
methods for such vanes. It is reasonable to assume

that this determination of vane shape will become

entirely definite and unique as the methods of

design are further developed and perfected,

although it is not certain that this degree of

perfection is really justified from a practical point
of view.

Figure 1-23 illustates diagrammatically the

resulting relation between the design form of

straight systems of parallel vanes and the flow and
head coefficients which determine the velocity

diagrams. In this figure, the velocity diagrams are

shown for pump (or compressor) operation with the

exception of the system for _b=2 and _o=0.25; for

the latter system, pump operation is not possible

§1.3.2.1

since it would require an excessive retardation of

the relative flow, as discussed later in this section.

All other configurations shown would be made

usable for pump as well as turbine operation merely

by reversing the direction of the axial velocity and
interchanging the leading and trailing edges of the

vanes, although the configurations for _b=2 and

particularly _b= 4 are used for pump operation only

in exceptional cases. For example, with _=4 no

change in static pressure takes place in the rotor

vane system, which accomplishes merely a change
in the kinetic energy of the absolute flow. (The

static pressure changes only in the stationary

passages of such a machine.)
The relation between the vane system design form

and the design parameters thus represents (at least)

a three-dimensional theoretically infinite family of

such vane systems. Two dimensions are the flow
coefficient and the head coefficient, and the third

Head

coefficient,

Flow coefficient,

O.25

Flow coefficient,

_o
1.0

---- AVu I

_,_ AVu _ 2
I I

i _ Turbine operation only

Ll

_Vu_

I

Figure 1-23.--Vane system design forms as function off low coefficient and head

coefficient.
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dimension is the vane pressure distribution, based
on the hypothetical assumption that the variations

in this pressure can be represented adequately by a
single variable.

The number of dimensions or variables increases

if the axial velocity component V m changes from

the inlet to the discharge, either because of a change

in width normal to the sections shown in figure 1-23
or because of compressibility effects. In the latter

case, this additional variable is clearly related to the
Mach number of the flow.

A circumferential velocity component of the

absolute flow on both sides of the vane system

changes the relation between the head coefficient
and the shape of the system, but does not otherwise

constitute a new variable, as it is only the flow

relative to the system which determines its design
form.

It is doubtful whether the family of vane system

forms shown in figure 1-23 can be represented as a

group in the mathematical sense of this word,

although it would be interesting to explore this
possibility. The conditions, if any, under which this

would be possible might be of practical interest.

Limitations in the flow through axial-flow vane

systems are discussed up to this point only with
respect to the field of cavitation or Mach number

limitations. Yet additional limitations are strongly

implied by the fact that the vanes in the systems

illustrated diagrammatically in figure 1-23 show

limited magnitudes of vane spacing t, whereas

preceding considerations are concerned only with

the vane shape. It is obvious that the vane spacing
must not exceed certain upper limits so that the

vane loading stays within practically acceptable

bounds. On the other hand, the vane spacing should

not be unnecessarily close to avoid excessive skin
friction losses.

The loading of turbomachinery vanes can be

expressed in dimensionless form by a lift coefficient

C L defined in the same manner as the lift

coefficient for a single vane or airfoil represented in

section 1.1.1 by equation (1-1). The lift coefficient

of any one vane of an infinitely long system of
straight and parallel vanes is

CL =2AVu t
woo l (1-87)

where woo is the vectorial mean of the relative inlet

and discharge velocities w 1 and w2 (fig. 1-21), t is

the circumferential vane spacing, and 1 is the vane
length measured normal to the resultant vane force

(fig. 1-23).

For a single vane or airfoil, CL has an upper limit

of approximately 1.5. For straight systems of

parallel vanes, the upper limit for CL lies between
1.5 and 2.0 provided that the relative inlet and

discharge velocities w I and w 2 have about the same

magnitude. If Iw2 I< [w 1I, the upper limit of C L is

lower than this range; if ]w2 I> ]w I ], the upper limit
of C z is higher (see ch. 2, sec. 2.5.4.3).

It should be obvious that, for any velocity vector

diagram giving the ratio A Vu/woo, a limiting value
of C L determines a lower limit for the so-called

solidity l/t of the vane system by means of equation
(1-87).

The previously mentioned retardation of the

relative flow (w2<wl) through a vane system

constitutes an important limitation of the velocity

vector diagrams which can be generated by any

vane system. It has been found expermientally that
W2/W 1 ----0.6 constitutes an approximate lower limit

for the discharge velocity of any rotating vane

system, whereas Vz/V I =0.6 expresses the same

limit with respect to stationary vane systems. The

theoretical and empirical background of this
limitation is discussed in chapter 2, section 2.5.4.3.

It is apparent that the previously presented

relation between flow coefficient, head coefficient,
and vane pressure distribution on one hand and the

design form of the vane system profile on the other

has some important limitations. The solidity I/t
must be sufficiently high to keep the lift coefficient

below certain limiting values (eq. (1-87)), and the

discharge velocity relative to the system (w 2 or V 2)
cannot be less than approximately 0.6 of the

corresponding inlet velocity (w 1 or V1), which

excludes an entire region from the field of possible

velocity vector diagrams and corresponding design

forms. This excluded region of excessive decel-

eration is most easily shown in a velocity vector

diagram made dimensionless with respect to w I or

V_. Figure 1-24 shows such a diagram for rotors,

and the region inside a semicircle with radius 0.6 w 1
is the excluded region for pump rotors. Also shown

is a standard pump or compressor velocity diagram
which satisfies the retardation criterion

(Wz/Wj >0.6). The dimensionless velocities of this

diagram can easily be transformed into the familiar

ratios with respect to U. In the example given in
figure 1-24, U/w 1 = 1.32; thus
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Figure 1-24.--Diagram showing limitation in retardation of relative flow of axial-flow rotors. For

stationary vane system, absolute velocities V I and V 2 should be used in place of relative velocities
Wl and w e.

AVu _ AVu W l _ 0.34

U wl U 1.32
= 0.258

and

Vm,2 = Vm, ] w] _ 0.40 =0.303
U w] U 1.32

For the particular flow coefficient and

prerotation Vu, 1 used in this example, AVu/w 1

can be increased to 0.465, and, therefore, AVu/U
to 0.465/1.32=0.353, before point A enters the

forbidden region inside the circle w 2 = 0.6w I . Then

one can choose a much higher A V U value on the
other side of the forbidden region; that is, one can

turn the relative velocity vector past the axial

direction until w 2 is again larger than 0.6 w I . This
second velocity vector diagram is also shown in

figure 1-24. It should be obvious that this diagram
permits the determination of the retardation limits

for any flow coefficient, and that there is no such

limit beyond Vm, 1/w I =0.6.

The foregoing considerations establish as many
coaxial cylindrical sections through an axial-flow

vane system as desired. However, these sections can

be shifted relative to each other in the axial as well

as the circumferential direction. Thus the entire

three-dimensional vane shape is not uniquely
determined by its cylindrical-flow sections.

Usually this uncertainty is removed by a
geometric process called fairing, by which vane

sections normal to the axis of rotation (or radial

vane sections containing the axis of rotation) are
made to show the vane contours as smooth flat

curves with as few irregularities as possible. This

process, described in chapter 3, determines the

entire vane surface almost uniquely on the basis of

geometric continuity and simplicity.

The simplest geometric condition for this fairing
process is that vane sections normal to the axis of

rotation show contours which are approximately
radial. This condition is a mechanical necessity if

centrifugal blade stresses are important. Under

other circumstances, there may be reasons for

departing from this simple form. (The resulting
fluid-mechanics problems are discussed in chs. 2

and 3, and the mechanical problems in ch. 5.) In
any event, with a sufficient number of conditions

prescribed (number of specific speeds) and

increasing knowledge of the theoretical back-

ground, it should eventually be possible to

determine the optimum vane shape in three

dimensions completely and uniquely from the
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dimensionless operating conditions (the specific

speeds) and the limiting conditions imposed.

While the relative flow in cylindrical sections

through rotating vane systems is the same as the

absolute flow in cylindrical sections through
stationary vane systems, this resemblance between

rotating and stationary vane sections does not apply

to entire vane systems comprising many cylindrical

sections of different diameters. In rotating sytems,

the circumferential component of the relative flow

usually increases with increasing diameter because

of the increasing circumferential velocity U of the

solid rotating parts. However, the circumferential

component of the absolute flow usually diminishes

with increasing diameter, in agreement with the law

of constant angular momentum (eq. (1-83)). These

effects generally give rotating vane systems

fundamentally different three-dimensional design

forms from those of stationary vane systems.

In review, then, the flow and head coefficients

which are related to the dimensionless operating

conditions (the specific speeds) do not determine

the vane shape directly, but rather the velocity

vector diagrams at the inlet and discharge edges of

various coaxial cylindrical sections through the

vanes. The velocity diagrams and the vane pressure
distribution determine the cylindrical vane sections

within the accuracy of available design methods.

The resulting family of cylindrical sections

through the vanes of axial-flow turbomachinery is

not unlimited. The circumferential vane spacing t

has an upper limit imposed by the vane lift

coefficient C L = 2(A V U / w oo)(t/l). Furthermore the

velocity vector diagrams which determine the shape

of cylindrical vane sections are limited by the

condition that the ratio of the discharge to the inlet

velocity of any flow section through the vane
system (w2/w I or V2/VI) should not be less than

0.6, since at lower values the active flow separates
from the vanes.

The cylindrical vane sections so determined can

be made to form a satisfactory three-dimensional

surface by a geometric process called fairing. By

this process, the vane contours as seen in plane
sections normal to the axis of rotation are made to

form smooth curves of limited curvature, which are

usually not strongly inclined against the radial
direction.

1.3.2.2 Radial- and mixed-flow turboma-
chines.--This section outlines the relation between

the design forms of radial- and mixed-flow vane

systems and the flow coefficients, head coefficients,
and ratios of linear dimensions which are

determined by various specific speeds. This outline

is quite analogous to that given in the preceding

section 1.3.2.1 with respect to axial-flow vane

systems, except for the fact that the present subject

is more complex and this outline is, therefore, less

complete.

The design of radial- and mixed-flow vane

systems is described in chapter 4. The flow in such

systems is usually assumed to proceed along

coaxial, curved stream surfaces of revolution, as

indicated in figures 1-7 and 1-25. The flow departs

from axial flow and plane radial flow sufficiently to

make the flow and the design problem truly three-

dimensional. Portions of this flow are frequently

described by developing straight conical flow

sections approximating local regions of the curved

stream surfaces into planes (see section Y-Y in figs.
1-25 and 1-26). A more complete method of

describing the three-dimensional design of such

systems geometrically is given in chapter 4. The

difference between rotating and stationary vane

systems, briefly mentioned at the end of the section
1.3.2.1, is more fundamental for radial-flow

systems, where the flow in the individual flow

sections is quite different in stationary and in
rotating systems.

The relations between the operating conditions n,

Do

i

Di

i i

High-pressure side

- rn --+-- bo

I _ '\ _y I "-Stream surface

_i:_.o\ y _ .... _':'""
bi i = :i_ " dqes/

• Low.,p ressu re_._ e-_,

Dy

Dh

Figure 1-25.--Radial-flow rotor profile.
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UOVO wo 7
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/ \,,..f_ Development of radial

/ /\ section X-X in fig. 1-25

Figure 1-26.- Vane ends of radial- or mixed-flow rotor vane
systems.

Q, and H and certain design parameters of radial-

and mixed-flow rotors are given in section 1.2.1 in

the form of various equations between the basic

specific speed of one stage and the rotor design
parameters, for example,

Jr/S --
nQ I/2 - l ( Uo2 _ 3/4

(goH) 3/4 21/4 7r 1/2 \2goH/

1/2 ( Dj _ 3/2 (1,;o,
i/2

or

(1-24a)

23/4 ( U2o "_3/4

n s = _ \ 2goH/

(Vmo l/2(bo _1/2x .-28)

where equation (1-24a) is derived from equation

0-24) by using the geometric and aerodynamic

parameters shown in figures 1-7 and 1-25.

Another equation (eq. (1-31)) relates the basic

specific speed to the stationary flow passages

outside the rotor. For the present, only the relation

between specific speed and the rotor design form is
considered.

Equations (1-24) and (1-28) are used in section
1.2.1 to derive the relation between rotor form and

basic specific speed given in figure 1-8. This

relation is explored in somewhat greater detail in
this section.

Equations (1-24) and (1-28) relate six dimen-

sionless design parameters, Vm, i/Ui, Vm,o/Uo,
2goH/U 2, Di/D o, Dh/D i, and bo/Do, to the

basic specific speed. As for axial-flow machines,
additional relations are needed to narrow down the

design choices, since the number of design

parameters is much greater than the number of
equations available so far.

For liquids under conditions involving the danger
of cavitation, such an additional relation is

available in terms of the suction specific speed, used
in the form

/ 2 \3/4

nelJ2 1 ( v;,i )
S = 21/4._.1/2 \2goHsv /

(gonsv) 3/4

X _ 1- D2,,] (1-46)

This form has the advantage that, according to

figure 1-18, 2goHsv/V2m, i is practically a constant
(about 3.5) for optimum suction conditions with
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respect to cavitation. This relation and figure 1-18

are the same as for axial-flow machines and permit

the determination of the flow coefficient Vm,i/U i if
one uses D2/D2i as given by mechanical design
considerations.

For compressible fluids at velocities where

compressibility is important, one may use the

compressibility specific speed, as done for axial-
flow machines, in the form of any equation from

(1-54) to (1-58) to determine Vm, i/U i for a given or
assumed value of the Mach number appearing in

the equation. Again D h/D i has to be determined
from other, usually mechanical, considerations.

With Vm,i/U i so determined by cavitation or
Mach number considerations, equation (1-24) gives

the diameter ratio Di/D o if the head coefficient

_=2goH/U 2 is given. This is true with particular
reference to its maximum value 2goH/U2,min at

Oo, min. This is similar to the case of axial-flow

rotors, where 2goH/U2,2 is assumed to have a
known limiting value. For example, centrifugal

pump rotors with backward-bent vanes usually

have a maximum head coefficient 2goH/U2o, min = 1
or slightly more. Radial-flow rotors with straight

2
radial vanes have 2goH/Uo, min values of approx-
imately 1.5 for pumps or compressors and approx-
imately 2 for turbines. Further information on the

head coefficient _bis given in chapters 2 and 4.

With respect to the flow coefficient Vm,o/U o and
the rotor width ratio bo/Do at the outside diameter

(fig. 1-7), equation (1-28) gives the value of the

product (Vm, o/Uo)(bo/Do) without any input
from another specific speed, so that the two ratios

forming this product must be determined by trial

and error. The ratio b o/D O may also be determined

by considerations of mechanical strength (see sec.

1.3.3.1 or 1.3.3.2). The fact that neither bo/D o nor

Vm, o/U o (nor the change in meridional velocity

Vm,o/Vm,i) is determined hydrodynamically is of
major significance for the design of the vane

systems of turbomachines and is discussed later in

this section. The head coefficient 2goH/U2o in

equation (1-28) is, of course, the same as that

discussed in the previous paragraph with respect to

equation (1-24).
The head coefficient determines the change in the

peripheral components V U of the absolute fluid
velocities. For pumps,

2g°H ( VU'° Vu, iUi )
-- Uo2 - 2rlh Uo U2o

(1-88)

For turbines, the hydraulic efficiency _h is replaced

by 1�Oh. The derivation of equation (1-88) is given
in chapter 2, section 2.3.

With the aid of equation (1-88) the right sides of

the specific speed equations (eqs. (1-24), (1-28),
(1-46), and (1-54) to (1-58)) determine the velocity

vector diagrams at any diameter to which these

equations are applied. As in the preceding section

1.3.2.1, a continuous variation of the velocity

diagrams as a function of the diameter D is

obtained by using relations such as V m = constant,

VuD=constant and U/D=constant for the same

cross section of the merdional flow. The special

conditions V m = constant and VuD= constant are

replaced in chapters 2 and 4 by relations that are

more general, but nevertheless continuous. Thus

the velocity diagrams are determined for any point
(coaxial circle) along the inlet and discharge vane

edges. This situation is exactly the same as that

described in section 1.3.2.1 with respect to axial-

flow vane systems.

Figure 1-27 represents this situation. It shows

points, representing coaxial circles, and lines, for

D= constant, which are located relative to each

other according to the ratios Di/D o, Dh/D i, and

bo/Do appearing in the specific speed equations.
Every diameter determined by these equations is

associated (by the head and flow coefficients) with a

definite velocity vector diagram. Figure 1-27,

therefore, represents all the information about the

design of the rotor that can be derived from flow-

determined specific speeds. Still needed is some

rational estimate of the ratio Do, max/Do, min and of
the direction of the meridional velocity at the high-

pressure side. For pumps, the ratio Do, max/Oo, min

is often determined by the limits of retardation of

the relative flow along the outer shroud (see ch. 2,

sec. 2.5.4.3).

For radial- and mixed-flow machines, the next

step is the essential process of design, that is, the

derivation of the rotor profile and vane shape from

the information represented in figure 1-27.
For axial-flow rotors, the determination of the

rotor profile as shown in figure 1-20 is almost

trivial with the exception of the determination of
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Figure 1-27.--lnformation on design of radial- and mixed-flow rotors derived from flow-determined specific speeds.

the axial rotor length, which requires considerations

of mechanical strength. For radial- or mixed-flow

rotors, the determination of the rotor profile (fig.

1-25) is not at all trivial as it involves the deflection
of the meridional flow from the axial to the radial

or conical direction. Unfortunately, there is no

definite rule available for the hydrodynamic design

of this profile. This is due to the fact that the
meridional velocity component V m of the flow

relative to the vane system is generally smaller than

the peripheral component w U. Thus most flow
considerations (e.g., those concerned with flow

retardation within the blade row) are determined by

the relative rather than the meridional flow.

Furthermore, in many cases, the vanes exert an

important influence on the meridional velocity
distribution, which is, for radial- or mixed-flow

rotors, not the same as that of a purely meridional

flow in a vaneless space of revolution. The shape of

the rotor profile, within the confines of the

dimensions given in figure 1-27, must, therefore, be

determined by rules of geometric continuity and

other considerations which are not very well

defined. For example, the outer contour AB of the

profile shown in figure 1-25 is constructed from

two circular arcs, with the radius of curvature r i at

point B equal to bi=(D i -Dh)/2 and the radius of

curvature ro just below point A equal to bo. These
relations may be generalized to r>b at any point of

the outer contour AB. In principle this method can

also be applied to the inner contour of the profile,

except that there the radius r is always substantially

larger than b. Clearly such a rule has some rational
foundation based on the flow in stationary curved

passages and is, therefore, useful as a general guide.
However, such a rule has no rigid general validity

and may well be violated for sufficient reasons. For

example, the axial length m of the outer contour

may well be limited for mechanical reasons (e.g.,
critical speed considerations) or for reasons of

overall arrangement, size, and cost. It is, therefore,

not possible as yet to relate the rotor profile

uniquely to the dimensions given in figure 1-27.

Additional considerations are presented in chapter

4.

The determination of the vane shape from the

velocity vector diagrams is also less definite for
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radial- and mixed-flow machines than for axial-

flow machines. The velocity vector diagrams, which

can be determined from the specific speeds for any

point of the leading and trailing vane edges, permit

the design of the vane ends on the basis of the one-
dimensional assumption that the relative flow is

essentially parallel to the vanes. Since vane angles

are not very well defined (because of the vane

thickness and the rapid changes of these angles in
the leading and trailing portions of the vanes), this

writer and others prefer to use the normal distance

between the vanes d o and dy in figure 1-26. The
one-dimensional approximation would suggest that

dy/ty = Vm,y/Wy and do/t o = Vm.o/W o. Depar-
tures from this approximation are discussed in
chapter 4. These departures are substantial only at

the discharge (outer) vane ends of centrifugal pump

or compressor impellers, where do/t o is greater

than Vm, o/w o by a substantial amount (about 30 to
60 percent, see ch. 4).

The connections between the leading and trailing

portions of the vanes can be designed on the basis
of geometric continuity and to some extent by

hydrodynamic considerations. The geometric

requirements include a continuous simple change in
the cross-sectional area between the vanes from the

inlet to the discharge. Since this cross-sectional area

is proportional to the normal distance between the

vanes (d in fig. 1-26) times the normal distance

between the shrouds (b in fig. 1-25), vane shape and
profile shape are interconnected. Furthermore,

since the velocity diagrams at the low-pressure vane

edges change rapidly along the vane edge as a

function of Dy in figure 1-25 (see also fig. 1-27),
the vane ends as shown in section Y-Y of figure

1-26 change their shape substantially along that

vane edge from the outer to the inner shroud. Thus

the vane is strongly warped within the curved and

axial part of the vane profile. The vane shape is,
therefore, three-dimensional, and it is a function

not only of the velocity diagrams and diameters but

also of the profile shape of the system (fig. 1-25).

As mentioned previously, cylindrical sections

through axial-flow vane systems can be represented

as a family of systematically related vane sections

diagrammatically shown in figure 1-23. Chapter 4

shows that the three-dimensionality of radial- or
mixed-flow vane sections may not constitute an

insurmountable obstacle to this type of repre-

sentation. However, the number of independent

variables of such a family of vane sections would

certainly be greater than that for axial-flow vanes.

The greatest difficulty would probably result from

the deep interrelation between the profile shape and

the vane shape, which might not permit the
separation of the profile design from the vane flow

section design that is so successfully employed in

the axial-flow field. Thus there are real reasons why

the design of radial- and mixed-flow vane systems is

as yet more of a special problem in every individual

case than the design of axial-flow vane systems.

Just as for axial-flow vane systems, consideration

must be given to the possiblity of separation or stall

in radial- or mixed-flow vane systems. While there

are theoretical reasons why the resulting limitations

in flow and design may be different in rotating

radial-flow systems from those in axial-flow

systems, these differences are not as yet known with

sufficient accuracy to be considered for purposes of

design. Thus there is no other approach open than
to adopt the same limitations for radial- and mixed-

flow as for axial-flow systems (i.e., the existence of
a lower limit of the ratio of flow retardation and a

dependence of the allowable lift coefficient on this

ratio of retardation). (The fact that the ratio of flow

retardation has the same significance for radial-

flow as for axial-flow systems is not self-evident,
but can be proven to be true within the limits of the

present considerations.) Whether the lower limit of

V2/V 1 or w2/w I is lower or higher for radial-flow

systems than the 0.6 quoted in the previous section

for axial-flow systems cannot be stated definitely.

The relatively poorer knowledge about the flow in

radial-flow systems suggests the use of more

conservative (higher) ratios of Vz/V 1 or Wz/W 1
than 0.6 for radial-flow systems.

The second limit to be considered is that of the

lift coefficient, which for radial- and mixed-flow

sytems is

C L =2 VU'° - Vu'iDi/O° to
woo l (1-89)

where t o is the circumferential vane spacing at the

same outside diameter D o where Vu, o is measured
and defined and l is the vane length. There is no

rational reason for departing from the rules given in

the preceding section 1.3.2.1 for limiting values of

C L. Thus equation 0-89) gives an upper limit of

t o/l (the reciprocal of the solidity) as a function of
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thevelocityvectordiagramsandassumedlimitsof
CL.

From the foregoing considerations on radial- and
mixed-flow machines, as well as those on axial-flow

machines, it can be concluded that one obtains the
most essential dimensional relations of the rotor

profile and the velocity vector diagrams at the inlet

and discharge edges of the rotor vane system from

the dimensional ratios, velocity ratios, and head

ratios derived from the specific speeds pertaining to

the flow conditions. By appropriate rules of design,

the dimensional ratios determine the profile of the

rotor, while the velocity vector diagrams determine

to a large extent the shape of the vane ends. The

degree to which the flow specific speeds determine

the hydrodynamic design form of the rotor depends

on the state of knowledge available for the design of
the machine concerned. It is reasonable to assume

that for a hypothetical very high state of knowledge

the relation between the specific speeds and the

fluid-dynamic design of the machine would be just

as complete as the degree to which the fluid-
dynamic operating conditions are prescribed. (Sec.

1.3.3 demonstrates the fact that purely mechanical

considerations, e.g., limitations of the stresses in

the solid parts of the machine, also have a very

decisive effect on the design of the rotor.)

As mentioned previously, the specific speeds
which are concerned with flow conditions do not

determine the design of the vane systems of the

machine uniquely. To do so, it is necessary to make

certain design decisions, for example, the choice of

axial, radial, or mixed flow and the choice of the

number of stages to be used. These decisions are

dictated partly by mechanical considerations and

partly by the existence of lower limits of the basic

specific speed given by efficiency considerations.

guidance of the flow to and from the rotor. Of
primary importance is whether the flow is to be

guided to or from the outside of the machine or

whether the flow is to be guided to or from another

stage. Figure 1-28 gives three examples of these
alternative possibilities. In all three examples, the

specific speed for one stage is assumed to be the

same, as expressed by the similarity of the rotors.

The difference between examples A and B is

dictated primarily by considerations of mechanical

strength with respect to the inside pressure. In both
cases, the flow is ducted away from the pump, or to

the turbine, in a plane normal to the axis of

rotation. For multistage machines, as shown by
example C, the flow enters the next stage and must,

therefore, leave the preceding stage in the direction

of the axis of rotation; this flow pattern demands a

completely different form of the stationary vane

systems. Design forms A and B can also be used for

multistage machines by turning the pipeline
between the stages at least 180°; design C can be

ExampleA: Openvolutepumpforturoinel

ExampleB: Volutepumporturbine with vanediffuseror nozzlering

The rotor design alone does not determine the

design of the entire machine. The flow conditions

on the inlet and discharge side of the rotor have a

strong influence on the design of the stationary
vane systems and passages adjacent to the rotor.

Equation (l-31) describes the effect of the basic

specific speed on the stationary passages outside a

radial- or mixed-flow rotor. Yet these vane systems

or passages are also decisively influenced by other

considerations, particularly by the required form of

ExampleC: Multistagepumpwith vanediffusers(seealsofigs. 4-61
to 4-63in ch. 4)

Figure 1-28.--Various design forms of radial-flow machines
having same basic specific speed per stage.
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usedfor single-stagemachinesif a discharge(for
turbines,aninlet)coaxialwiththeaxisof rotationis
desired.

Thedesignof all threeexamplesgivenin figure
1-28is describedin chapter4. Thedesignof the
diffuservanesystemsof exampleC followsin
principlesimilarlinesoutlinedpreviouslyforradial-
flowrotorsinconnectionwithfigures1-25to 1-27
andinchapter4 inconnectionwithfigures4-59to
4-62.

1.3.3Stress-DeterminedDesignFormsof
Turbomachines

1.3.3.1 Centrifugal-stress-determined design

forms.--In section 1.2.3, the stress specific speed is

related to various design parameters in the

following manner:

/70-=
nQ 1/2 - 1 (pU2_3/4(Di _3/2 .

(a/p)3/4 21/471-1/2 \-_o / \ O---oo ,/

xCVm,i) 1-
\ U i D 2 t]

(1-64)

The stress coefficient can be used in the form

2a/pU 2 as well as in the reciprocal form pU2o/2a,
which has a slightly different physical significance.

The first form 2a/pU2o makes the stress in solid

parts a dimensionless by means of the velocity

pressure of U o (which accounts for the factor 2). In

its reciprocal form pU2/2a, this coefficient

increases with the quality of the structural design

form to resist applied forces with a given allowable
stress, that is, for a given quality of the structural

material (stress-density ratio). In this compendium,

the stress coefficient is usually used in its reciprocal
form.

If the stress a is generated by fluid forces, then 0

is the mass density of the fluid. If the stress is

generated by the rotation of the solid parts, then p is

the mass density of the solid parts, as explained in

the next paragraph.
In the present section, the stress a is considered as

generated by centrifugal forces (a=ac) , and

therefore, p is principally the mass density of the

solid rotating parts of the machine Ps. However, if
these parts are completely submerged in a fluid

rotating at the same angular velocity as the solid

parts, their effective mass density is equal to the

difference in mass density between the solid parts

and the fluid (i.e., the effective mass density is

P = Ps -P f). Since centrifugal stresses are usually of

major importance only when relatively light fluids

(gases or liquid hydrogen) are used, pf is neglected

and p in equation (1-64) is considered equal to Ps.
The objective of this section is to explore the

meaning of the right side of equation (1-64) with

respect to the design form of the rotating parts,
particularly the effect of the centrifugal stress

coefficient Ps U2/2Oc on the design form.

First consideration is given to straight radial

members. Such members include, for example,

axial-flow blades that form so-called straight helical

surfaces (i.e., when their generating line is straight,

radial, and normal to the axis of rotation). Such
surfaces are also used with radial- and mixed-flow

compressors and liquid-hydrogen pumps because

their peripheral velocities are sufficiently high to

demand straight radial elements for their rotating
parts (see fig. 1-29). The mechanical element to be

examined is a straight radial strut rotating about the
zero radius point of its radial extent.

Figure 1-30 shows an element of a radial strut.

The centrifugal force acting on this element is

dFc = rw2 ps a dr = oa - (a + da)(a + do) = - ada - ada

(I-9o)

where a is an area extending in the circumferential
and axial directions. For a strut of constant cross
section a, da = 0. Hence

psUa2Ii°rdr=-Ii ° do

ps_U2_ ( rr-_o)
psW2 (r 2-r21 = 1 - =a r-o o (1-91)

where the subscript o refers to the maximum
distance from the center of rotation and the

subscript r refers to the variable distance r from the
center of rotation.

For oo = 0 (zero stress at the outer tip), one finds
the maximum stress at r = 0 to be
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Figure 1-29.--Mixed-flow rotor with radial vane elements
(according to F. Lawaczeck (ref 3) and R. Birman).

Figure 1-30.--Element of

radial rotating strut.

or

psU2o -1
2a(r = O)

(1-92)

which is an example of a definite numerical value

for the centrifugal stress coefficient appearing in

equation (1-64).
For a radial strut with variable cross section but

dimensioned in such a fashion that oc =constant

and do c = 0, one finds

ps_o2ardr= - Oc da (I-93)

psW2 f rt I rl dar dr= - oc
r r a

-_o_2(r2-r 2)- esU2 1--- =-- 1 2 r .2

a
ocln --

al

( r122) a
Ps U2 1 - = In --
2tr c a I

or

a [psU2(rr_l) ]_l-exp _ 1-
J

(1-94)

where the centrifugal stress o c is constant radially
(i.e., it exists also in the outermost cross section a 1

at radius r l).

Figure 1-31 shows a/a I as a function of r/rl and

psU21/2ec . It is shown later in this section that

exactly the same relation as equation (1-94) holds
also for the thickness distribution of a rotating disk

having a uniform stress distribution and, therefore,

a radial (and circumferential) stress ac at the outer

perimeter (at the radius r 1).
Since the radial strut treated in this section has

(so far) the tensile stress % =a 1 at its outer cross

section al and the radius r 1, such a strut must
actually be extended radially beyond r=q so as to

physically generate (by its centrifugal force) the

stress Oc=O l at r=rl. For the special form with
uniform cross section (a=a(r)= al ) between rl and

a larger, maximum radius ro, the radius ratio r I/r o
follows from equation (1-91) for the case of zero

stress (o o =0) at r=r o. Figure 1-32 shows the
distribution of the cross section of this strut with

uniform stress from r=0 to r=r 1 and radially

diminishing stress from 01 at r=r 1 to _rc =0 at the

maximum radius r=r o derived from equation

.o_ 12
"5

10

-_ 8

b=, e

-_ Zl

2

< 0

2" ,L
Stress coefficient,_

osu /2o -

.1 .2 .3 .4 .5 .6 .7 .8 .9 1.0

Radius ratio, rlr 1

Figure 1-31.--Area distribution of radial strut and

thickness distribution of rotating disk, both with uni-

formly distributed centrifugal stress. (Subscript l

denotes stressed outer perimeter. )
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(1-91) and the following equation:

1 rf_ 201 "

r 2 ps U2

or

r_ _ 1 2°1

r2o P s U2o

(1-95)

Evidently

PsU21 _ PsU20 U 2 _ psU2o r_

o o U 2 o r2o

so that equation (1-94), when referred to r o and U o

rather than to r I and UI, may be rewritten

psU2 r21(1-r_r2°'_=lna (1-96)

2°1 r2 \ r2 r2 l al

The solution of this equation is represented

graphically in figure 1-32. This figure represents the
rotating strut with zero stress at its outer end

(r = ro) and shows the extent of the cylindrical outer

portion of the strut (a=a o =al) for r I <r<ro and
the portion of constant stress and varying cross

section a/a I for r<r I .

Thus the centrifugal stress coefficient Os U2/2ac
gives the radial distribution of cylindrical coaxial

cross sections for straight radial rotating members
such as blades with radial blade elements. The stress

specific speed and the stress coefficient so

determined, therefore, supplement the information

presented in section 1.3.2.1 regarding the design of

axial-flow vane systems. However, according to the

relations just derived, the stress specific speed and

the centrifugal stress coefficient apply also to radial
and mixed-flow rotor blades with radial blade

elements (fig. 1-29). It is shown later in this section

that the same stress coefficient can be applied also

to rotor vanes of more general shapes.

The second form of rotating members to be

considered is a relatively thin hoop or cylinder of

the mean radius r. (For somewhat complex radial

cross sections of the hoop, r may be the distance of
the center of gravity of the cross section from the

axis of rotation.)

It is well known that the centrifugal circum-

ferential tensile stress in a thin rotating hoop or

cylinder is

Oc = Os U 2

so that the centrifugal stress coefficient is

psU2 =0.5
2Oc

(1-97)

This stress coefficient is the lowest appearing in

rotating elements subjected to simple tension.
(Elements subjected to bending can have much

lower coefficients psU2/2Oc .) While a freely

rotating thin hoop, or a radially thin cylinder, is not

very frequently used in turbomachinery, it is a good

reference shape to be considered, because it appears

as wearing rings, as outer shrouds, occasionally as
hubs of axial-flow rotors, and so on. If the stress

coefficient in the stress specific speed is as low as or

lower than 0.5, ring-shaped rotating elements are

acceptable, whereas for higher stress coefficients

members extending radially toward the axis of
rotation are required.

The next form of rotating element to be
considered is a disk normal to the axis of rotation.

The theoretically simplest rotating disk is the disk

of constant stress. It is a disk without a central hole,

so that it has to be fastened to its shaft by means of

coaxial flanges. Its thickness distribution as a
function of the distance r from the axis of rotation
is

y(r) [PsU2( r2)l-exPLT C

Centrifugal stress

coefficient,

Ps Uo2/2°c

.,2_" 6

0 .1 .2 .3 .4 .5 .6 .8

Radius ratio, rlr o

Figure 1-32.--Cross-sectional area distribution of rotat-

ing radial strut having uniform stress distribution for

rK_Q, zero stress at r=r o, and diminishing stress
from r I to ro .
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or

( rr_l)=lnY(r)
Ps U_ 1 -

2°c Yl
(1-98)

where the subscript 1 refers to the outer
circumference, which has a uniform radial and

circumferential stress o c. The thickness ratio

y(r)/y I satisfies exactly the same equation as the

area ratio of a radial strut of constant stress (eq.

(1-94)). Therefore figure 1-31 applies also to the

thickness y of a disk of constant stress, with the

thickness evenly distributed on both sides of a plane
of symmetry which is normal to the axis of rotation

(see also fig. 1-33). The dimensionless shape of the

rotating disk of constant stress is uniquely

determined by the value of its centrifugal stress

coefficient Ps U_ /2_ c.

Rotating disks of different shapes have, of
course, different nonuniform stress distributions as

long as their behavior is completely elastic. Thus, a
flat disk of constant thickness with no hole has its

maximum elastic stress in the center, while a disk
with a central hole has its maximum stress at the

periphery of the hole. The latter stress is tangential
to the hole and is at least twice the stress of a disk

with no hole. Fortunately the actual stress
distribution is much more uniform if the disk is

made of a reasonably ductile material because the

regions of maximum stress yield and thus relieve the

stress concentration. As a consequence, the so-
called average stress (an assumed uniform circum-

ferential stress) is of greater practical significance

than an exactly computed elastic stress distribution.

Chapter 5 describes the calculation of the average

stress and of the corresponding centrifugal stress

coefficient. For example, the average stress
coefficient of a flat disk with no central bore, or

only a very small central bore, is approximately

psU2/2oc = 1.5.

The last form of turbomachinery structure to be

investigated in this section has elements, usually
rotor blades, extending axially from one or between

two disk-shaped shrouds, so that the centrifugal

force acting on such elements has to be carried in

bending.

Figure 1-34 depicts a vane of a radial-flow rotor

which is overhung from a shroud on one side of the

vane, that is, an element of an open radial- or
mixed-flow rotor.

I

jl--

i_
Figure 1-33.--Sketch of axial-flow rotor showing

relation o fro, O, Di, and D h .

_.!_-W Rotation for pump operation

\ 'l
/ofceo, ,-"/

\ ,--fugal force/ /_

\_ / Pressure force

\ ,/
\/

Figure 1-34.--Axially overhung vane of radial-flow
rotor.

It is nearly obvious (and it is stated in standard

handbooks) that the maximum bending moment at
the root of the blade per unit length of the blade is

wb 2

Mmax= 2 (1-99)

where w, the load per unit area, is

w= hpsrto 2 sin/3

in which the angle is defined, as in figure 1-34, as

the direction of a tangent to the mean camber line.
Therefore
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b 2
Mma x = _ hpsr_O2 sin/3

The resulting centrifugal bending stress is

Mmax
(7 c _ ___

ms, 1

where ms, I is the section modulus of the vane
(moment of inertia divided by the maximum

distance from the neutral axis) per unit of length of

the vane. Hence the centrifugal bending stress is

b2 hpsro: 2 sin/3

ac = 2ms, 1

and with ro: = U, the centrifugal stress coefficient is

Ps U2 _ rms, 1

2Oc b2h sin/3
(1-100)

Approximating the section modulus per unit length

of the vane by msj = h2/6 gives

Ps U2 hr
- (l-100a)

2Oc 6b 2 sin/3

If the vane is strongly curved, ms,1 =h2/6 is, of

course, not a valid approximation of the section

modulus per unit length. Then one uses equation

(1-100) with

total section modulus

ms, 1 = total vane length

If the vane is inclined against the axial direction,

as shown in figure 1-35, equations (1-100) and

(1-100a) assume the form

ps U2 _ rms,1 = hr (1-101)
2Oc b2h sin/3 cos c_ 6b 2 sin/3 cos c_

i_rcl .-_Centrifugal force

dAiX_ea:t,on u__ Set

ipressure

Directionnormaltoaxis
of rotation

Figure 1-35.--Radial section through axially overhung vane

inclined against axial direction.

i

b

"" Section

\

\
\\,

A-A

Figure 1-36.--Axially extending nonradial vane

supported at both axial ends by shrouds.

between two end supports (see fig. 1-36). The

maximum bending moment is in this case

wb 2
Mmax = -- (1-102)

q
where the last expression applies to ms, l = h2/6.

It should be recognized that this relation neglects where q varies from 8 for end supports without any

the uniform tensile stress in the blade. Therefore, bending stiffness to values between about 12 and 25
for c_=90", the stress coefficient psU2/2Oc obeys for more or less rigid end supports. For such

the relation given previously for radial struts (eq. supports, the mechanical complexity makes it

(1-96) and fig. 1-32). necessary to assume a reasonable q value,

presumably about 15.

All other relations are exactly the same as for the

axially overhung blade. Thus, with the notation
given in figure 1-36

Vanes extending axially between two shrouds of
the rotor, but not consisting of straight radial ps U2 q h r 1

- (1-103)
elements, can be treated as beams in bending 2a c 12 b b sin/3
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Of course, blade inclination against the axial

direction is also possible for rotors with two

shrouds. Then the stress coefficient is given by a

relation analogous to equation (1-101):

ps U2 q h r

2a c 12 b b cos a sin/3
(1-104)

In this section, U is the peripheral velocity at the

part of the vane considered, which is often, but not

always, the outside velocity of the rotor U o. If U is

not U o, the stress coefficient can easily be
converted to the stress coefficient at the outer

periphery by the relation

Os _ o,: (1-1o5)
cr o r 2

If the outermost vane tips are thinner than the rest

of the blade, it is advisable to use an average blade

thickness h over a reasonably long part of the outer

vane portion, because the thicker parts of the blades
can help to support the thinner parts. This average

vane thickness h is indicated in figures 1-34 and
1-36.

The foregoing considerations permit rather far

reaching conclusions regarding the design of

turbomachinery.

It is evident from figure I-3I that stress

coefficients psU2/2Oc >2 lead to excessive disk
thicknesses at the center (r/r t =0) if one does not

permit yielding in the central regions. Even if such

yielding is permitted, the disk cannot have a

constant thickness for which the average stress

coefficient is 1.5. Therefore Ps U_/2Oc = 2 requires
the disk to be substantially thicker in the central

region than at r=r I . However, r I is often not the
maximum radius of the rotor. Then, according to

equation (1-105), the stress coefficient referred to

the maximum radius rois

2ac 2ac r2

which is, for example, 4 for psU2/2ec=2 and

ro/r I =x/2.
Accordingly, if the hub-tip ratio D h/D i = r/r o of

the blades is assumed to be 0.75 (see fig. 1-33 for an

explanation of D h/D i > rl ro = 1/v_), one can read

from figure 1-32 with psU_o/2ac =4 that the area

ratio a/a o for straight radial blades is about 2.5.
This value is a rather severe requirement for the

blade design. Thus, by considerations of this type,

one can reach a conclusion about a practical upper

limit for the centrifugal stress coefficient

psU2/2ac, which, as mentioned previously, is
approximately 4. (Usually somewhat lower limits

are desirable.)

As a second example, consider a standard

centrifugal pump impeller with backward-bent

vanes extending axially between two shrouds.

Assuming in equation (1-103) the vane thickness to

span ratio h/b = 1/4 and r/b = D O/2bo = 4.2, which

corresponds to the profile shown in figure 1-25,

and letting q = 15 and/_ = 60 °, one obtains

psi.) 2 _ 15 4.2

20 c 12 4 x 0.866
- 1.52

This equation shows that the vanes of such a rotor

are substantially stronger against centrifugal forces

than a freely rotating thin hoop. This fact should

give the design engineer some hint regarding the
construction of the side shrouds.

Finally one can draw from the results just

presented some conclusions regarding the mag-

nitude of the stress specific speed na, c in relation to
the basic specific speed. Evidently

_ ( goH ) 3/4 ( 2goH -2 \3/'Ina, c = psU-_-_ (1-106)
ns ",a-_s / \ U 2 2ac f

Considering the first of the foregoing examples and

assuming that the rotor is a standard axial-flow

compressor rotor, one can estimate that

2goH/U2=0.56 (for Dh/Di=0.75, and with

2goH/U_=l at the hub). With psU2/2Oc=4,
which is the maximum stress coefficient previously

estimated, one finds

na, c. = (0.56 x 4) 3/4 = 1.83
//s

It is, of course, just as easy to calculate the stress

specific speed directly from equation (1-64) by

using an axial-flow rotor with Do=D i and

assuming a value of the flow coefficient Vm, i/U i.

The hub-tip diameter ratio D h/D i is assumed to be

0.75, and with Vrn, i/U i assumed to be 0.3, the

result is no, c =0.3217.
The second of the foregoing examples leads, with

2goH/U2o = 1, to the conclusion n_,c/n s = 1.36. In

this example, the stress specific speed is most

advantageously related to the basic specific speed in
the form
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n S --
Up

(goH)3/4 Ir1/2 \_/

( Vm o 1/2 ( bo _1/2× (1-28)

Using Vm,o/Uo=O.12 (see fig. 1-27), bo/Do
=I/8.4 (as previously), and U2/2goH=l, one

finds ns=0.1134 (1950 is dimensional form).

Therefore na, c = 0.1134 × 1.36 = 0.1542.

The fact that this stress specific speed is only

about one-half of the corresponding value for the

axial compressor impeller previously considered

reflects correctly the fact that the axial compressor

impeller represents a nearly optimum form of

design relative to centrifugal stresses, whereas a

standard centrifugal pump impeller with backward-
bent vanes certainly does not represent such an

optimum.

1.3.3.2 Fluid dynamically generated

stresses.--Consider the stress specific speed

represented by equation (1-64) (sec. 1.2.3). If the

mass density p in this equation is given the value of

the mass density of the fluid p f, then pfU 2 is
obviously a dynamic fluid pressure and g is,

therefore, a stress generated by such fluid pressures

of. In order to relate this stress properly to the
specific speeds, it is necessary to limit the stress-

producing fluid pressures to pressure differences

generated by inertial forces within the machine.
Therefore this section is limited to stresses

generated by this type of pressure difference.

The most obvious stress generated in this manner

is the bending stress in a turbomachinery vane or

blade, produced by the dynamic pressure difference

between the two sides of the blade. This pressure

difference is known to be AP=CLpfw2/2 when
averaged over the chord length of the blade. Quite

often the lift coefficient CL is varied spanwise in

such a manner that this pressure difference is

approximately constant. With Ap considered to be

the distributed load acting on the blade as a beam in
bending, the maximum bending moment at the root

of a blade held on only one spanwise end is

ApbEl (1-107)
Mmax - 2

where b, as previously, is the spanwise width of the

blade (radial width for axial-flow blading) and I is

an average chord length. (See figs. 1-34 and 1-35

for radial-flow blade configurations.) The bending

stress is

Mmax Apb21 (1-108)
of- ms - 2m s

where m s is the section modulus of the root section
of the blade. For a twisted blade, the bending force

may not be exactly normal to the neutral axis for
the minimum section modulus of the root section.

However, this discrepancy is not sufficient to be
considered in this section.

As mentioned previously,

&p= CLP--L_ (1-109)
2

so that equation (1-108) may be written in the form

af=CL p_[w2 1 b21
2 2 m s

or

pjw 2 _ 2 ms (1-110)
2of CL b21

where C L must be determined from the velocity

diagram which is related to the basic specific speed

and to the particular vane under investigation. For

axial-flow vane systems, it is quite satisfactory to

refer C L and w to the velocity diagram of the tip
section.

The stress specific speed as expressed by equation

(1-64) contains the familiar stress coefficient

pfU2/2of. Evidently this coefficient is related to
the coefficient appearing in equation (1-110) as
follows:

2trf 2ef Up2

so that equation (1-110) may be written in the form

P-_=2( _W ) ms (1-111)
2of C , 2 b21

where U2/CL,o w2 must be derived from the
velocity diagram applying to the vanes under
consideration.

If the vane is held on both ends, the only
difference is that
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q

where q varies from 8 for completely flexible

supports to 25 for completely rigid supports. In
section 1.3.3.1, a value of q= 15 is suggested as a

suitable average value.
With equations (1-112), (1-109), and (1-108),

one finds

of w2- q ms (1-113)
2of CL b21

and

of U2o U2 ms (l-114)
2tif =q cL w2 bE1

It is of interest to compare the last expression

with the corresponding expression for centrifugal

stresses. For axial-flow rotors, the blade elements

are radial and in pure tension (approximately). For

example, for a radial blade element of constant
cross section, one derives from equation (1-91) for

OrO _0

ps U2 _ 1 (1-115)

2ac 1-r2 /r 2

Dividing this by equation (1-114) yields

psU2 /2ac - Ps°f = CL W2b2t (1-116)

pfUZo/2Of Pfac q(l-r2/r2)U2ms

which gives a comparison between the centrifugal

tensile stress in a straight radial strut of uniform

cross section with a mass density Ps and the bending

stress in a straight helical blade with a radial span

b = (D i -Dh)/2, a chord length 1, and a root section
modulus ms. Usually b21> >ms.

Equation (1-116) written in the form

af = pf CL w2 b21 (1-117)
ac Ps q(1-r2/r2)U 2 ms

permits a comparison between the aerodynamic or

hydrodynamic stresses of and the centrifugal
stresses oc in axial-flow rotor blades with radial

blade elements. Evidently CL w 2/q(1 - rh2/ro)Uo22 is

of the order of 1. Hence, for gases, where of< <Ps,

one finds of<o c, unless b21/ms is of the same

§1.3.3.2

order as oslpf; this may be true for the radially long
and slender blades used in the initial stages of

aircraft compressors and for fans of aircraft fan

engines. In such machinery, ay may be of the same

order as ac. In all other machinery handling gases,
such as axial-flow compressors with fairly short

blades and radial- or mixed-flow compressor rotors

with radial blade elements (see fig. 1-29), b21/ms is

of a lower order than Ps/Pf, so that according to

equation (1-117) af<a c. For liquid hydrogen,

Ps/Pf may be of the same order as b21/ms, so that

af/a c may be of the order of 1. For fairly heavy
liquids like water or liquid oxygen, Ps is only two to

eight times greater than pf, so that b21/ms is nearly

always larger than Ps/P f, and, therefore, lYf > tlc . In
other words, for heavy liquids the fluid-induced

bending stresses dominate over centrifugal tensile
stresses in radial blade elements.

The same comparison can be made between

centrifugal bending stresses in axially extending
vanes and the aerodynamically or hydrody-

namically induced bending stresses. This com-

parison is furnished by equations (1-103) and
(1-114). Since in the former equation the root

section modulus ms per unit length of the blade is

set equal to h2/6, one substitutes in equation

(1-103) ms/I for h2/6. Hence, for axially extending
blades,

psU2 /2Oc _ Pstif _ qms r CL w2b2t

pfU2 /2af Of tic 2 hlb 2 sin/3 qU2ms

which simplifies to

__ = Of r CL W2 (1-118)

Oc Ps 2h U2osin/3

As q cancels out, this equation evidently holds for

axially overhanging blades as well as blades held on

both axial ends by rotating shrouds. The ratio

CLw2/U 2 sin /3 is obviously of the order of 1.

Hence the comparison is to be made between Ps/Of
and r/2h. For geometric reasons, r> >2h, but this

inequality is usually not as strong as the inequality

b21> >m s in equation (1-117) (except for strongly
curved vanes). Nevertheless the comparison

between fluid-induced and centrifugal stresses is

quite similar to that made previously in connection

with equation (1-117), although centrifugal stresses

dominate in the present case over a somewhat wider

range than in the former case.
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Thus similarity considerations on stresses are

quite comparable for fluid dynamic stresses of and
centrifugal stresses 17c. The stress specific speeds for
these two origins of stresses are related to each
other as follows:

\3/4
nOl/2/(Oc/Ps) 3/4 __

nQl/2/(of/pf) 3/4 = Oc _ff )
(1-119)

The stress specific speed related to centrifugal

stresses is of primary importance for gas-handling

machines, and the stress specific speed related to

fluid-dynamic stresses is of primary importance for

machines handling fairly heavy liquids. For
machines handling liquid hydrogen, both specific

speeds may be of equal significance.

Instead of using the stress specific speeds, one

can, of course, consider the pressure-stress ratios

osgoH/oc and pfgoH/17f. These ratios may at times
have practical advantages, as, for example, in

considering the hydrodynamic thrust of a

turbomachinery rotor, in which the pressure

difference generating this thrust is (approximately)

pfgo H, the pressure difference generated or used in
the machine. However, the stresses that are critical

with respect to the end thrust are usually those in a

ball or roller thrust bearing, which do not fall

within the scope of this section.

The ratios psgoH/oc or pfgoH/of may be readily
related to the stress coefficients psU2o/2Oc and

psU2/2of by considering the head coefficient
¢/o = 2goH/U2. Evidently

of 2of
(1-120)

There is a corresponding expression for centrifugal

stresses, which, however, is not likely to be used
very often.

1.3.3.3 Gage-pressure-determined design forms

(casing forms ) .--The term gage pressure is
commonly used to express a pressure in the machine

in relation to the atmospheric pressure. By

expressing the amount by which the internal

pressure exceeds the ambient pressure, the gage

pressure represents the pressure difference to which

the casing is subjected.

Generally the gage pressure pg =P-Pa is not
accessible by similarity relations, since the inlet

pressure of a pump or compressor, or the discharge

pressure of a turbine, is determined by external

conditions which may not have any relation to the

action of the machine. For example, a turboma-

chine may be one of several machines operating in

series, and the pressure level in any one of these

machines depends only partly on the head of that

particular machine and to a large extent on the
action of the other machines. Therefore it is not

generally possible to describe the pressure-stress
conditions in the casing of a turbomachine in terms

of the stress coefficient used in the preceding

sections. The gage pressure of a machine is, thus, an

independent operating condition, not generally

related to the operating conditions expressed by
various specific speeds or equivalent similarity

parameters.

Nevertheless a given gage pressure pg inside the
casing can be made dimensionless from a

mechanical design point of view by division by a

characteristic or allowable stress o in the casing

walls. The resulting pressure-stress coefficient pg/o
can be related to certain dimensionless form

characteristics of the casing.

For example, a fairly thin cylindrical casing has,
without effects of its end covers, a pressure-stress

coefficient given by

= _t (1-121)
17 r

where 17is an average stress over the wall thickness t

of the cylinder and r is the inner (or average) radius

of the cylinder. (For fairly thick cylinders, this

average stress 17has a practical significance quite
similar to that of the average stress in a rotating

disk, which is mentioned in sec. 1.3.3.1, i.e., that

local yielding tends to level out the uneven stress
distribution.)

For a spherical casing,

= _2t (1-121a)
17 r

which is, of course, rarely used in its exact form,

although an approximation of a spherical shape has
been used successfully in connection with volute

pumps, as is further described in chapter 5.

Spherical walls are advantageously used as parts of

casings or casing covers. Naturally, when only

approximations or parts of a spherical shell are
used, the pressure-stress coefficient must be

reduced below the value given by equation
(l-121a).

The stress in a conical casing wall or cover can be
approximated by a coaxial conical section normal
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to the conical wall. With the notation given in

figure 1-37, the pressure-stress coefficient for a
conical wall becomes

e__ - t _tcosc_

o r n r
(1-122)

This solution can, of course, be checked by

recognizing that section OA is a conic section, so
that its radius of curvature at A can be determined

accurately as a function of r and a. Another
method is a consideration of surface curvature at

point A.

For flat plates, the pressure-stress coefficient is

approximately

P__ t2
o =q_- (1-123)

where q= 1.33 to 1.5 if the outer rim is flexibly

supported and q = 2 if the outer rim can be regarded

as rigidly clamped. These values apply to ductile

materials (mild steel). For cast iron, q is

approximately 1. Flat side plates or casing covers
can be effectively strengthened by double-wall

construction with radial shear ribs, as is discussed

further in chapter 5, section 5.3.3.

The foregoing equations permit making an

estimate of the volume of the solid casing walls as

compared with the fluid volume in the casing. It is

evident that this ratio increases in first approx-

imation proportionally to the ratio of the fluid gage

pressure to the allowable stress in the casing walls
whenever this allowable stress is reached. This

consideration may be helpful in connection with the
section 1.3.4.

If the gage pressure at the low-pressure end of the

rn \

metry

Figure 1-37.--Conical casing wall.
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machine is quite low compared with the gage

pressure at the high-pressure end, the maximum

gage pressure in the casing can be approximated by

pg =pfgo H, that is, by the total pressure rise in the
machine.

1.3.4 Gravity- and Vibration-Determined Design

Forms

In section 1.2.3, the so-called gravity specific
speed

nQ 1/2 1

ng- (g/n) 3/2 - 2r 2

( U2 )3/2(Di)3/2(Vm, iX_ 1/2

and the vibration specific speed

hi) m

nQ 1/2 1

(E/ps)3/4 21/47r 1/2

(1-70)

(psU2X}3/4(V .\I/2D. ( D___ '/2
X " m,I } Lit 1 - (1-79)

\_/ \ U / D Di2,]

are related to various design parameters by these

equations. This section relates the design

parameters appearing on the right sides of these

equations to some elementary design form
characteristics of the machines considered,

specifically the square of the Froude number

U 2/gD o and the vibration or critical speed number

Ps U2/2E. The latter is transformed in section 1.2.3

into the square of the Strouhal number (U/fD) 2,
which involves an unknown constant. The relations

of these design parameters to design forms are far

less definite than relations considered previously,

for example, with respect to the stress specific
speed.

The relations of the gravity specific speed and of

the vibration specific speed to design forms are

treated together because of a deeply rooted
connection between these specific speeds (i.e.,

between considerations relative to gravity

(acceleration of the system as a whole) and to elastic

deformations and vibrations of the system). This

connection should be apparent from the relation
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between the natural frequencyfof an elastic system

and the deformation 6g under the general
acceleration g of the system, which is

(1-124)

where tSg/g is obviously the steady-state defor-
mation of the system under the unit of acceleration.

Equation (1-124) applies directly only to a point

mass on a massless spring, but can be applied to

more complicated systems by changing the constant

of proportionality (1/270.

The relation between the square of the Froude

number U'21gDo (where U may be any velocity of

dynamic significance) and the design form is not
obvious and not generally established. Its

underlying law is obviously the so-called square-

cube law between surface and gravitational forces,

which is that surface forces (pressures or stresses)

are proportional to the square of linear dimensions

and mass forces are proportional to the cube of

linear dimensions. With respect to hydrodynamic

and other dynamic forces, this relation is expressed

by the well-known Froude law of similarity:

U
-- = constant

or

V
-- = constant

(1-125)

where D may be any convenient linear dimension of

the system.

The lower the Froude number U/g',/-_ or V/_,

the greater the influence of gravitational relative to

dynamic forces goD 3 / V2 pD 2 = gD / i/2 .

True gravitational effects are those that result

from the action of gravitational or body forces. An

example of this type of effect is the difference in

pressure observed at a point on a blade when that

blade is observed at its highest and at its lowest

position (e.g., a blade on a marine propeller or on a

large hydraulic turbine or pump with a horizontal

shaft). The similarity relation is obviously

force preventing cavitation _ HsvgofD 2

force due to gravity gpfD 3

_ Hsv
- constant

D

(1-126)

This relation demands that not only Hsv but also all

dynamic head differences be proportional to the

vertical linear dimensions of the system, as all

pressure differences due to gravity are proportional

to these distances. This law of similarity is frequently

used with respect to large hydraulic turbines and

quite generally in marine engineering.

Similarity with respect to elastic deformations 6g
under the influence of gravity obviously demands

that these deformations are proportional to the
linear dimensions of the system (i.e., that

6g/D = constant). Evidently

o

6g = constant x _TD

and the stress is

gpD 3
o = constant × --

D 2
-- = constant × gpD

The requirement of similarity with respect to
deformations is, therefore,

a pgD=constant x =constant × =constant

D E Y (1-127)

The well-known deformation of helicopter blades at
a standstill is an example of this type of deflection.

The ratio E/p is encountered later in con-

siderations relative to vibrations and may be

described as a stiffness-density ratio.

Similarity with respect to stresses produced by

gravitational forces obviously demands that

gravitational forces gpD 3 _ gpD
- = constant

internal or stress forces eD 2

(1-128)

This expresses the well-known fact that the

structural stresses due to gravity increase for similar

structures proportionally to the linear dimensions

of the structure, or that the strength-weight ratio of

the material o/gp must increase proportionally to
the linear dimension.
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According to equations (1-127) and (1-128), an
increase in the size D of the machine leads to an

increase in the relative deformation 8g/D and in the
stress o. To avoid this increase in deformation and

stress, one must depart from the structural

similarity or change the structural material. For
increasing D, this departure from similarity must

constitute an improvement (refinement) in the

structural form of the machine. This requirement is
well known in connection with increases in the size

of weight-limited structures such as airplanes and

aircraft engines. In turbomachines, this refinement

usually assumes the form of replacing a solid

structural element (e.g., a blade or a shaft) with a

hollow element. An apparently different kind of
structural refinement of turbomachines consists in

increasing only the diameters of axial-flow vane
systems without increasing their axial extent, while

keeping the solidity constant and, thus, increasing

the number of blades proportionally to the

diameters D. This increases the aspect ratio (span-

chord ratio) of the vanes and requires either true
structural refinement or acceptance of greater

flexibility of the vanes.

As mentioned previously, the departures from

structural similarity suggested by the similarity

equations (1-127) and (1-128) are exactly the kind

of refinements which are required whenever a

weight-limited machine is to be increased in size,

since it is usually not acceptable to increase the

weight of the machine by the cube of its linear

dimensions. It is really not the weight but the mass
of the machine that needs to be limited, as the mass

is significant under any acceleration, be it

gravitational acceleration, the acceleration of a

spacecraft in a weightless frame of reference, or a
combination of both.

Under these circumstances, the mass of a given
volume of solid material must be minimized for a

stated strength or load-carrying capacity of the

structure involved. Obviously this means that the

strength-mass and stiffness-mass ratios of the
material must be maximized. For the problem of

form design, these properties of the material must

be assumed to be given, as the task is to find the

optimum form for given properties of the structural

material. Therefore E/O and a/p, where a is an
allowable stress, are assumed to be fixed. To

minimize the mass of a machine, it is obviously

necessary to minimize the volume of the structural

material without reducing its structural strength or
stiffness. The required structural refinement is

discussed previously.

Without such refinement, the overall volume of

the machine is approximately proportional to the
volume of fluid in the machine. The volume of fluid

passing through the machine per unit of time is Q.
Let the unit of time be the time of one revolution.

The volume passed through the machine per
revolution is Q/n, which may very well be

proportional to the volume of the machine, which

is, in turn, proportional to D 3. The familiar

similarity parameter Q/nD 3 is, therefore, the

reciprocal of a meaningful dimensionless volume of
the machine.

Dividing the basic specific speed by the dynamic

parameter (U2o/2goH ) 3/4 leads to

×

(1-129)

which can, of course, be derived also

fundamental grounds, that is, on the basis of

u;
/7--

7rD i

on

and

U I-

Overall weight considerations (i.e., volume

considerations), therefore, do not lead to any new

relations, except that Q/nD 3 should be maximized.

This coefficient is easily calculated from equation

(1-129) for any given definition of D O and Di.
Evidently

where, according to equation (1-129),

4 v, I- /

(1-130)

(1-131)
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According to figure 1-18, Vm,i/U i diminishes with
increasing suction specific speed, but there is no

reason why it should change with the basic specific

speed. Therefore, for S=constant, Q/nD3o

increases primarily with (Di/Do)3; that is, Q/nD3o

increases with the basic specific speed, as is evident
from the reduction in the size of a machine with

increasing ns shown in figure 1-8.

The vibration specific speed, equation (1-79),
contains the term (psU2/2E) 3/4 on the right side.

Usually the peripheral velocity U is the velocity U o

at the outer diameter D o of the rotor. As stated

previously, the parameter psU2/2E should be

related to the design form of the machine,

particularly its rotor. For simple configurations,
this turns out to be somewhat easier than in the

previously discussed correlation with the Froude
number.

The natural frequency f of a prismatic bar in

bending is

- 1 (1-132)f=constant x l2

where I is the moment of inertia, A the area of the

cross section, and 1 the length of the bar. The

constant is 0.56 for the first natural frequency of a

rigidly clamped cantilever and 7r/2 for the first form

of vibration of a bar supported on both ends but

not clamped. In the latter arrangement, the second

natural frequency is obviously four times as high as

the first, since the length between nodal points is
l/2.

For a rectangular cross section with height h and
width b, I=h3b/12 and A=hb, so that

I/A =h2/12 and, therefore,

F-k-
constan_____t h

f= "V- (1-133)
"Ps 12

where the constant is the same as that used

previously.
For a circular cross section with shaft diameter

I/A =D2/16 andDs,

. I-Tconstant Ds
V-- (1-134)

f= _ "Ps 12

For a hollow shaft with an inside diameter ds,

const ant Ds d s
f= 4 Ps -_- 1 + (1-135)

According to equation (1-132), a more general

expression is

f=constant X _s (1-136)

where the radius of gyration of the cross section
r = _ is equal to h/x/-_ for the rectangular cross

section and D/4 for the circular cross section.

All expressions of natural frequency contain the

factor 'fE-Tp s, which appears also in the vibration

specific speed in the form Uo/Ex/_O s. Setting

U o =rDon and writing equation (1-136) in the
form

- fl lconstant r

one finds

Uo Do F 2
= constant × 7rn

x/E/Os_ J r l 2 (1-137)

where the constant has the same value as in

equations (1-132) to (1-136). Thus U o/Ex/-E_ps has a

fairly clear meaning regarding the form and

frequency of structural members in bending. (Other

forms of vibration, such as torsional vibrations, can

be treated in a similar manner.)

While it is relatively simple to extend the

foregoing relations to a variety of different

arrangements by changing the constant of

proportionality, there are other variations which

are not covered by equations (1-132) to (1-136).

One important variation of this type is the

introduction of elasticity into the supports of the

vibrating member. For example, it is well known
that the elasticity of shaft bearings, particularly

rolling-contact bearings, is important in calculating

the natural frequencies (critical speeds) of turbo-

machinery rotors. The actual behavior of a rotor in

an elastically supported casing is, of course, still

more complex. In such complex situations, it would

be of interest to explore how far the following
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generalization of equation (1-137) would be
applicable:

Uo
- constant

Nn

x 7- x function of form parameters

0-138)

where Nn is the exciting frequency and f (as

previously) is a significant natural frequency

(critical speed) of the system. The exciting

frequency Nn is usually a multiple Nof the speed of

rotation n, for example, a blade-passing frequency,

where in the simplest case N is the number of vanes

in one vane system. A relation such as equation

(1-138) is useful as long as the most important

natural frequencies f of the system can be

determined. This is possible in a wide variety of

cases if one accepts approximate solutions and

includes solutions by numerical or graphical
methods. This writer has used for the determination

of the critical speed of shafts the graphical method
described in section 92 of the well-known book by

Stodola (ref. 2) (beginning on p. 446 of its English

translation).

1.3.5 Design Choices in Turbomachinery

In the preceding sections, dimensionless

operating conditions (the specific speeds) are

related to design parameters (ratios) and these to

certain elementary design form characteristics.

However, these relations are not unique.

Certainly there is usually a considerable

difference in design between turbomachines

handling liquids and those handling gases. There is

another difference between pumps or compressors
on one hand and turbines on the other. Distinctions

or choices of this type have to be made before the

design process can begin and are called design

choices, although they are usually not made by the

design engineer but rather by the customer or by the

circumstances under which the development of the
machine is undertaken.

However, even regarding the design of a machine

for a prescribed purpose (liquid or gas, pump or

turbine), certain choices have to be made before one

can start with any specific design considerations.

For example, figures 1-8 and 1-9 show that

essentially the same range of basic specific speeds
can be covered either by axial-flow machines alone

(fig. 1-9) or by both radial and axial-flow
machines, with the latter used at the higher basic

specific speeds. In fact, figure 1-38 shows that the
entire field can be covered also by radial- and

mixed-flow machines, although the flow becomes

axial at the higher specific speeds. Thus the designer
has the choice of a radial-flow machine, an axial-

flow machine, or a combination of both types.

While influenced by the basic specific speed, this

choice is not uniquely determined by this specific

speed but is also dependent on matters of general

arrangement, preferred direction of the flow

entering or leaving the machine, requirements of

performance over a range of operation, and so on.

A related choice may have to be made between a

single-stage radial-flow machine and a multistage

axial-flow machine. This choice is depicted in figure

1-39 and has been debated a great deal in the field

of rocket propellant pumps. Both types of machine
have about the same volume and weight (or mass)

and for basic specific speeds between 0.1 and 0.2
about the same efficiency. (For basic specific speeds

below 0.09, the multistage axial-flow machine can

have the higher efficiency because the number of

stages can be increased. The radial-flow pump

presently has a wider range of stable operation (at

constant speed). The axial-flow pump has a

mechanically much better casing with respect to
high internal pressures and, by its large number of

vanes and vane systems, can be made to have a

much lower amplitude of pressure fluctuations at its

discharge. In the field of aircraft gas turbines and

compressors, the lower frontal area and the higher

efficiency of the axial-flow compressor for high

pressure ratios were decisive for the choice in favor

of the axial-flow design.
This consideration leads to the more general

design choice regarding the number of stages.

Figure 1-12 (sect. 1.2.1) shows the estimated stage

efficiencies of pumps as a function of the basic

specific speed per stage for radial-flow stages at

speeds below ns--0.3. At basic specific speeds
below 0.1, a design choice has to be made between

the loss in efficiency of a single-stage unit and the

complication and loss in efficiency of two-stage or

multiple-stage arrangements. For multiple-stage
machines, the axial-flow stages permit, of course, a

much simpler and usually more efficient arrange-

ment than radial stages, which has led to the

exclusive adoption of axial-flow stages for

multistage steam and gas turbines. For commercial

pumps and compressors, multistage radial-flow
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Figure 1-38.--Radial- and mixed-flo w pump profiles as function of basic specific speed.
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Figure 1-39.--Design choice between single-stage radial-flow and multistage axial-flow turbomachines.

machines have been used extensively because of the

wider stable operating range of radial-flow pumps

and compressors at constant speed.

The velocity vector diagrams and, therefore, the

vane shapes cannot be determined before another
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design choice has been made regarding the existence

or absence of positive or negative rotation on one
side of the rotor, usually the low-pressure side. This

design choice is made on the basis of considerations
of cavitation or Mach number, the magnitude and

in particular the retardation of the relative flow,

and the overall aerodynamics or hydrodynamics of

multistage machines, particularly axial-flow

machines. The exact magnitude of the rotation of
the fluid cannot be termed a design choice as it is a

continuous function of other flow conditions in the

machine.

Another design choice is often to be made

between single-suction and double-suction

turbomachines, depicted in figure 1-40, usually

having radial-flow rotors. (For turbines, the choice

is between single and double discharge.) On the
basis of fluid mechanics, one would probably elect

the double-suction arrangement, as its peripheral

velocity at the pump impeller inlet is lower for the
same rate of flow Q and the same speed of rotation.

This is advantageous with respect to cavitation as

well as with respect to compressibility (Mach

number) characteristics. Yet, because of the

complication of the general arrangement and inlet

ducting, double-suction rotors have nearly

disappeared from the compressor field, although
the British first radial-flow aricraft compressors

were of the double-suction type. Double-suction

pumps are widely used in the commercial field, but

have seen only limited application in the liquid-

rocket pump field. Double-discharge hydraulic
turbines were used more than 50 years ago for

horizontal-shaft turbines, but have almost

disappeared since vertical-shaft turbines have
become standard. Double discharge has been used

widely in large axial-flow steam turbines to handle

the very large volumes of flow discharged at high

speeds of rotation (3600 rpm).

Figure 1-40 depicts still another design choice,
the choice between the so-called horizontally split

and vertically split casing constructions. This

conventional terminology is not very accurate.

Vertically split denotes the existence of mechan-

ically separable joints along planes normal to the

axis of rotation, whereas horizontally split denotes
the existence of such a mechanical joint along a

plane parallel to, and usually coinciding with, the

axis of rotation. In this compendium, these terms

are used with their conventional meanings.

Figure 1-40 illustrates this distinction for a

single-stage centrifugal pump or blower. Figure
1-41 shows a horizontally split casing for a

multistage pump or compessor, and figure 1-42 a

vertically split casing for a multistage high-pressure

pump. Large pumps and hydraulic turbines with

vertical shafts are, by the conventional definition,

vertically split, as their casing joints are normal to

the axis of rotation, although these joints are

actually in a horizontal position.

The vertically split construction has the

advantage of permitting much simpler and more

reliable joints and casing parts which are relatively

simple and more or less axially symmetric. This

construction is, therefore, used for pressures over

1000 pounds per square inch and in applications

where general reliability and freedom from leakage

are of paramount importance. The vertically split

construction is, therefore, used for high-pressure

boiler feed pumps, aircraft gas turbines and

t:i__-_s_0)i_t ---g-_

Double-suction
horizontallysplit design

Figure 1-40.--Design choices between double-suction and
single-suction machines and between horizontally split and
vertically split casings.

-..qA -.qB VerticalsectionA-O

s0,.!

SectionB-B -,,]B
Horizontal(split)
sectionO-H

Figure 1-41.--Horizontally split casing of multistage pump.
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Figure 1-42.--Vertically split casing of multistage high-

pressure centrifugal pump.

compressors, rocket propellant pumps and

turbines, and pumps handling highly corrosive or

toxic liquids and liquid metals.
Horizontally split machines, particularly

multistage machines, have the great advantage of
being much easier to assemble or dismantle than

vertically split machines. This construction is,

therefore, regularly used for commercial multistage

pumps and compressors at pressures up to at least

1000 pounds per square inch, as well as for large

multistage steam turbines. The horizontal split

demands great care and often ingenuity in design to

prevent leakage.

Thus the design choice between the vertically and

horizontally split constructions is not directly

related to the operating conditions expressed by the

various specific speeds. This choice is made on the

basis of absolute pressure, existing practice and

experience, demands of the application of the

machine, reliability considerations, and, too often,

personal judgment and opinion. This choice is a

good example of the fact that the design of
turbomachines is not determined entirely by

rational analysis.

The last design choice to be discussed in some
detail is that between shrouded and unshrouded

rotor vane systems. In axial-flow rotors, the shroud
is simply a cylindrical ring around the outside of the

vane system. In radial-flow rotors, the vane system

has either one disk-shaped shroud on one side or

two such shrouds, one on each side of the vane

system (see fig. 1-46, sec. 1.4). The former

arrangement is called open or single-shrouded, and

the latter is called closed or double-shrouded. Open

double-suction rotors have one shroud in an axially

central plane, and closed double-suction rotors
have two side shrouds and one central shroud,

which may or may not extend to the outside

diameter of the rotor (see left part of fig. 1-40).

To some extent, the design choice about

shrouding of the rotor vanes can be made on the

basis of the centrifugal stress specific speed, in

particular the centrifugal stress coefficient

Ps U2/2ac connected with that specific speed. There

probably is an upper limit of this stress coefficient

beyond which shrouding (or double shrouding) is
not mechanically feasible, but such a limit has not

yet been determined. This limit is doubtlessly higher
for radial-flow than for axial-flow rotors, where the

outer shroud by itself is essentially a thin hoop. This

thin hoop has a very low stress coefficient, so that

such a shroud usually depends for its mechanical
integrity on the holding action of the blades, and

the blades are loaded more than they would be

without a shroud. Therefore, a shrouded axial-flow

rotor always has a lower centrifugal stress

coefficient psU2/2ac than any otherwise similar
unshrouded axial-flow rotor. This statement is true

also for radial-flow rotors with radial vanes.

Shrouds are beneficial with respect to blade

vibrations. On this basis, it may be possible to
determine the necessity of a shroud from the

vibration specific speed (eq. (1-79), sec. 1.2.3).
However, while the choice between shrouded and

unshrouded (or single- and double-shrouded) rotor

vane systems can be made partly on the basis of the

centrifugal stress specific speed (and the vibration

specific speed), this choice is influenced by other

important considerations. A single- or double-

shrouded rotor is certainly more difficult and costly
to manufacture than an open rotor. This means

that, under certain conditions (e.g., cost

limitations) and for certain materials or processes,
the shrouded constructions are ruled out for

manufacturing reasons. In other cases, for

example, where axial-flow rotors with very low

head coefficients (_bo = 2goH/U 2) are used, usually
in machines or stages with very high basic specific

speed, the use of an outer shroud would entail

unacceptable losses in efficiency. Thus this choice is

influenced by the basic specific speed, but not

uniquely determined by it.
There are still many other design choices to be

made, for example, those discussed in section 1.3.2

and illustrated in figure 1-28. However, the design

choices just discussed are probably sufficient to

illustrate this concept.
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While the design choices depend to some extent

on the dimensionless operating conditions (the

specific speeds), there is one clear distinction

between these choices and the previously described

relations between the specific speeds and the design

parameters appearing on the right sides of the

specific speed equations (see tables l-I and 1-II,

sec. 1.2.3).

The design parameters and the corresponding

design forms are, at least for each section of the

machine, continuous functions of the specific

speeds. With the exception of a few discontinuities

that may exist in these relations, small changes in

the dimensionless operating conditions (the specific

speeds) in principle produce correspondingly small

changes in the design parameters and the resulting

design forms.

In contrast, design choices are usually made

between two distinct possibilities (or among, at the

most, a small number of possibilities), for example,

between single and multistages, single and double

suction, vertically and horizontally split construc-

tion, and so on. Design choices are not continuous
functions of the conditions that influence these

choices. This distinction between design parameters

and design forms on one side and design choices

and the resulting changes in design form on the

other side may well serve as part of the definition of

design choices.

It might be assumed that under idealized

conditions of knowledge there would exist a definite

relation between the dimensionless operating

conditions (the specific speeds) and the corre-

sponding design forms. It is now evident that even

for completely given conditions this relation would

not be unique, that there would be more than one

set of optimum design forms and more than one
optimum overall design. The multivalued results of

the relation between dimensionless operating

conditions and design forms are selected by the

discrete design choices described in this section.

1.4 Representation of Relations

Between Dimensionless Operating

Conditions and Design Form

1.4.1 Introduction

The survey presented in this chapter begins with

the dimensionless representation of the operating

§1.3.5-1.4.1

conditions in turbomachinery in the well-known

form of the basic specific speed. Also presented in
this form, in addition to the speed of rotation, are

the volume flow rate; the head; and the effects of

cavitation, compressibility, viscosity, stresses in

solid parts, gravity, and vibration. (Of course, there
may be other operating conditions that should be

considered.)

The operating conditions presented in this form

are related to certain design parameters appearing

on the right sides of the various specific speed

equations listed in tables 1-I and l-II. Besides the

flow coefficient V m/U and certain ratios of linear

dimensions appearing in all these equations in one
form or another, there is one parameter in each

equation whereby the equation is distinguished
from all the other specific speed equations. These

distinguishing parameters are a head coefficient, a

suction head coefficient (cavitation number), a

Mach number, a Reynolds number, a stress
number, a Froude number, and a vibration number

(principally a Strouhal number).
The ratios of linear dimensions appearing in the

specific speed equations have, of course, a very
direct influence on the form of the profile of the

machine, particularly the rotor. The flow

coefficients together with the head coefficients

determine to a large extent the velocity vector

diagrams, once the rotation of the fluid on one side

of the rotor (usually the low-pressure side) has been

determined by design choice or other consid-
erations. The velocity vector diagrams determine

certain elementary characteristics of the vane or

casing shape as well as the ratio of vane length to
spacing on the basis of the lift coefficient. The

stress coefficient psU2/2_ determines certain
structural characteristics of rotating elements and

vanes, and the vibration number U2/x/E/p s other

structural characteristics of rotors or vanes. (This

writer has not been able to correlate design form
characteristics in a definite manner with the Froude

number, but such relations may well be established

in the future.)

At this point, it seems appropriate to call

attention to the process of establishing the overall

three-dimensional design form of the entire

machine. Certainly this process is made possible or

aided by the previously acquired ratios of certain

dimensions and elementary design form charac-
teristics. Yet considerable knowledge, experience,
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and skill are required to combine these bits of

design information effectively into a geometrically

and mechanically harmonious and logically

consistent whole. (Most of the other chapters of this
compendium are devoted to the foundations and

execution of this process.)

It is hoped that the foregoing description is
sufficient to distinguish the overall design form of

the entire machine (or of a major part, like an

impeller) from the elementary design forms or form

characteristics derived from the design parameters

such as the flow, head, and stress coefficients. A

sharper distinction may not be desirable as the

elementary design forms are likely to be extended

by the development of design methods so as to

cover progressively increasing portions of the

overall design of the machine. (Sections through

entire vane systems such as those shown in figure

1-23 are an example of this growth.)

The relation between the dimensionless operating

conditions, the design parameters, and certain

elementary design forms is not unique in itself and

certainly not sufficient to determine uniquely the
overall design of the machine, not even under the

most idealized assumptions regarding the state of
knowledge and experience. The design form of an

entire machine depends also on a number of design

choices such as those between gases and liquids,

pumps and turbines, axial and radial flow, and so
on. Only after such choices have been made can one

hope to establish a definite relation between the

dimensionless operating conditions and the overall

design form of the machine. In other words, the
multivalued nature of the relation between

dimensionless operating conditions and design

forms requires decisions regarding the pertinent

design choices in order to make this relation as

unique as possible under the existing state of

knowledge and experience.

1.4.2 Space of Dimensionless Operating

Conditions and Relation to Its

Design Parameters

The last step in this presentation of turbo-
machinery design is the construction of a mental

picture or scheme representing what is stated

previously.

The field of all possible dimensionless operating

conditions, presented as a number of specific speeds
(the left sides of the equations in tables 1-I and

1-II), is imagined as a multidimensional space, each

coordinate being one of the dimensionless con-

tinuously variable operating conditions (one of the

specific speeds). A point in this space represents one

complete set of dimensionless operating conditions.

As mentioned previously, every specific speed
can be related to a number of design parameters as

expressed by the right sides of the equations in
tables 1-I and 1-II. This relation is multivalued,

every particular solution depending on a number of

design choices. However, after all pertinent design

choices have been made, one can imagine that every

point in the space of dimensionless operating

conditions can be associated with a set of numerical

values of the design parameters appearing on the

right sides of the specific speed equations.

Accordingly one can draw, in the multidimensional

space of operating conditions, the loci of constant

values of the design parameters concerned (lines,
surfaces, etc.).

It is somewhat difficult to demonstrate the

construction of these loci not only because the space
of dimensionless operating conditions is multi-

dimensional, but also because "the design

information available for most of the specific
speeds is as yet far too incomplete to permit such a

demonstration in definite terms. However, if we

choose a highly simplified case, involving only a

very limited number of variables, such a

demonstration seems possible.

Only two specific speeds are considered variable.

The best design information available today falls in

the hydrodynamic field, represented by the basic

specific speed and the suction specific speed. These

two specific speeds are, therefore, the variable
operating conditions considered in this demon-

stration, with all other specific speeds having fixed
values in ranges where sufficient design information

is available. One may consider this example as a

plane section through the multidimensional space

of operating conditions which is parallel to the n s-
and S-axes and normal to all other coordinate axes

of this space.

The next step is that of making the necessary

design choices. These choices are the following:

(a) The machine is a pump (not a turbine).

(b) The fluid is a liquid of low kinematic vis-

cosity; this determines a sufficiently low value of

the compressibility specific speed and a sufficiently

high value of the viscosity specific speed so that
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changesincompressibilityandchangesin viscosity
(andsize)haveonlynegligibleeffects.

(c)Theperipheralvelocitiesaresufficientlylow
and the strength-weightratio of the structural
materialissufficientlyhighto practicallyeliminate
stressconsiderations;specifically,the centrifugal
stressspecificspeediswellbelow0.1.

(d)Thegravityspecificspeedissufficientlyhigh
andthevibrationspecificspeedsufficientlylowto
practicallyeliminategravityandvibrationeffects
fromthedesignconsiderations.

(e)Therotordesignform is singlesuctionand
variescontinuouslyso that flow changesfrom
radial(outward)for low basic specific speeds to

axial for high basic specific speeds.

(f) Only single-stage pumps are considered.

This demonstration is concerned only with the

impeller design. Consequently, no design choices

need to be made regarding the casing construction,

such as between vertical and horizontal splitting of

the casing, or concerning the locations and direc-

tions of the casing inlet and discharge openings.

The foregoing design choices are not sufficient to

solve the basic specific speed and the suction

specific speed equations for the design parameters.

However, certain design parameters can be chosen

on theoretical and empirical grounds.

The inlet hub-tip diameter ratio D h/D i can be
chosen on empirical grounds. A value of

Dh/Di=0.25 is large enough to cover most
mechanical requirements of shaft diameter for

single-stage pumps. Yet, if for overhanging

impellers, D h/D i = 0, the factor (1-D2/D 2) 1/2 in

the specific speed equation changes only from 0.968

to 1, that is, by less than 3.5 percent. On the other

hand, if D h/D i is larger than 0.25, say 0.35, then
(1 -D_/D2) 1/2 =0.9375, only about 3 percent less

than the value corresponding to the assumed
diameter ratio of 0.25. This value is, therefore, a

good mean value to assume, and departures from it

within the range expected for single-stage pumps

can have only minor effects.

Another parameter that is easy to estimate is the

inlet head-velocity ratio 2goHsv/V2m,i • According
to the cavitation parameter diagram shown in figure

1-18 (sec. 1.2.2), the suction specific speed reaches

a maximum for practical values of blade cavitation

number Cp =Op when 2goHsv/V2,i is close to 3.5.
The same diagram and equation (1-46) indicates

that under the assumptions of this demonstration,

the equation for the suction specific speed is
reduced to

S = 1 U i (1-139)
5.571 Vm, i

With the flow coefficient gra, i/U i so determined
by the suction specific speed alone, the basic

specific speed equation can be solved for Di/Do if

one can make a rational assumption about the head

coefficient. It is assumed empirically that the
maximum value of this head coefficient which exists

at the minimum discharge diameter Do, rain is

2goH/U2o, rain= 1. Using this assumption and that
of Dh/Di=0.25 together with equations (1-139)

and (1-24), one finds

v ra,i | { uins=0.4594( V \ l/2 / D )3/2
Ui / \Do, rain

_ 0.4594 ( Di ) 3/2
(5.571 S) 1/2 _o, min

(1-140)

Figure 1-43 shows a graphical evaluation of

equation (1-140), which is, in fact, the previously
mentioned section through the multidimensional

space of operating conditions. In this section

appear two systems of lines, lines of constant values

of the inlet flow coefficient Vra, i/Ui and lines of

constant values of the diameter ratio Di/Do,mi n.

Logarithmic scales are, quite properly, used for the
dimensionless coordinates and give this section the

qualities of a computation chart. Thus this initially

somewhat abstract concept of a section through the

space of dimensionless operating conditions

appears in a concrete and useful form.

The diameter ratio Di/Do, rnin and the flow

coefficient gra, i/U i are, of course, not the only
design parameters that are of interest and can be

related to the specific speeds. Of particular

significance is the maximum outside diameter

Do, max . Often this diameter must be larger than
Do, rain because of the previously mentioned limit of
the retardation of the relative flow. A simple

solution can be found by assuming that the

circumferential component w U of the relative flow
should not be retarded more than indicated by

Wu, o/Wu, i_-0.65.
Using Euler's turbomachinery momentum

equation as well as Wu, i = - Ui (for zero rotation of
the absolute flow at the impeller inlet) and

2goH/U2o, min = 1, one obtains
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+0.325 (1-141)

which is derived in appendix 1-A. In this equation,

Oh is the so-called hydraulic efficiency of the
machine, which accounts only for head losses, not

for leakage or parasite torque increases. Figure
1-44 shows the evaluation of equation (1-141)

under the assumption that r/_ = 0.90, and with only

the equality sign, so that Do,max/D i has its
minimum value. Instead of using this minimum

value, one usually employs a larger value D O =D i

for all cases where Do, max <D i. The corresponding

shifts of the curves representing Do,ma x are
indicated in figure 1-44 by dashed arrows.

Evidently it would be possible to enter this

information into the section through the space of

operating conditions (fig. 1-43). This is done for

Di/Do, max=0.8, 1.0, and 1.2 to indicate this
family of lines diagrammatically. Since, according

to equation (1-141), the lines Di/Do, max = constant

are parallel to the lines Di/Do, min =constant, it

would be difficult to distinguish the Di/Do, max

family of lines from the Di/Do, min family.
However, only this practical consideration of

visibility prevents one from showing a multiplicity

of parameters such as Di/Do, max or 2goH/U2,max
in the section (fig. 1-43). The minimum head

coefficient 2goH/U2,max is derived easily from the
assumed value of the maximum head coefficient

2goH/U2o, min= 1 by the relation

2

2g°H - 2g°H D°'min (1-142)
U2,max U 2 . D 2o, mln o, max

with Oo, max/Do, min given in figure 1-44. This

equation, of course, assumes equal energy addition
in all stream surfaces.

Additional design parameters can easily be

calculated. For example, the rotor width ratio

bo/Do, min (see fig. 1-7 or 1-25) is readily derived
from the condition of continuity. Form charac-

teristics of stationary passages adjacent to the rotor

are obtained on the same basis and by the law of
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constant angular momentum. Every point in the

section shown in figure 1-43, therefore, represents

in principle the whole set of dimensionless design

parameters, which is as complete as permitted by
the state of knowledge available. Figure 1-27

depicts the type of information represented by every

point in this section, in this demonstration with

respect to the design form of the impeller only.
It is desirable to illustrate the last step, that is, the

establishment of a complete design form from the

design parameters. At present, this step can be

demonstrated (under many simplifying assump-

tions) only for the relatively well-established field of

hydrodynamic rotors and is represented in a space

of only two dimensions, which are the operating

conditions ns and S.

Ideally every point in this space or section should

be associated with a complete design form. This is

demonstrated for a very limited number of points

(A to F) in figure 1-43. Figure 1-45 illustrates

diagrammatically the corresponding design forms

by showing the impeller profiles. The various

profiles are correlated with the six points in figure

1-43 by the same letters, as well as by the values of

the basic specific speed n s and the suction specific

speed S.

Since the impeller design forms include the actual

vane shapes derived from the velocity diagrams
(shown in fig. 1-27), this last step is a very major

step, demanding all the knowledge, experience, and
skill available in the pump design field. It is the core

of the design process. Hopefully the foregoing
discussion shows this process in its proper position

within the overall design procedure.

Since Do, max/D i given by figure 1-44 is a
minimum value of this ratio, it is permissible, even

desirable, to show in figure 1-45 the larger ratio

D O/D i whenever Do, max <Di.

1.4.3 Extension of Example to Three

Dimensions With Particular Attention to

Stress Specific Speed

We now return to the original, multidimensional

picture of the space of dimensionless operating

conditions. To aid the imagination, consider at one

time the interaction of the n s, S-section (shown in

fig. 1-43) with only one of the other coordinates

(specific speeds) of this space. This other coordinate
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specific speed and suction specific speed. Profile
designations correspond to points in figure 1-43.
(Values in parentheses are dimensional specific
speeds• )

axis is, of course, normal to the n s, S-plane, so that

a three-dimensional picture of the interaction with a

third specific speed is obtained.

The lines in figure 1-43 represent in this picture

surfaces intersecting the ns, S-plane. Among the

design choices in the previous section are

stipulations that small changes in compressibility,

viscosity, stress, gravity, and vibration charac-

teristics have only negligible effects. This means

that within the range of validity of these

stipulations the surfaces represented by the lines of

constant Di/Do, min and Vm,i/U i in figure 1-43
intersect the n s, S-planes at right angles provided
that the third specific speed considered is concerned

with one of the characteristics just mentioned.

Therefore, as intended, the set of design choices
eliminates the multidimensional character of the

space of dimensionless operating conditions within

this limited range, which leaves ns and S as the only

independent variables.

As soon as one extends considerations to large

changes in compressibility, viscosity, stress, gravity,

and vibration characteristics, the picture becomes

quite different. The surfaces, represented in the n s,

S-planes by the lines Di/Do, min=COnstant and

Vm, i/U i =constant, curve in planes normal to the
n s, S-planes. For example, at low viscosity specific

speeds (low Reynolds numbers) the lines in the

ns,S-planes have different positions, and the

surfaces they represent intersect the n s, S-planes at

angles substantially different from 90*. This is the

statement in geometric terms that the viscosity of

the fluid as well as the viscosity specific speed, and

changes therein, have substantial effects on the
design parameters of the machine if the viscosity

specific speed is low.

Similar statements can be made for other specific

speeds used as the third coordinate, for example,

the stress specific speed. At high stress specific

speeds, the surfaces of constant design parameters,

such as Di/Oo, min or Vm,i/U i, intersect ns,
S-planes not at right angles and not at the same

places as for the low stress specific speed assumed
previously. To describe this three-dimensional

space of the three operating conditions ns, S, and

no, one could investigate relations in planes normal

to the ns, S-plane, for example, in several no, ns-
planes at different constant values of S. A series of

diagrams analogous to figure 1-43, representing

no,ns-, no,S-, and ns,S-planes at different constant

values of S, ns, and no, respectively, would describe

the field of single-suction centrifugal- and axial-
flow pump design forms rather completely and

would be of great practical value, particularly for

preliminary design. Unfortunately, presently

available information on the design of such pumps

is not sufficient for arriving at an even approx-

imately unique answer for such a representation.

In order to avoid the impression that the mental

pictures discussed in this section are merely abstract

speculations, figure 1-46 is presented to give a

somewhat qualitative picture of the final results

that might be obtained from a step in the direction

of the no, c-axis at constant values of ns and S. The
step is taken from a centrifugal stress specific speed

na, c <0.1 (point G in fig. 1-43) to a value between

no, c =0.2 and no, c =0.3. (It would require a fairly
detailed stress analysis to arrive at more definite

figures.) To accomplish this increase in the

centrifugal stress specific speed, it is obviously
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Figure 1-46.--Radial-flow rotor design as function of stress

specific speed no. c . Basic specific speed n s, O. 117 (2000).

necessary to increase the stress coefficient

psU2o/2ac . This is done by replacing design
elements having relatively low stress coefficients by

elements having relatively high stress coefficients.
In section 1.3.3.1, it is stated that blades inclined so

as to introduce bending stresses (under the influence

of centrifugal forces) have relatively low stress
coefficients. The rotor shown in figure 1-46 with

no, c = 0.1 has such blades (strongly inclined against
the radial direction). Another element having a low
stress coefficient is the outer shroud (sec. 1.3.3.1);

the coefficient is low partly because the shroud is

hoop-shaped and partly because it tends to increase
the stresses in blades that are favorable with respect

to stress (nearly radial blades).

The natural ways to increase Ps U2/2ac and no, c

are, therefore, to change the blades so as to have

nearly radial blade elements (see, e.g., fig. 1-29)
and to eliminate the outer shroud of the rotor. The

rotor design shown in figure 1-46 for stress specific

speeds between 0.2 and 0.3 shows these changes in

design. Note also the elimination of the central bore

through the back shroud of the rotor.
Will this change in blade design have a harmful

effect on the hydrodynamic performance? There is

no compelling reason why it should directly harm

the cavitation performance (nor the related

performance with respect to compressibility).

However, the efficiency and the stability of

performance are likely to suffer if the relative flow

in the rotor is excessively retarded. This can easily

happen in pumps (or compressiors), because radial

blade elements in connection with radial discharge

of the meridional flow (as shown in fig. 1-46) lead

to radial discharge relative to the rotating impeller

and thereby to a minimum of the relative discharge
velocity. To minimize this contingency, a stationary

inlet guide vane system may be used (fig. 1-46).

When the flow entering a pump rotor in this way is

given a strong rotation in the direction of the rotor

motion, the relative inlet velocity is reduced and
excessive retardation of the relative flow from inlet

to discharge is thus avoided. It must be noted,
however, that this solution of the retardation

problem may have an adverse effect on the

cavitation performance of the machine.

As mentioned previously with respect to

hydrodynamic design, all the available knowledge,

experience, and skill in mechanical and

hydrodynamic design, and perhaps more, are
needed to make a reasonably useful attack on the

design problems of the ns, S, and no, c space. This

situation can hardly be better in the ns, na, and na, c
space of gas-dynamic machines, and it is much

worse when the viscosity, gravity, and vibration

specific speeds are involved.

1.4.4 Inclined Sections Through Spaces of Turbo-

machinery Operating Conditions and Design Forms

In the preceding sections, the multidimensional

space of operating conditions is described and used

by means of plane sections through this space.

Specifically a very limited number of dimensionless

operating conditions, usually two, are considered

variable, and all other operating conditions are
considered fixed. This means that these sections are

chosen to be parallel to two axes of this space and
normal to all other axes. This discussion cannot be

closed without calling attention to the fact that this

selection of the sections considered is not the only

selection possible. The section chosen might be

inclined against the coordinate axes, which means
that within such a section more than two of the

dimensionless operating conditions might vary.

However, these variations could not be independent
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of each other because, if they were, the section

would become a space of as many dimensions as

there are independent variables.

Variations in the dimensionless operating

conditions which are dependent on each other may

be of considerable practical significance in some

cases. For example, the stress specific speed and the

compressibility specific speed of gas turbines or

compressors may very well be interrelated for

practical reasons. The effect of a particular

structural material (a particular strength-density

ratio) on the design form, in connection with given

characteristics of the gas, can perhaps be described

effectively by an inclined, conceivably curved,

section through a space with the basic specific

speed, compressibility specific speed, and stress

specific speed as the principal variables. In other

words, it may be of practical interest to limit the

freedom of design variations in a prescribed

fashion. Inclined or curved sections through the

space of dimensionless operating conditions may be
a convenient way of representing such a situation.

1.4.5 Review

The field of turbomachinery design is first

represented by a number of analytical relations

between various dimensionless operating

conditions, the specific speeds, and a number of

dimensionless design parameters, such as ratios of

important linear dimensions, flow and head

coefficients, and so on. Every set of operating

conditions is associated with a corresponding set of

design parameters which can be reasonably unique

only after certain design choices have been made

regarding the nature of the fluid, the purpose and

type of the machine, and so on.

This situation can be represented as a space of

dimensionless operating conditions, every

coordinate representing one of these operating

conditions (i.e., one specific speed). Every point in

this space represents a complete set of dimen-

sionless operating conditions, as complete as
possible under the present state of knowledge.

After all pertinent design choices have been

made, every point in this space can be associated

with a corresponding set of design parameters, so

that one can locate in this space the loci of constant

values of all design parameters appropriate for the
design choices made. A two-dimensional section

through this space shows these loci as lines of

constant values of a design parameter (fig. 1-43).

Such a section may, thus, be a chart from which one

can read values of the design parameters appearing

therein. Modern means of computation may extend

this possibility beyond the format of a two-

dimensional graph.

The design parameters are either ratios of

important dimensions or coefficients which

determine directly or indirectly certain elementary

design form characteristics. Thus each point in the

space of dimensionless operating conditions

represents a complete set of such ratios of

dimensions and elementary design form char-

acteristics; that is, each point represents all the

design information that can be derived from the

dimensionless operating conditions by the

elementary means employed in this chapter.

The core of the form design process consists in

associating with points in this space (with complete
sets of ratios of dimensions and elementary design

form characteristics) corresponding design forms of

the entire machine (see figs. 1-45 and 1-46). This

process requires all the knowledge, experience, and

skill available in the field of design. This process is

not described in this chapter, only summarized in

relation to other aspects of the design process.
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Appendix 1-A--Effect of Limit of Retardation of Relative Flow

Assume a ratio of retardation of the relative flow

WU, o/WU, i =0.65. With no rotation of the absolute

flow at the inlet,

WU, i = -- U i = IUil

At the discharge,

WU, o=Uo-Vu, o=Uo 1 Uo

where U o corresponds to Do, ma x. From Euler's

equation,

go H= _h Vu, o Uo

and

go H _ Vu, o

_h U2o Uo

Hence

goH )Wu, o = U o 1 --_,2
_ThUo

=U o 1- 2
"qh Uo, min

Assume

go H 1

2 2
Uo, min

Hence

Wu'° 1 1 D 2 ._ o, rmn
U o 2"qh D 2

o, max

12 ]__ Do min
2

Do, max

Wu'° =0.65- Wu'° - Wu'° U°

Wu, i Ui Uo Ui

( 12 )Do min Do mar

= 1 2_1h 2
Do, max

0.65- D°'max 1 Do, mi n Do, mi n

Di 2rlh Do, max Di

0.65 - Do max 1 D i 2

Di 2rl h Do, max D 2

2
Do max 1 D 2

D2 -0.65 Di 2_ h D2

2
Do max

-2x0.325 _ +0.3252

1 D 2 .
o.mm +0.3252

2r/h D 2

Do, max )2 1 2
\ _-/ 0.325 - 2nh D 2 +0"3252

Do max (12 )1/2
• - -- _ +0.3252 +0.325

Di 2_h D 2
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Chapter 2

Theoretical Principles of the Hydrodynamic Design
of Turbomachinery

2.1 Introduction

The theory of flow in turbomachinery relates the
flow to the design form of the machine. It is based

on the general laws of fluid mechanics. The most
important of these laws are assumed to be known.

In this chapter, the theory of flow in turbo-

machinery is considered separately from the

similarity considerations treated in chapter 1. The

theory of flow attempts to approximate the actual
flow conditions in some useful fashion. Similarity

considerations merely compare flow conditions

with each other while treating them either as
unknown or as given by some other information.

As mentioned in chapter l, flow conditions in

turbomachines are exceedingly complex; they are

three-dimensional and unsteady. The theory of flow

attempts to approximate these flow conditions as

closely as possible. This theory is as broad a field as

general fluid mechanics, since there are indeed very
few aspects of fluid mechanics that do not apply to

turbomachinery.

In the design of turbomachinery, however, it is

prudent to pay attention primarily to the simplest
and most fundamental aspects of the flow, because

the design process demands the solution of the so-

called indirect problem, that is, the problem of

finding the form of the flow boundaries required to

generate a prescribed flow, or at least certain

characteristics of that flow. This indirect problem is
usually much more difficult to solve than the so-

called direct problem, that is, the problem of

finding the form of the flow for a given form of the

flow boundaries. Generally the indirect problem

(design problem) can be solved only for relatively

simple approximations of the flow to be generated.

The theory of flow as applied to the design of

turbomachinery is, therefore, concerned primarily
with approximations that are sufficiently simple to

solve the indirect flow problem. Since the flow

boundaries to be determined are usually expected to

be strongly three-dimensional, the requirement for

simplicity of the theoretical approximations to be

used is even greater in the field of turbomachinery

than in most other fields of hydrodynamic or
aerodynamic design.

The presentation of the theory of flow in tur-

bomachinery given in this chapter will impress

many experts in this field as unduly elementary,

since it contains only those aspects of the theory
which are applied in the following chapters to the

design of turbomachinery. This elementary

character is pronounced particularly because the

approach to the design problem that is used later
proceeds in nearly all cases from the simplest

approximation to more refined solutions. The

theoretical background of the design process given

in this chapter follows this scheme and pays
primary attention to the broad theoretical principles

on which the design of turbomachinery can be
based.

The theoretical principles may well be called

hydrodynamic, because the effects of com-

pressibility of the fluid are treated separately as
departures from the principles of incompressible

flow. Only where compressibility does not affect

the theoretical principles is it included from the

beginning as, for example, in the derivation of
Euler's turbomachinery momentum equation.
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2.2 Meridional Flow in a

Space of Revolution

The flow in a turbomachine proceeds in a space

of revolution, a space bounded by two coaxial

surfaces of revolution. There are exceptions to this

rule, for example, the flow in a volute (or spiral)

casing.
For the purely axial-flow machine, the flow

proceeds between two coaxial, cylindrical surfaces.

For a purely radial-flow machine, it proceeds

between two planes normal to the axis of rotation.
For the so-called mixed-flow or conical-flow

machines, the flow may proceed between two

coaxial, conical surfaces; however, in the most

general case the flow proceeds between two coaxial,
doubly curved surfaces of revolution and therefore

changes its direction from generally axial to more or
less radial. This description pertains primarily to

the flow without its circumferential component,

that is, to the flow component in radial planes

containing the axis of revolution, which is called the

meridional component. The flow in a space of
revolution is thus divided into its circumferential

and meridional components.
Usually the description of this flow is simplified

by assuming that the meridional and circum-

ferential components are both uniform along any
circle coaxial with the flow boundaries. By this

assumption, called the assumption of axial

symmetry, it is also assumed that the flow proceeds

generally along coaxial surfaces of revolution, and
these surfaces are the stream surfaces of the

meridional flow. This hypothesis of coaxial stream
surfaces of revolution is usually maintained even if

the circumferential velocity component and the

meridional velocity component are not completely

uniform along coaxial circles. It is by this

hypothesis that one can divide the flow in a space of

revolution into two separate parts, circumferential
and meridional flow, which can be determined and

treated independently of each other. In section 2.7
this independence is shown to break down as soon

as the flow has vorticity. However, even in this case
it is customary to adhere to the hypothesis of

coaxial stream surfaces of revolution for the

meridional flow, although this hypothesis is not

strictly justified under these conditions.
The rest of this section describes the relation

between the meridional flow and the boundaries of

the space of revolution.

The simplest approximation of the meridional

flow in a space of revolution is obviously the one-

dimensional approximation, obtained by dividing

the rate of volume flow by the cross sections of the

space of revolution A m , which are normal to the

meridional flow (see fig. 2-1). Each cross section is
the area of a surface of revolution, coaxial with and

normal to the boundaries of the space of revolution
considered. With the notations used in figure 2-1,

one finds

SAm=b2_rrb=2_r rdb (2-1)
A

Figure 2-1. -Flow cross sections m space of revolution.

The condition of continuity defining the meridional

velocity V m in its one-dimensional meaning is

Q (2-2)
v m - Am

Under the one-dimensional assumption that

V m = constant over any cross section A m, one can
determine the normal spacing d between successive
meridional streamlines or stream surfaces, accord-

ing to figure 2-2, by

27rrd=constant

or

rd= constant

(2-3)

since these products are constant along any cross

section of the meridional flow, but not in the direc-
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tion of this flow. This means that the volume flow

AQ is the same between successive stream surfaces.

The assumption that V m is constant over the
cross sections of this flow is in many cases a better

approximation than might be expected on

theoretical grounds. Nevertheless, departures from

this assumption must be considered on a rational
basis.

For a so-called potential velocity distribution of

the meridional flow, that is, a distribution of

uniform total energy (of an incompressible fluid),

the equation for the Vm distribution across the
stream is

OV m Vm

0_ + R- = 0 (2-4)

where R is the radius of curvature of the meridional

streamline, and b is the coordinate normal to V m in

radial planes (see fig. 2-3(a)). The coordinate b is
assumed to increase in the direction away from the
centers of curvature of the meridional streamlines.

Figure 2-3(b) shows the curve of V m against b
constructed from the direction of its tangents

OVm/Ob=- Vm/R. The magnitude of Vm at the

point where this construction (i.e., the integration

of eq. (2-4)) is started may first be chosen arbitrarily
and then be determined by the condition of

continuity:

Q=27r f_ rV m db (2-5)

The volume flow rate Q is, of course, constant for

incompressible fluids. Its variations (along the
meridional flow) for compressible fluids are

O_ rxM

Ii

I I
rB r M 77: ,

, _ rAI

'i

(a)

Vm, B

rVm(b) curve

_Vmlb) curve

(b)

(a) Meridional flow configuration.

(b) Velocity and flow distribution in section B-A.

Figure 2-3.-Meridional velocity distribution for OV,,_/Ob

+ V,,IR=O.

determined by a process of iteration, as described in

section 2.4. Equation (2-5) is easily evaluated by the

area under a rV m curve (see fig. 2-3(b)). The
intersections of the meridional streamlines (or

surfaces) with the cross section AB are determined

by dividing the area under the rVm curve into a
number of equal parts, as shown in figure 2-3(b).

Departures from equation (2-4) (i.e., departures

from a meridional flow of uniform total energy in

the sense of Bernoulli's equation) are expressed by

the so-called vorticity _'u of the meridional flow.

The meaning and determination of _'u are given in

section 2.6.3.1, appendix 2-A, and section 2.7. The
equation controlling the meridional velocity
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distribution across a stream with the vorticity ]'u is

Vm
-- + -8- = _u
aWm
Ob

or

av,,,
ab

V m

-- =_v - --R-

(2-6)

The vorticity _'u is positive if it has the same

direction of rotation as Vm/R.
The construction of the V m against b curve for

flow with vorticity _u is shown in figure 2-4.
However, in this case it is important to start the

integration of equation (2-6) at approximately the

correct value of Vm, because the condition of
continuity cannot be satisfied by simply scaling the

resulting Vm curve up or down by any desired ratio.
The construction of the Vm curve should this time

start at some midpoint M, presumably the area

center of the cross section considered, where Vm, M
can be assumed to have the average value of the

cross section as determined by the condition of

continuity (eq. (2-2)). If a subsequent determination

of the rate of flow by equation (2-5) shows a (small)

discrepancy, this can be corrected by shifting and

scaling the I/m curve up or down and using a curve
between that obtained by a parallel shift and by

scaling. One can, of course, also change the initial

Vm, M value according to the discrepancy and repeat
the construction of the V m curve.

2.3 Circumferential Flow in a

Space of Revolution

The circumferential component of the flow in a
space of revolution is determined by the condition

that any torque or moment about the axis of

rotation applied to the fluid is equal to the change

in moment of momentum of the mass flow per unit

of time passing through the space. This law is

expressed by Euler's turbomachinery momentum
equation, which is derived in this section.

The moment of momentum passing through an

element dAm, 1 of the cross section Am, 1 of a space
of revolution (fig. 2-5) is

dM1 =Pl Vm, l dAm, l Vu, lrl (2-7)

_,-L B -,_

LBv_,BI% ' \_ i _"_M _'M_U ._

' t ...... ......

fl J

/ ' ......................................-4J

Figure 2-4. - I/elocity distribution with vorticity _ in curved duct ( L is arbitrao' length associated with points A, M, and B).
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The corresponding moment of momentum

passing through the element dAm, 2 of a second

cross section Am, 2 is

dM2 = P2 Vm,2 dam,2 Vu,2r2 (2-8)

If the flow is assumed to enter through the cross

section Am, 1 and leave through the cross section

Am,2, the moment applied to the fluid by vane and
friction forces between sections Am, l and Am, 2 is

M= I Am'2 p2Vm,2Vu,2r2 dAm,2

Am, l-- Pl Vm, l Vu, lrl dAm, l (2-9)

This is Euler's turbomachinery momentum

equation in its most general form. It is rigorously
correct if the moment M comprises all moments

applied to the fluid within this part of the space of

revolution, including circumferential friction forces

on the boundaries of the space. In this form,
Euler's turbomachinery equation does not depend

on any assumption about the form of the flow; that

is, it is independent of such assumptions as that of

axial symmetry. However, for the same reason,

Euler's turbomachinery equation is difficult to

evaluate in this general form (eq. (2-9)).
To ease evaluation in several respects, one uses

first the assumption that the flow proceeds through
the system along stream surfaces of revolution

coaxial to the boundaries of the space of revolution

considered. Under this assumption, one can

examine the flow along a coaxial stream surface
S-S. For an infinitesimal region around this stream

surface, Euler's turbomachinery equation (2-9) can

be written in the form

dM= p2r{ db2 f_ *r Vm,2 V U,2 dO

ft"-plr] dbl Vm, 1 Vu, 1 dO
o

(2-10)

where 0 is the angle about the axis of rotation (in

radians).

Defining circumferentially averaged values of V m

and V U by

2_r27rV m V U = V m V U dO (2-11)
o

one may write the last form of Euler's turbo-

machinery equation (eq. (2-10)) in the form

§2.3

dM = p227rr_ db 2Vrn,2 VU, 2

- p127rr{ dbl Vm,l Vu,l (2-12)

However,

p227rr2 db 2 Vm,2=pl2rCrl dbl Vm, l =dm (2-13)

which is the rate of mass flow entering and leaving

the infinitesimal space of revolution around the
stream surface S-S. This rate of mass flow is, of

course, equal at inlet and discharge by definition of
the stream surfaces of revolution adjacent to the

stream surface S-S and also by definition of dbl and

db2. With the approximation

VmVu= VmV U (2-14)

which can be exact if the average value V U is

defined in accordance with equation (2-12), Euler's

turbomachinery equation can be written in the form

dM= drn(r2-Vu, 2 - r l Vu,-'--_I) (2-15)

If no torque is applied between stations 1 and 2

(i.e., if dM = 0),

r2 VU,2 = rl VU, l (2-16)

where the averaging applies in connection with

equations (2-13) and (2-14) to the circumference of

circles with radii r2 and rl, respectively.

Equation (2-16) expresses the well-known law of

constant angular momentum, which controls all
curved fluid motions of uniform total energy of the

circumferential flow component. Euler's turbo-

machinery equation supplements this law for the

case where torque or circumferential forces are

applied to the flow.

If the moment dMin equation (2-15) is applied by
a vane system rotating at the angular velocity o_, the

work transmitted to the fluid per unit of time is

obviously o_dM. The mass involved per unit of time

is p dQ, where clQ is the volume rate of flow passing

along the narrow space of revolution of the widths

db I and db2 and following the meridional stream
surface S-S (fig. 2-5). With these substitutions,

equation (2-15) appears in the form

o_dM = o_p dQ(r2 VU,2 -- rl VU, 1) (2-17)

If one divides the work per unit of time o_M by

the mass flow per unit of time oQ, one finds

o_M/pQ has the dimensions of a velocity squared.
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Insteadof dividingby themassflow pQ, one

customarily divides the work per unit of time o_Mby

the weight flow per unit of time gopQ. The resulting

ratio _oM/gop Q has the dimensions foot-pounds per

pound (ft-lb/lb); wM/gop Q is a length (ft) which is
called the rotor head of the machine. It is the height

to which the work per unit of time wM can raise the

mass flow per unit of time pQ against the (standard)
gravitational field at sea level on Earth.

When this reasoning is applied to compressible

fluids, it is often advisable to maintain the complete

set of units, foot-pounds per pound. With this

approach, equation (2-17) appears in the form

w dM _Hr= U2Vu, 2- U 1Vu, 1 (2-18)
gop dQ go

where the peripheral velocity U has been substituted
for _0r.

For a gas the rotor head H r is the change in total

(stagnation) enthalpy. For incompressible fluids H r
is related to the total head H measured between

inlet and discharge of the machine by H= _hHr for

pumps and H= (1/'qh)H r for turbines, rth being the
hydraulic efficiency introduced in section 1.1 and

equation (l-10a).

It is the last form of Euler's turbomachinery

equation (eq. (2-18)) which permits the solution of

the entire flow problem across the field of flow

considered here and shown diagrammatically in
figure 2-5. If it is desired, as usual, to exchange the

same amount of energy per pound of fluid between

the rotor and the fluid in every part of the flow,

U2 Vu,2 - U1Vu, 1= constant and

H r = U2 VU'2 - UI VU'I = constant (2-19)
go

across the entire stream passing through the space

of revolution and the rotor vane system contained

in it. If equation (2-19) is not satisfied in the sense
that the energy exchange per pound H is not

constant across the entire stream, the flow contains

vorticity on at least one side of the rotor vane

system, since rVu= constant is the condition for the
vortex-free or irrotational circumferential flow in a

space of revolution. The laws of fluid motion

applying to departures from this case are discussed
in section 2.7. In most practical cases, equation

(2-19) is satisfied across the stream passing through

a turbomachinery rotor.

2.4 Effects of Compressibility on
Flow in Turbomachinery

The flow of compressible fluids in turbo-

machinery and other fields of fluids engineering
constitutes a very broad area of fluid mechanics,

combining thermodynamics with fluid mechanics.
This broad field is not covered in this section.

Instead, an attempt is made to describe as simply as
possible those aspects in which the mechanics of

compressible fluids differ from the mechanics of

incompressible fluids when applied to turbo-

machinery. Only major effects of compressibility

are considered, and only to the extent that these

effects influence the design of turbomachines in a
fundamental fashion.

The basic effect of compressibility is obviously

the change in the density o or in the specific volume

v (volume per unit of weight) of the fluid in the

machine. Thus, if the specific volume v = 1/goO of
the fluid can be determined as a function of the

fluid velocity and the pressure or head in the
machine, the problem of compressibility effects is

solved in principle, although this solution might

require a process of successive approximations or
iteration.

The solution suggested here is based essentially

on two principles:

(1) Bernoulli's equation for compressible fluids,

which, when differences in elevation are neglected,

may be written in the form

V_I +hi = V_2 +h2 (2-20)
2go _o

where h designates the enthalpy of the fluid

expressed in mechanical units such as foot-pounds

per pound. Bernoulli's equation in the generalized

form (2-20) has the advantage of being independent
of the fluid-mechanical losses in the flow, since
such losses are converted into heat and therefore

contribute to the enthalpy of the fluid. The

enthalpy h is known to be (in mechanical units)

equal to h = u +pv, where u is the internal energy
(capability of doing work by expansion) and

v = 1/goo, so that pv is the familiar pressure term in
Bernoulli's equation for incompressible fluids. The

internal energy u is obviously the term by which a

compressible fluid differs from an incompressible
fluid.

(2) The enthalpy h and the internal energy u are
related to the pressure and the specific volume (or

density), so that Bernouili's equation (2-20)

establishes a definite relation between changes in
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Figure 2-5. - Momentum change in turbomachine rotor.

the velocity V of the fluid and the corresponding

changes in the properties of the fluid, in particular

its volume v per unit weight.

If the zero points of the enthalpy and internal

energy are placed fictitiously at zero absolute

temperature (T=0), without considering any

change in phase, the velocity obtained by (fictitious)

expansion to zero pressure and temperature is

Vo = _[2gh o (2-21)

which is a constant for any fixed value of the

stagnation (zero velocity) enthalpy h o. The

properties of a compressible fluid may therefore be

plotted in dimensionless form as a function of the

dimensionless velocity V� V o, as was done over 40

years ago by Busemann (refs. 4 and 5). Figure 2-6

shows various properties of air at temperatures

below 700 ° R, where "y=Cp/Cv and Cp are
constant, so that by the definition of the zero point

just given h = CpT. Figure 2-7 presents an enlarged
view of the specific volume ratio V/Vo as a function

C _ _ 81
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o- and the acoustic velocity relation is

Qa

a _ T

_- Iio To
¢3-

(2-24)

(2-25)

The subscript 0 refers to the V= 0 or stagnation

conditions, except in V o, where it refers to equation

(2-21). The product (v/V)(Vo/vo) is easily shown to
be the cross-sectional ratio of the flow.

The critical velocity, defined as Vcr = a, is

V T-I
Vcr = o "_f-_-T 1 (2-26)

of V� Vo and also the familiar Mach number M. For
any ideal gas, the velocity and property relations are

, (2-22)

(_) _/(v-i)v_ _ (2-23)
Uo

which is 0.4082 V o for air, with 3' = 1.4.

The relations used in deriving equations (2-22) to
(2-26) are, of course, Bernoulli's equation (2-20)

and the equation of state of an ideal gas

pv = R T (2-27)

The gas constant R is equal to the difference

between the specific heat at constant pressure Cp
and the specific heat at constant volume Cv; that is,

R=Cp-C v.
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Also used are the relations for isentropic changes:

pv v = constant

v ('r- 1)T= constant

T.t/(-r- 1)
- constant

P

(2-28)

(2-29)

(2-30)

The plots shown in figures 2-6 and 2-7 can be

drawn not only for ideal gases but also for other

gases, for example, for air at high temperatures

(where 3' and Cp are not constant); of course,
different operating conditions such as different

initial temperatures or other initial properties will

lead to different curves. In any event, at least an

approximate relation between a dimensionless flow

velocity and the specific volume ratio v/v o is usually
obtainable.

The stagnation enthalpy (h o for V= 0) is given by
the inlet conditions to the machine and by the

changes in stagnation enthalpy, which are equal to

the rotor head H r introduced in section 2.3 in
connection with Euler's turbomachinery equation

(2-18). If the properties of the gas are given as

functions of its enthalpy (as, for example, by

Keenan's well-known tables for air and steam) the

stagnation conditions are known throughout the
machine; from these, the properties of the flowing

gas are also known as a function of dimensionless
velocity in the form V� V o or of Mach number. This

means that, for a given mass or weight flow rate,

the volume flow rate Q can be determined for any

place in the machine with the same accuracy to

which the fluid velocity is known or defined. For a

given geometry of the machine this determination
requires a process of iteration, since, for a given

cross-section, the velocity Vand volume flow rate Q

are related by the condition of continuity in
addition to the previously mentioned thermo-

dynamic relation. Thus one must first estimate the

specific volume v and the volume flow Q, then

calculate the velocity V from the condition of

continuity, then determine thermodynamically

the previously estimated variables v and Q, and
continue until consistent results are obtained. This

process converges except near the critical flow

conditions (V= a).

Less iteration is required for the solution of the

indirect problem, that is, the design problem. In

this case the velocity is usually prescribed by the

head, the head coefficient, and the flow coefficient.

The specific volume is then given by the foregoing
considerations (for air at moderate temperatures by

§2.4

figs. 2-6 and 2-7). The specific volume v determines
the volume flow rate for a given mass or weight

flow rate. In this respect, the design can still be

dimensionless, since, for the same velocity ratio

V� Vo or the same Mach number, the rate of volume
flow at any one cross section of the machine (say,

inlet or discharge) still changes with the square of

the linear dimensions. However, changes in the

dimensionless velocities V/V o (or in the Mach
number) lead to changes in the required design form

because of the resulting changes in the specific

volume ratios. It should be evident that a change in

velocities also changes the rotor head Hr and

thereby the variations in enthalpy, specific volume,

and volume flow rate from inlet to discharge of the
machine. This result obviously requires a change in

design form, which is merely a restatement of the
well-known general fact that changes in the

dimensionless velocities of a compressible fluid

(changes in Mach numbers) lead to changes in the
form of the flow and, therefore, to changes in

aerodynamic design or changes in (dimensionless)

performance characteristics, or both.

The effects of compressibility described

previously cover primarily the one-dimensional
aspects of this flow problem. This is sufficient for

most practical considerations, particularly for the

overall design form of the machine. However, the

same approach also gives some qualitative

information about the effects of compressibility on

details of design, for example, vane systems.
Consider, for example, two-dimensional, plane

flow pictures. With incompressible fluids the

spacing between adjacent streamlines is inversely

proportional to the local velocity simply for reasons
of continuity of flow. This means, of course, that

high-velocity regions, such as the region near a

convex flow boundary, are characterized by

relatively close spacing of the streamlines. Inversely

the low-velocity region near a concave boundary
has wider than average spacing between streamlines

(see, e.g., fig. 2-8). It is easy to see that this must

lead to a fairly rapid change in streamline curvature

when moving away from the curved flow boundary
into the interior of the flow field.

Compressibility reduces the effect of velocity
differences in streamline spacing. While an increase

in velocity primarily reduces this spacing, the

accompanying increases in specific volume and in
local volume flow rate tend to increase the

streamline spacing. At the critical flow condition
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(V=a), these two tendencies just cancel each other

and lead to approximately parallel streamlines with
a corresponding extension of streamline curvature

far into the flow field. This simple reasoning does
not apply beyond critical flow into the supersonic

regime, because the flow velocity is higher than the

cross-stream propagation of flow deflections, so

that the deflecting effects of curved flow
boundaries are moved downstream.

The result of this consideration is that the

deflecting effect of boundaries of given curvature is

increased by the effect of compressibility with
increasing velocity up to the critical or sonic flow

velocity. Inversely, if a given flow deflection is
desired, the curvatures of the boundaries should be

decreased as the sonic velocity is approached from

below; that is, for increasing subsonic velocities,
deflecting vanes should become thinner and less

curved than for incompressible flow.
For single airfoils in a widely extended stream,

this reasoning is applied in an approximate,

quantitative manner by the Prandtl-Glauert theory.
This theory has not yet been applied to vane systems

of turbomachines and is therefore not presented

here. A principally one-dimensional solution of this

problem for an axial-flow vane system is outlined in

section 3.27 of chapter 3.

The supersonic flow through vane systems of

turbomachines has been extensively explored both
theoretically and experimentally. However, no

theory of this flow except its one-dimensional

approximation can be described as a simple

extension or modification of the hydrodynamic
theory of the flow of incompressible fluids, which is

the principle of the present treatment of the flow of

compressible fluids in turbomachines. Therefore

only an approximate one-dimensional design

method for subsonic and low supersonic flow in
axial-flow vane systems is outlined in section 3.27.

An example of high supersonic flow through an

axial-flow vane system is given in section 2.5.6 by

using the two-dimensional Prandtl-Meyer method
of characteristics.

2.5 Theoretical Background of
Hydrodynamic Design of
Axial-Flow Turbomachinery

2.5.1 Introduction

The flow in axial-flow turbomachines has been

treated extensively, primarily because of the

importance of axial-flow compressors in the field of

aircraft propulsion. A complete presentation of the
theoretical and experimental principles of axial-

flow compressors is given in reference 6 and in

numerous NACA reports referenced herein. The

reader is referred to this important group of

references for a comprehensive study of this field.

In accordance with the scheme stated in section 2.1,

the presentation in this section pertains only to
those theoretical principles and experimental data

which have direct applications to the design of
axial-flow vane systems.

Axial-flow vane systems are defined here as vane

systems in which the flow can be assumed to

proceed along cylindrical stream surfaces coaxial

with the rotation and with the space of revolution

confining the flow. Therefore the development of
such a stream surface of a rotor has relative to the

adjacent parts of the machine only a straight and
uniform motion at the constant velocity U, that is, a

nonaccelerated (translatory) motion in its own

plane. Hence the flow relative to such a system is
the same as the corresponding flow relative to a

stationary system. For this reason, axial-flow vane

systems are easier to treat theoretically than vane

systems with a radial component of the meridional
flow.

The simplest approach to the design, the one-

dimensional approach, is also the oldest approach
(for axial- as well as radial- or mixed-flow ma-

chines). It assumes that the entire flow along the
meridional stream surfaces enters and leaves the

vane system parallel to the respective vane ends. It

is intuitively evident that this approach cannot be
correct, because the mean flow between vanes is

certainly less deflected than the flow in the

immediate vicinity of the vanes. Figure 2-8 shows

the development of a cylindrical section through an
axial-flow vane system with the departures of the
flow from the direction of the vanes. These

departures are shown at approximately the correct

magnitude and are considerable. The angular

departures _I and A/_ 2 are each approximately
one-half of the angular deflection 0 of the mean

flow generated by the vane system, and the actual

change of the circumferential flow component zaV U

is less than three-fourths of the change zaVu, v which
would result from the assumption that the entire

flow leaves the system parallel to the discharge
direction of the vanes. These departures of the
mean flow from the direction of the vanes must be

expected to increase with increasing vane spacing t,

more exactly with decreasing solidity of the vane
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system l/t. Since axial-flow vane systems sometimes

have even lower solidities than that shown in figure
2-8, it can be concluded that a one-dimensional

approach alone is not sufficient for vane systems of

this type; the departures of the mean flow from the

vane direction (particularly '_82) must be
determined on some rational basis.

Departures from the one-dimensional theory

obviously cannot be determined on the basis of

strictly one-dimensional considerations, but require
at least a two-dimensional approach. It is natural

that the approach used in the aeronautical field for

a single vane or airfoil in an infinitely extended
stream was used first to solve this problem. Later it

was found that this approach alone was not
sufficient to treat the axial-flow turbomachinery

problem except in cases of extremely low solidities,

as in aircraft propellers. However, the principal

concept used in solving the problem of a single
airfoil in an infinitely extended stream, the concept

of circulation, is applicable to all types of
turbomachines and is indeed one of the most useful

concepts of this field.

2.5.2 Airfoil Theory of Axial-Flow

Turbomachinery

The term airfoil theory denotes the theory of

turbomachinery which is based on the same

concepts as the theory of a single airfoil in an
infinitely extended flow field. The term is

applicable irrespective of whether or not the flow

sections through the vanes have airfoil shape. In

fact, the best vane section forms developed during

the last decades differ very markedly from

conventional airfoil shapes. Yet the theoretical
approach described in this section applies. This

approach has little or nothing to do with the shape
of the vane flow sections.

As mentioned in the last section, the principal
concept of this theory is that circulation is a means

of describing the deflection of a fluid stream by a
vane or airfoil.

The usual definition of the circulation F is the

contour integral of the velocity component Vs in the
direction of a closed contour s about the deflecting

body:

r = _ Vs as (2-31)

The laws of fluid mechanics state that the

circulation so defined is independent of the size and

shape of the contour as long as the flow between the

various contours compared is irrotational in the

sense of equation (2-4) if applied to all velocity

components.
The circulation thus describes a circulating fluid

motion around the deflecting body, vane, or airfoil
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withtheunderstandingthatthiscirculatoryflowis
onlypartof thetotal flow.Thustheexistenceof
circulationdoesnot meanthat fluid particles
actuallytravelonclosedpathsaroundthedeflecting
body.

Thecirculationis relatedto the forceaction
betweenthedeflectingbodyandthemeanflowpast
thebodybythelawof KuttaandJoukowski:

F l = p v,_r (2-32)

where F l is the force per unit span or unit distance
normal to the plane of F 1 and Voo. The latter is the

velocity of flow past the deflecting body at a

sufficient distance to make the circulatory velocity

Vs negligible compared with Vow. The force F 1 is
normal to the velocity vector Voo.

The law of Kutta and Joukowski can be derived

with respect to the development of cylindrical
sections through axial-flow vane systems. As can be

seen from figure 2-9, the change in circumferential

momentum per unit width (normal to the plane of
flow) produces a circumferential force on the vane:

FU= pWat(Wu, 1 - WU,2) (2-33)

The axial component of the force acting on the

unit width of the vane is for the case of no change in
axial momentum

P 2 w2)Fa = t(P2 -Pl) = t _ (w I -

With w a = Va = constant, one finds

w 2_ w22= w 2 _U,l

Hence,

(2-34)

W 2 --
U,2 -- (Wu, 1 + WU, Z)(WU, 1 -- WU,2)

(2-35)

(2-36)
P

Fa = t _ ( Wu,] + Wu, z)(Wu,] - WU,2)

and when equation (2-36) is divided by equation
(2-33),

Fa (wU, l + Wu,2)/2
- = tan _F (2-37)

Fu wa

From figure 2-10, it is evident that (Wu. 1+ Wu,2)/2
and wa are the components of the vectorial mean

I - Wu, 2 7/"

Wa w2

/ %, C___ud

/ " Wa//
,/Woo

/

/

__ d' red,o_ t ..- ,// l Fl .......

/:_.SL " _ l --- - 'i lp 1 [orce

Wa /

Figure 2-9. - Velocity and force vector diagrams in straight system of parallel vanes.

/
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__ wU'lwU, l +Wu, 2 i

/ / J
w2 %0 /

wa = Vm
/ / wl

--- 132 //J_

Figure 2-10.-Superposition of velocity vector diagrams for

straight ,system of parallel vanes.

relative velocity of wl and w2, which is designated

woo for reasons that become evident later. The angle

of woo with the axial direction is designated floo = 13F,

and equation (2-37) shows that the resultant vane
force F, with components F a and F U, is normal to

Woo.

To determine the circulation I', one draws a

contour of convenient form around one vane of the

system. The parallelogram ABCD in figure 2-9 is
such a contour if the sides AD and BC have the

same location relative to the vanes and the sides AB

and DC are far enough in front of and behind the

vanes to consider the velocities along AB and DC as
uniform.

The circulation about this contour is

"  s'S'S Ws'S+S Ws'S

f° IA+ ws ds + ws ds
C D

(2-38)

For periodically repeating, equal flow fields be-
tween the vanes,

S"ds= - Ws ds
D

(2-39)

Furthermore, for sufficient distance of AB and CD

from the vanes,

fB Ws (Is = w U 1 t
A

(2-40)

I°w s ds = - wu,2t
C

By substituting equations (2-39) and (2-40) into

equation (2-38), one obtains

r = (wu, 1 - wu,2)t (2-41)

Substituting this expression into equation (2-36)

leads to the relation

Fa = P wU" l + Wu,2 r (2-42)
2

or into equation (2-33) leads to

Fu = #WaF (2-43)

From figure 2-9, one can immediately read the

geometric relations

F_
(Wu'I+WU'2)/2 = sin/300= sin /3F= Ell

woo

and

Wa - cos [3oo= cos/3F= FU
woo

By these relations, either equation (2-42) or (2-43)
can be converted into the equation

FI = pw oor (2-44)

where the subscript 1 reminds one of the fact that
all forces considered here apply to a unit width

normal to the plane of flow.

Equation (2-44) has the very same form as the law

by Kutta and Joukowski (see eq. (2-32)); this proves
that the law applies to straight systems of parallel

vanes provided the velocity appearing in the law is
the vectorial mean of the velocity w I far in front of

the system and the velocity w2 far behind the

system. Since, for an infinitely long, straight system
of vanes, w 2 is generally not equal to w l, there is not

one velocity at infinity as for a single airfoil in an

infinitely extended flow field. Therefore the

velocity in the law by Kutta and Joukowski must be
defined for an infinitely long, straight vane system,

that is, the development of a cylindrical section

87



§2.5.2

through an axial-flow system. The foregoing

derivation provides this definition.

The velocity woo in the law by Kutta and
Joukowski is defined here only for the case where

the axial velocity component Va=w a is constant

everywhere in front of, within, and behind the vane

system. This assumption is generally not satisfied,

but this writer does not know of any simple

derivation of the law by Kutta and Joukowski for

vane systems which does not use this assumption.

In this compendium the definition of woo as the

vectorial mean of wl and w2 far in front of and far
behind the vane system is used even in cases where

the axial velocity component is known to change in
the axial direction. This universal use of the

foregoing definition of woo is not likely to lead to

serious errors as long as the components F a and F U

of the blade force F 1 are determined by
considerations that are independent of this defini-

tion, for example, if F U is determined by Euler's
turbomachinery momentum equation. In cases

where Fa is of major importance (as in connection

with propellers), considerations of the axial
momentum far in front of and far behind the

system lead to equally dependable results.

The foregoing considerations relate the forces on

a straight system of parallel vanes (development of
a cylindrical section through an axial-flow vane

system) to the change of the flow through this

system of vanes. This relation is quite similar to the

principles of Euler's turbomachinery momentum
equation (see sec. 2.3), but extends these con-

siderations to include the concept of circulation,

which is essential for the treatment of flow through

vane systems where one-dimensional approxi-
mations are not sufficient.

Two steps are required to relate the foregoing
considerations adequately to the design of turbo-

machinery:

(1) Properly relate the concept of circulation to

the overall flow in the machine as controlled by the
condition of continuity (see sec. 2.2), and more

particularly by Euler's turbomachinery momentum

equation (see sec. 2.3).
(2) Relate the vane circulation, that is, the

deflection of the flow shown in figures 2-8 and 2-9,

to the form of the vane sections appearing in the
cylindrical sections through the system shown in
these illustrations.

These steps are discussed next.

Consider a cylindrical section AB through an

axial-flow rotor (fig. 2-11). The circulation around

every vane profile appearing in this section is

designated F v. It is easy to show (see appendix 2-A)

that the circulation about a contour containing

several vanes with several circulations F v is equal to
the sum of all circulations contained within the

outer contour. The total circulation of the

developed section AB is, therefore,

F = NF v (2-45)

where N is the number of vanes.

The contour along which the total circulation I' is
measured consists of two coaxial circles A and B

before and after the system and an arbitrary cut ab

running more or less axially between two vanes. The
axial distance d of the circles A and B from the

system is large enough so that variations in the fluid

velocities along these circles may be disregarded.
The circulation about the developed section AB

containing N vane profiles is

f° fbF=27rrVu2+ Vsds-2rcrVu, l+ Vsds (2-46)
• b a

where the direction of integration, as given in figure

2-11, determines the signs of the terms 2rrVu, 2 and

27rrVu, 1. However,

f° fsb V_as=- a V, ds

because these integrations are taken along two

identical lines (namely, the cut) in opposite
directions. Hence these integrals cancel out of

equation (2-46), and we obtain

F = 27rr VU, 2 - 2rcrVu, 1 (2-47)

However, rVu,2-rVu, 1 is the change in angular
momentum of the flow through the system, on
which the theory of hydrodynamic rotors is based

(see sec. 2.3). This change in angular momentum,
according to equations (2-46) and (2-47), is related

to the vane circulation I" v by the equation

NFv (2-48)
rVu'2-rVu'l- 2r

This relation was first established in this form by

D. Thoma (ref. 7). He also pointed out that
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Developmentof
sectionA-B

_,, 2rrr

Directionof I_V_-_ V
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Figure 2-1 l. - Circulations of axial-flo w rotor.

27rrVu, t = r l

and

27rrVu, 2 = I12

(2-49)

11v as negative or change the definitions so as to

obtain equation (2-50) in the form

NFv = Ft - 112

where 1,1 and 112 are the circulations before and

after the system measured along the circles A and B.

By these equations, the vane circulation 11v
measured in the cylindrical sections or generally in
the stream surfaces of the meridional flow becomes

related to the circulations before and after the vane

system measured in sections normal to the axis of

the machine. According to equations (2-48) and

(2-49), this relation is simply

N11 v = I' 2 - F I (2-50)

It indicates an increase in circulation in the

direction of the flow (1,2>111) for positive vane

circulation I' v. This condition is satisfied for pump

rotors. For turbine rotors, one may either consider

To relate the vane circulation I' v to the form of

the vane section in the cylindrical stream surface,
we return to consideration of the flow relative to the

vane system. It should be recognized that the vane

circulation I' v is the same for the relative and

absolute flows through axial-flow rotors, because
these two flows differ from each other by a uniform

velocity U of that section. The difference in
circulation between the relative and absolute flows

is, therefore, the contour integral ._ Us ds, which
can be shown to be zero, since U is constant in

magnitude and direction. The circulations 1,1 and 112
about the axis of the rotor differ between the

absolute and relative flows by 27rrU=constant.

Therefore, their difference I'2-FI=NF v is the
same for the absolute and relative flows; this
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agreementalso provesthe foregoing statement

regarding the invariance of I"v.

The relation between the circulation I"v around a
single vane and the vane shape is obtained by

expressing the vane force per unit width first in

terms of the lift coefficient CL,_,

Ow2" (2-51)
FI = CL, ooT ,

and second by the law of Kutta and Joukowski, as

expressed by equation (2-44) in the form

F 1= pwoor v

Equating these two expressions of the vane force

F1 leads to

I", p W2 i

PWooFv = _ L, oo--'_ t

and thereby

£v (2-52)
CL, _ = 2 wool

From equations (2-49) and (2-50), it follows

immediately that

27rr
Fv= _(Vu,2- Vu, O=t AV U (2-53)

where 2rr/N is obviously the circumferential vane

spacing t, and the change in the peripheral

component of the flow Vu, 2- Vu, 1 is denoted by
A VU= -zaw U. By substituting equation (2-53) into
equation (2-52), one finds

CL, o_= 2 A V u t (2-54)
woo l

The lift coefficient is related to the shape and

position of the vane by the angle of attack o_. This

relation is particularly simple if the angle of attack
is measured from the zero-lift direction as shown in

figure 2-12. Then, the lift coefficient of an airfoil in

an infinitely extended stream is closely
approximated by

CL,_=27r sin % (2-55)

where for real fluids the lift coefficient has a limited

maximum value of about 1.5. For higher angles of

Voo

c Zero-lift
I

, direchon

/_ C

g;." __,i_:t_j:ling

Chord /

Figure 2-12. -Angle of attack referred to zero-lift direction.

attack (higher than approximately 14"), the lift

force does not increase with increasing % and often
falls off slowly and irregularly. This so-called stall

limit of a vane or airfoil may be much lower than

CL = 1.5 for unfavorable airfoil shapes and can be

somewhat higher than CL= 1.5 for exceptionally
favorable configurations. The stall limits of the

vanes of turbomachines may differ appreciably

from C L = 1.5; they are discussed in some detail in
section 2.5.4.

The zero-lift direction in relation to the vane

shape can be approximated by a line through point

C and the trailing edge (see fig. 2-12), point C being

located along the mean camber line about halfway
between the leading and trailing edges. This is only

a first approximation for an airfoil in an infinitely

extended stream. For a closer approximation, see

section 2.5.5, particularly figure 2-28.

Generally there is no assurance that vanes in a

turbomachine, or any other system of several vanes,

follow the same law (eq. (2-55)) as a single airfoil in

an infinitely extended stream. Therefore equation

(2-55) is used here for turbomachinery vanes in a
slightly modified form:

CL,_=27rK sin s o (2-56)

where K is a correction factor intended to account

for the effect of the arrangement of a vane in a

system of vanes rather than in an infinitely extended
flow field.

With equation (2-54) relating the lift coefficient
to the change in the peripheral component of the

flow and to the solidity of the vane system and with

equation (2-56) relating the lift coefficient to the

angle of attack with the zero-lift direction of the
vanes, the desired connection between the flow and

the most essential geometric characteristics of the

vane system is established. (Note the relation

between vane shape and the zero-lift direction

stated previously and illustrated in fig. 2-12.) The
most important uncertainty in this chain of

relations is the correction factor K in equation

(2-56). The fact that departures of this factor from
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unityareessentialto avoidcontradictionscanbe
demonstratedbythefollowingreasoning:

Equation(2-54)indicatesthatforafixedvalueof
CL, oo the deflection of the flow expressed by zaV U
approaches infinity (if woo remains finite) as the

vane spacing t approaches zero. However, the

approach to t = 0 is obviously an approach to one-

dimensional flow conditions. Certainly A V U

approaching infinity cannot be in agreement with
the one-dimensional theory for fixed inlet flow

conditions. To avoid this conflict, one must assume

that CL, oo and therefore (according to eq. (2-56))
the correction factor K are functions of the solidity

of the system l/t and approach zero as t/l

approaches zero. Thus one must investigate the

one-dimensional approximation of K for the
limiting case t/I--O.

Equations (2-55) and (2-56) imply that for the
flow of a frictionless fluid one has replaced the

curved vanes of the system by infinitely thin,

straight-line vanes set at the zero-lift direction of

the curved vanes. Therefore, as t/l approaches zero,

the discharge velocity w2 must approach its one-

dimensional limit, the direction of the vane, which

in this case is the zero-lift direction. Figure 2-13

shows this limiting velocity diagram. (See also fig.
2-9 for the relation between the zero-lift direction

and the vane in a system.)

Equating the expressions for CL, oo given by
equations (2-54) and (2-56), one finds

A V U t = rcK sin a o
woo 1

or

K- AVu t (2-57)
_rwoo sin c_o l

From figure 2-13, one can read

AW
woo sin c_o = T cos/3 v

Substituting this into equation (2-57) (for t/I

approaching 0) leads to

2 t
K- (2-58)

r cos 13vl

Figure 2-14 shows this one-dimensional approx-

imation of K as a function of t/l with /3u as a
parameter.

§2.5.2

I AV U "_

Figure 2-13. - Velocity diagram of straight system of straight,

frictionless vanes for limit t/l- O.

On the other hand, it should be clear from

equations (2-55) and (2-56) that for very large
values of t/I the factor K must approach unity (i.e.,

the value which applies to a single vane in an

infinitely extended flow field). The foregoing
considerations and figure 2-14, therefore, give the

tangents at t/l=O and t/l=oo for the curves

describing the variations of K as a function of ill

and of/3 o.
It is plausible and can be proven that, under the

well-known Kutta condition of smooth flow at the

trailing edge, the deflection of the flow by the vanes

can never be greater than that prescribed by the

one-dimensional approximation. This means that

the inclined K lines describing the one-dimensional

Vane angle,

80 /
/
/

0 /

u_

7o;' 60/
/ / I/ _,d //"

I / Z ZO_. //."
/ // / / ,.-/I/>_'/..vlcl/

, . / _g/l/ 0/ 1 / ./././/
/ / ,/_/_f" ."

_" "-_Tangent of

curves for_ ==

0 .5 l.O 1.5 2.0

Ratio of vane spacing to length, t/[

Figure 2-14. - One-dimensional approximation of cascade-

effect coefficient K for t / I -- 0 and t / I - oo.
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values of K are upper limit lines of K for the given

values of the vane angle 13t, (the angle between the
zero-lift direction and the axial direction). This

statement is, of course, only true for a straight

system of straight and parallel vanes. For curved

vanes, the discharging flow would, in the limit

t/l = 0, be tangent to the trailing edge of the curved

camber line of the vanes. This limiting condition

could be obtained by using the angle /3v,2 of the
discharge vane end in equation (2-58) in place of the

angle _v of the zero-lift direction. However, since
this solution could be a useful approximation only

in the immediate vicinity of t/l=O, it is not of

significant practical value. (In sec. 2.5.3 the straight

lines in fig. 2-14, which represent eq. (2-58), are

shown to be fair approximations of the actual K

curves for a restricted but practically significant

range.)

Since K can never be greater than prescribed by
equation (2-58) and by the corresponding inclined

lines in figure 2-14, the actual curves of K plotted

against t/l must approach these inclined lines from

below as t/l approaches zero. On the other end of
the diagram, the actual K curves approach K= 1 as

t/l approaches infinity. This approach may be from

above or from below, since K, because of the

interaction between adjacent vanes in the system,

might be larger or smaller than 1.

Whereas this description restricts severely and

constructively the curves of K against t/l, it does
not exclude major variations in K curves that might

be constructed within the bounds set by its limiting

value for t/l--O and t/l-oo. A rational, math-

ematical analysis of this situation is, therefore,

urgently needed. The results of such an analysis are

presented in the next section, together with a

summary of the design theory resulting from this

analysis in connection with the foregoing
considerations.

2.5.3 Results and Application of Theoretical

Analysis by Weinig of Straight Systems of

Straight and Parallel Vanes

The theoretical approach presented in the

previous section is in a somewhat indefinite state,
because the relation between the correction factor K

and the most essential parameters of an axial-flow

vane system (as seen in the development of any

cylindrical flow section) is not definitely
established.

Recall that K corrects the relation between the lift

coefficient and the configuration of a deflecting

vane from a single vane in an infinitely extended

stream (K= 1, eq. (2-55)) to the corresponding

relation for a vane as part of an infinitely long,

straight system of parallel vanes (eq. 2-56)).

Replacing every curved vane section in this

developed system of vanes by a straight line having
the zero-lift direction of the curved vanes, one

arrives at the previously mentioned straight system

of straight and parallel vanes shown in figure 2-15.
The vane shape shown in dotted lines might be a

physical interpretation of this diagram, but it is not

included in the following considerations.

This infinitely long system of straight vanes can

be treated by the theory of incompressible, invicid
flow in a reasonably simple and straightforward

manner. This was done by F. Weinig (ref. 8). His

derivation is not presented here, but his results

applying the flow through straight systems of

parallel vanes are quoted and represented in

graphical form.

From the preceding section, it is evident that the
most important result of an analysis such as

Weinig's would be the exact determination of the

cascade-effect coefficient K, defined previously by

equation (2-56). Weinig's results, which can be

regarded as exact for the flow of an invicid fluid

through a system or cascade of straight vanes (fig.

2-15), are presented in figure 2-16. Although this

diagram does not show zero regions of both
coordinates, one can estimate that all its curves

converge to K = 0 at t/I = 0. Furthermore all curves

appear to approach K=I asymptotically as t/l
increases. These were the conditions for the curves

of K against t/I derived in the previous section for
t/l--O and t/l--oo.

A more accurate comparison between Weinig's

exact curves and the approximations (or limiting

conditions) derived in the previous section is

presented in figure 2-17 for _v=70 ° and _v=20 °,
that is, for a very substantial inclination of the

vanes against the axial direction (normal to the

Figure 2-15.-Straight system of straight and parallel
uaHes.
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system) and for a small deviation of the vanes from

the axial direction. In addition to the previously

mentioned general agreement between the

theoretically derived curves and the straight-line

approximation, it is now apparent that the one-
dimensional approximations are indeed upper-limit

lines for K as the theoretical curves approach the
one-dimensional limit lines from below with

diminishing values of t/l. The general agreement
between the theoretical curves and their asymptotes

for t/l=O and t/l=oo derived by independent

considerations is, therefore, a reassuring con-

firmation of Weinig's results and the reasoning

presented in the preceding section.

2.0,

: Vane angle,/

J [3v, deg /

' ir
V

/_ I...... One-dimensional approximation !

0 .5 1.0 1.5 2.0 2.5

Ratio of vane spacing to length, ill

t:igure 2-17.-Izi_-act cascade-efJect cnrt,e.s and approxi-
mations.

Figure 2-17 suggests a comparison between the
theoretical solution by Weinig and the one-
dimensional solution, which assumes that the flow

leaves the vane system parallel to its straight vanes.

This comparison is presented in figure 2-18 in terms

of the head coefficient C H = A Vu/A V'U, where A V*U

is a fictitious change in the circumferential velocity

component corresponding to the one-dimensional

assumption that the entire flow leaves the vane
system exactly in the direction of its (straight)

vanes. Figure 2-19, the velocity diagram of the

system, defines AV v and AV b.

Figure 2-18. - Head coefficient, ratio of deflection of perfect flo w A _/_r tO one-dimensional approximation ,_XV_., for

straight system of straight, parallel t,anes.
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Figure 2-19. - Velocity diagram of straight system of

parallel vanes compared with zero-lift direction.

Figure 2-18 indicates that the departure of the
flow from its one-dimensional direction is

negligibly small for t/l<0.7. This departure (in

terms of A Vu//XV U) is about 4 to 7 percent at
t/l= 1 and increases rapidly for t/l> 1 (i.e., as the

circumferential vane spacing exceeds the vane

length).

The curves in figures 2-16 and 2-18 can also be
used for curved vanes with small but finite thickness

if the vane angle _v is interpreted as the angle
between the zero-lift direction and the axial

direction. While these curves thereby lose their

rigorous meaning with respect to the flow of a
perfect fluid, at the same time they gain practical

meaning with respect to the flow of real fluids

through straight systems of moderately curved and

fairly thin vanes. This meaning of the Weinig curves

in figures 2-16 and 2-18 is further explored in

section 2.5.5 by comparison with cascade test
results.

2.5.4 Limitations of Flow in Vane

Systems of Turbomachinery

The limitations of the flow in the vane systems of

turbomachines are treated in this section. However,

since the principles of such limitations are the same
in all types of turbomachinery vane systems, the

application of the principles presented here is not

limited to axial-flow vane systems.

The flow in turbomachinery (and, in fact, in

many other systems) is limited by three independent

flow phenomena:

(1) With respect to liquids, by cavitation

(2) With respect to gases, by compressibility
effects

(3) With respect to all real fluids, by separation
or stall

The first two items are treated also in other

sections of this compendium and are therefore only

briefly discussed here. The third item is introduced

in this section and is therefore fully discussed as far

as is justified with respect to the design of
turbomachinery.

2.5.4.1 Limitation by cavitation.- Limitation of
flow by cavitation is discussed in section 1.2.2 on

the basis of similarity considerations. The relation
of this limit to design parameters of the machine is

summarized in figure 1-18. Besides the flow

coefficient Vm, i/U i and the important suction head

coefficient 2goHsv/I/2m, i , this diagram also relates
the suction specific speed to the vane pressure

reduction coefficient (eq. (1-37) expressed in terms

of the relative velocity)

Pi-Pv

Op- OW_/2

which appears in the important equation

V2 w2
Hsv=Cl_+O, t (1-42)

2g o _"2g o

According to figures 1-7 and 1-20, the subscript i
refers to the maximum diameter D i of the rotor

opening at the low-pressure side of the rotor and is,

therefore, equivalent for pumps to the subscript 1

as used in the foregoing sections with respect to the

development of a cylindrical section through the
vane system, when this section is taken at the

diameter D i.
Figure 1-18 indicates that the blade pressure

reduction coefficient Cp, min =Op should not exceed
0.25 in order to achieve a commercially acceptable
value of the suction specific speed S. Much lower

values of Op are required to reach the S values in the
vicinity of unity or higher which are demanded in

the rocket or condensate pump fields. It is,

therefore, prudent to examine the relation of the

pressure reduction coefficient Cp, min =Op to other
characteristics of the vane system.

Figure 2-20 shows a typical pressure distribution

over the vane of an axial-flow pump rotor. The

mean static pressure in the flow approaching the

rotor is designated Pl- With this notation, the

coefficient of the minimum vane pressure is

obtained by expressing equation (1-37) in terms of

the relative velocity w] and the minimum pressure

Pmin =Pv (vapor pressure):

Up= Cp, mi n = Pl -Pmin

pw2/2
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Figure 2-20. - Vane pressure distribution in pump.

It is plausible to compare the pressure reduction

Pl -Pmin with the average vane pressure difference

Apa v. The definition of the lift coefficient of the
vane leads to the relation

_Pau

CL, oo= _/2 (2-59)

The lift coefficient could also be referred to the

relative inlet velocity w 1 instead of the (vectorial)
mean relative velocity woo, to arrive at another lift

coefficient:

AP av = C L, ooCL'I = pw_
(2 -60)

The comparison between the vane pressure
reduction and the average vane pressure difference
now assumes the form

Pl-Pmin _ Cp, min_ ap =q (2-61)
_av CL, 1 CL, 1

Figure 2-20 suggests that the pressure ratio q may
not be too far from unity, which would mean that

the rectangular area (Pl -Pmin) l is not too far from

the area inside the vane pressure curve. Thus CL,]

cannot be much greater than Cp, min previously
found to be limited to values below 0.25 if good

cavitation performance is required. However, since

woo<w I for retarding (pump) vane systems,

equation (2-60) shows that CL, oo> CL,1, that is, that

the resulting limitation of CL, oo is not quite as

severe as the limitation of CL, I. Nevertheless it is

§2.5.4.1-2.5.4.2

evident that cavitation limits the lift coefficient

CL, oo, which is then likely to be considerably lower
than unity (i.e., lower than the stall limit of the lift

coefficient of a single airfoil in an infinitely

extended stream, which, as stated in sec. 2.5.2, is

about 1.5). While it is shown in section 2.5.4.3 that
the limits of lift coefficient for retarding vane

systems are lower than those for a single vane in an
infinitely extended flow field (because .of this

retardation), it nevertheless must be concluded that

cavitation alone places an additional limitation on

the lift coefficient of axial-flow vane systems.

Equation (2-54) shows that this limitation leads, for

given deflections AVu/woo to low values of t/l (i.e.,

to higher solidities of axial-flow vane systems than
would be used without the need for good cavitation

performance). While this conclusion may impress
us today as obvious, it is a historic fact that, in the

early years of axial-flow turbomachinery develop-

ment, this conclusion was often not recognized, and

the result was very unsatisfactory cavitation

performance.

Also apparent from figure 1-18 are other
theoretical conclusions, in particular, the fact that,

for any suction specific speed, there is one optimum

flow coefficient Vm, i/Ui. Furthermore there is a

possible flow regime in the field of fully developed
cavitation, as shown in figure 2-21. This rotor flow

problem can probably be approximated in any one

stream surface by one-dimensional reasoning. A
two-dimensional, theoretical solution is given in

reference 9. Significant are the three-dimensional

flow problems in a space of revolution (the liquid
moves radially outward, while the gas accumulates

in the center) and the flow problems of the sta-

tionary passages after the rotor (which alternately

receive liquid and gas flow). Figure 2-22 shows an

estimate of the three-dimensional flow through an

impulse rotor with fully developed cavitation.
2.5.4.2 Limitation by compressibility effects. - In

the beginning of the development of axial-flow

compressors, there was reason to believe that the

velocity of sound was an upper limit of the relative

velocity approaching an axial-flow vane system.
This belief was founded to a large extent on the fact

that cascade tunnel test results showed a rapid

deterioration of the cascade flow characteristics

before the tunnel velocity in front of the vane

system reached its critical or sonic value. Appar-

ently the tunnel flow was choking under these
conditions.
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Figure 2-21.-A.rial-JTow vane acth_n with fully deueloped
cavitation.

The foregoing test results were misleading.

Rotors with sonic and supersonic relative inlet flow

have been operated successfully. The explanation

used by this writer was that the rotor flow (or any

flow in an annular cascade) is circumferentially
infinite. Therefore the actual flow woo or Voo with a

substantial angle against the axial direction has a

freedom of adjustment by changing its (subsonic)

axial component. The principles outlined in section

2.4 are sufficient to explain this process on a quasi-
one-dimensional basis sufficiently to avoid any

major contradictions.

The flow of compressible fluids along cylindrical
sections through axial-flow vane systems is outlined
in section 2.5.6.

At present, it appears that the flow through axial-
flow (and other) vane systems of turbomachinery is

not limited by compressibility effects in any

absolute manner. Problems of convergence of

numerical or graphical solutions are likely to exist

when the meridional component of the flow reaches

the sonic velocity, but there is no reason why these

problems cannot be overcome. It must be re-

membered that De Laval used high supersonic flow

in axial-flow impulse-turbine vane systems as early

as the turn of this century.

While there does not appear to exist any absolute
limit of velocities or Mach numbers due to com-

pressibility effects, there is a reason why supersonic

flow in vane systems (or any closed passages) may
lead to losses in efficiency. Supersonic flow in

closed passages has a tendency to change to

subsonic flow by a normal shock (or perhaps

several oblique shocks). This abrupt reduction in
velocity by a compression shock is connected with

an increase in entropy, which constitutes a loss in

the usual sense of efficiency. Flow at high

supersonic velocities, therefore, cannot be accepted

without some reservations regarding efficiency.

2.5.4.3 Limitation by separation or

stall.-Separation or stall is a phenomenon

occurring almost independently of the nature of the
fluid except for its dependence on the Reynolds

number (the ratio of inertial forces to viscosity

forces).

The phenomenon of separation or stall is

described very briefly in the later parts of section
2.5.2 in connection with the limits of the lift

coefficient CL and the angle of attack c_o on airfoils.
Beyond certain angles of attack the lift does not

increase with increasing angle of attack, but either

remains constant or falls off in an irregular fashion,

in contrast to the regular behavior indicated by

equation (2-55). The reason for this phenomenon is
the fact that at increasing angles of attack the

pressure difference between the minimum pressure

and the free-stream pressure near the trailing edge
increases for constant free-stream velocity. As a

consequence, the boundary layer of the flow cannot

negotiate this pressure rise; it breaks away from the
wall of the deflecting vane and forms a fairly wide

region filled with fluid in irregular motion (see fig.

2-23).

There are at least three reasons why the stall

phenomenon in axial-flow vane systems is likely to

be different from that on a single vane in an

infinitely extended stream:

(1) The vane boundary layers in axial-flow vane

systems are not plane and two-dimensional, as a
single vane in an infinitely extended stream, but are

skewed and subject to crosswise flow, called

secondary motions (discussed in sec. 2.5.7). No

quantitative predictions of the effect of secondary

motions on stall have yet been made, and only a

qualitative description of one particular effect of

such motions on stall can be suggested; it is given in
section 2.5.7.
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Figure 2-22. -I:\sTimate of three-dimenxional flow in intpulse pump rotor with fully developed cauitation.

(2) In vane systems, the separation region shown

in figure 2-23 is limited in width by the pressure face

of the following vane. This may limit the hydro-

dynamic effect of stall in vane systems. Reference 9

describes the earliest attempt known to this writer

to approximate this limitation by theoretical means.

Applications of this theory are so far limited to flow
with fully developed cavitation, mentioned in
section 2.5.4.1.

r Point of minimum pressure

', F Point of separation

0

kTgure 2-23. -Separation or stall on flow-defleeting vane.

(3) There is a difference in stall characteristics

between a single vane and a vane in a system if there

is a change in static pressure through the system.

This difference can be approximated theorelically

and by generalizations of test results in a manner

that is sufficiently simple to permit application to

the early phases of the design process of axial-flow
vane systems. Separation or stall is caused by an

excessive pressure rise along a solid flow boundary.

The pressure rise that may lead to separation on any

vane within the vane system of a turbomachine is

the value P2-Pmin, shown in figure 2-20, that exists

just before the onset of separation. The effect of the

general system configuration on this pressure rise is
shown in figure 2-24, in particular its dependence

on p2/Pl and Wz/W t. The kinetic energy available to
climb the pressure hill P2-Pmin is evidently that

which exists at the point of minimum pressure and

maximum relative velocity pW2na_J2=po-Pmi n.

Thus the equation

P2 - Pmin _ P2 - Pmin (2-62)
KA = _ Po-Pmin
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Figure 2-24. - Vane pres:s'ure distribution in different
systems.

may well be expected to be a valid criterion for the

danger of separation or stall. Ackeret told this

writer that he used this criterion as early as 1928,
but it was apparently not published before 1942
(ref. 10). He stated that the maximum value of the

ratio (pZ-Pmin)/(po-Pmin) would be 0.8. He

added, "Of course it cannot be quite that simple,
but it is amazing how well this criterion works."

In 1955, NACA used the same criterion in the

form ,¢w2max- w_)/W2ax (ref. 11). However,
Lieblein (refs. 12 and 13) replaced this pressure
ratio by a velocity ratio which may be referred to as
the local diffusion factor:

Dloc- Wma'r'- w2 (2-63)
Wmax

Plotting the wake momentum thickness (divided by

the blade chord) against D/oc shows that at

D/oc = 0.4 the momentum thickness is about twice

that at the lowest Dio c values tested (0.15 to 0.20),
and for Dloc>0.5, the momentum thickness

increases so rapidly as to suggest separation.

Considering that

KA --

w 2 -- w_ _ - w 2 + w 2max Wreak: W max

-- W2
max Wmax Wmax

= Dio c Wmax + w 2
Wmax

(2-64)

and that for a number of cascades investigated

w2/Wma x ranges from about 0.46 to about 0.66 (see

sec. 2.5.5), one obtains a mean value of KA = 1.56

D/o c. For Dloc=0.5, one finds KA =0.78, which is

as close to Ackeret's limit of 0.8 as could be

expected.

The foregoing consideration and the resulting

separation coefficient K A and D/o c have the
practical disadvantage that neither the minimum

pressure Pmin nor the corresponding maximum
velocity wma x is generally known, since vane system

designs are usually based on the velocity diagrams

in front of and behind the vane system. This

statement also applies to the apparently inter-

mediate velocity diagram in figure 2-9 containing

w,:,,, because this diagram is obtained by averaging

between the inlet and discharge velocity diagrams
and, thus, is not independently established.

The foregoing considerations on limitations due

to cavitation do involve the minimum pressure in

the vane system Pmin in a significant manner.

However, this pressure was related to the average

pressure difference across the vanes Apa v and the

lift coefficients CL, 1 and CL,_ in the manner
indicated by equations (2-60) and (2-61) by

introducing the pressure ratio q = (p] -Pmin)/Apav-

It is the relation quoted last which is used here to

connect the parameters K A (eq. 2-62) and D/o c (eq.
2-63) to the known flow conditions on the inlet and

discharge sides of the system.

The first attempt in this respect was made by this

writer in 1934 as part of his Ph.D. thesis at the

California Institute of Technology (see ref. 14, secs.

64 and 111). The principles of this attempt are as
follows:

The pressure rise P2-Pmin is divided into two
parts:

P2 -Pmin = (172 -Pl) + (t71 -Pmin) (2-65)

For cylindrical sections through axial-flow vane

systems, we use the usually close approximation

P2-P] = P 2 (2-66)

The second part of equation (2-65) is related to

the lift coefficient CL,_o by equations (2-59), (2-60),
and (2-61) as follows:

Pl -Pmin _ Pl -Pmin @av
pw2 /2 Apa v pW_ = qCL'°° (2-67)
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It is now natural to make all terms of equation

(2-65) dimensionless by dividing by the velocity

pressure of the vectorial mean velocity pw2/2.

Thus equation (2-65) appears in normalized form as
follows:

P2-Pmin _ P2-Pl
Koo = _/2 pw_-2J2/2+ qCL'OO (2-68)

Obviously

P .,2)= PP2 -Pl = _ _ (.,1 + Wz)(W1 -- W2)

When the approximation woo=(wl+w2)/2 is

used, equation (2-68) can be written in the form

Koo=4 1 - w2/w 1
1 +w_ +qCL, oo (2-69)

since, according to equation (2-54)

CL, oo= 2 A V U t (2-54)
woo I

=4 AVu t
Wl+W 2 I

equation (2-69) does indeed express a separation

criterion entirely in terms of the flow conditions in
front of and behind the vane system considered.

The first experimental test of this approach to the

problem of separation in turbomachinery vane

systems came through the important paper by

Howell (ref. 15). Figures 2-25(a) to (c) are taken

directly from Howell's paper. Howell concluded
from these data that neither the angle of deflection,

nor the lift coefficient, nor the pressure recovery

coefficient (p2-Pl)/(pw2/2) is an adequate
criterion for the occurrence of separation or stall in

such vane systems. However, when the same data

are plotted in the form of the separation coefficient

Koo under the assumption q = 1 (fig. 2-25 (d)), they

collapse to a rather narrow bundle of nearly
horizontal curves, which suggest that Koo lies

between 1.5 and 1.7.

In 1953, Lieblein, Schwenk, and Broderick (ref.

12) also worked to establish a separation criterion

§2.5.4.3
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Figure 2-25.-Aerod.vnamic limits of axial-flow compressor

operation according to Howell (ref. 15).

that could be calculated from the inlet and

discharge conditions alone (i.e., without direct

knowledge of Pmin); this effort led to the now

widely used diffusion factor

D = 1- w2 A V U t-- +- (2-70)
w I 2w I l

According to equation (2-54), this diffusion factor
can also be expressed in terms of the lift coefficient

CL, oo:

D= 1- w2 + 1 woo (2-71)
w--i CL,oowj

Again using the approximation woo =(Wl + w2)/2,
one finds

1 ( w12)D= I- w__2+ 8 CL,o° 1+ (2-72)
W1

While different from the separation coefficient

Koo (eq. (2-69)), both separation criteria can be

expressed in terms of the lift coefficient CL,oo and
the ratio of retardation (or acceleration) of the

relative flow W2/", I.

As in the case of the local diffusion factor Dio c,

the wake momentum thickness was plotted against

the diffusion factor D. A rapid rise in the
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momentum thickness beginning at D=0.60

indicated the beginning of separation at that D

value. At about D=0.4, the momentum thickness

increased to about twice its minimum value.

The comparison between various criteria of

separation, or stall, is completed by expressing the

Ackeret pressure ratio

K A _ P2-Pmin _ P2-Pmin (2-62)

pW2aa/2 Po - Pmin

in a form not depending directly on a knowledge of

Pmin. Evidently, according to equations (2-66),

(2-60), and (2-61) and figure 2-20,

KA _ P2--Pmin _ P2-Pl +Pl -Pmin
Po-Pmin Po-Pl +Pl -Pmin

_ w 2-w 2+qCL,' w2

W2 + qCL. l W_
(2-73)

Considering that (approximately)

w 2 = CL,o ° (1 + w2/wl) 2
CL, l = CL,oo _ 4

(2-74)

and with (w 2- w_)/w 2 = (1 + w2/wl) (] - w2/Wl) ,

one obtains

K A = P2 - Pmin
Po - Pmin

(1 + w2/wl)(l - w2/wl) + qCL, oo(1 + w2/wl)2/4

1 +qCL,oo(1 + w2/wl)2/4

KA = (1 -w2/wl)+qCL, o_(l +w2/wl)/4 (2-75)

1/(1 + w2/wl) + qCL, oo(l + w2/wl)/4

which establishes K A as a function of qCL, oo and of

the retardation (or acceleration) ratio w2/w], like

Koo according to equation (2-69) and the diffusion

factor D according to equation (2-72). (This result

and fig. 2-26 depend on the assumption that

woo = (w 1 + w2)/2, which is not true for systems with

small angle /3v, e.g., many diffuser and impulse

vane systems.)

A comparison among the various separation

criteria or diffusion factors presented by equations

(2-62) or (2-75), (2-69), and (2-70) or (2-72) is given

by figure 2-26, where these diffusion coefficients

are plotted as functions of the retardation (or

Ackeret
separation

factor,
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• _8_ _
o.'85 [ /

/

/

,/o [
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Figure 2-26. Separation limits of straight s_vstem.s qf parallel, .staggered t,unes. (Data from re/_ 16. )
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acceleration) ratio w2/w I and of the pressure

reduction ratio qCL,_o. The scale for qCLoo serves

also as a scale for the lift coefficient CL,_ with
respect to the diffusion factor D, with respect to the

NACA cascade data (ref. 16)(open symbols), and

with respect to the dotted curves representing

maximum values of CL,oo according to the same
NACA data fief. 16).

The numbers given with every test point plotted

are associated with definite vane-system char-

acteristics by table 2-I. The point coordinates are
taken from the cascade information presented in

reference 16 and section 2.5.5 and represent cascade

operating conditions at or near optimum cascade

performance. The points plotted, therefore, do not

mark maximum CL,o_ and qCL, oo values, but rather
conditions that may be used as design values.

The shaded area between the curves Ko_ = 1.5 and

K_ = 1.7 represents Howell's data from figure 2-25.

The w2/w I range of this area was estimated from

figure 2-25(d).

The shaded region on the D = 0.60 curve marks

the beginning of a very rapid increase in the blade-
wake momentum thickness observed by NACA. It

may well represent the beginning of separation and

thereby an upper limit of CL,oo, although a few test
points fall above this region. No information is

available about the W2/W I range of this region.
Since a marked increase in wake momentum

thickness was already observed at D = 0.4, the entire

region between the D = 0.4 and D = 0.6 curves may
be considered for design purposes.
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As stated by Ackeret, his limit curve KA =0.8

marks an upper limit of boundary-layer retar-
dation. This limit line cannot be used for moderate

retardations of the mean relative flow, say above

W2/W 1 =0,8, because it would lead to unreasonably

high values of qCL,_. The Ackeret curve sets a

lower limit for Wz/W t rather than an upper limit for

qCL,_o.
It is also doubtful whether the D=constant

curves can be used for w2/w I >0.9, because of the

very high CL,oo values resulting from such appli-
cation of the D=0.6 curve. On the other hand, for

Wz/W l =0.6 and D=0.6, one obtains CL,_= 1.0,
which seems reasonable in view of the available test
data.

Since the K_=constant curves are the flattest

curves of separation criteria, perhaps they can be

applied in the regime of accelerated mean flow

(w2/wl>l). The Koo parameter was originally
intended to be limited to values between 1.5 and

1.7, as these limits correspond to the limits of the

lift coefficient for a single vane in an infinitely

extended stream. The condition w2/wl=l is

supposed to correspond to this case, and equation

(2-69) shows that qCL,oo=Koo for w2/wl=l.

However, for stronger retardation of the mean

flow, say for w2/wl<0.7, it seems that 1.5
_<Koo-<l.7 is rather conservative; in this region,

1.7 -<Koo _<2.0 (or 2.2) is more reasonable. Thus the

arrangement of vanes in a straight cascade has some

beneficial effects with respect to separation, if the

mean pressure changes are taken into account.
No conclusion is drawn here regarding the

relative merits of the three separation criteria or

coefficients considered (K A, D, and Koo). Accurate

separation limits cannot be established in terms of
any one of these coefficients any more than a

definite separation or stall limit can be defined for

the lift coefficient of a single airfoil in an infinitely
extended stream. However, consideration of these

separation coefficients throws considerable light on

the fundamentals of separation or stall in turbo-

machinery. One is tempted to draw the plausible

conclusion that the adverse pressure gradient on the

low-pressure side of the vanes, while important (if

properly normalized), is not the only criterion of
separation. The curvature of the flow as well as

secondary fluid motions may offer additional

criteria of separation. However, so far only the

dimensionless pressure gradient has led to criteria

which are sufficiently simple to be used by the

designer.
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Inspection of figure 2-26 may lead to the general
conclusion that, for vane systems with retarded

mean relative flow, the lift coefficient CL,_ at

design conditions should be between 1.0 and 1.5
and should diminish with diminishing ratio of

retardation w2/w 1. Furthermore the ratio of

retardation w2/w 1 has a lower limit near w2/w 1

=0.6.

With accelerated mean relative flow (w2/wi > 1),

the lift coefficient CL,oo can progressively be
increased with increasing ratio of acceleration

wz/w I, but upper limits of CL, oo for these con-
ditions are not yet established.

2.5.5 Analysis of Cascade Test Results and Mean
Streamline Method

It should be clear from the preceding section that

a great deal of experimental work on flow through

axial-flow cascades (i.e., cylindrical sections

through axial-flow vane systems) was done. Initially

Great Britain led in this work. Today the work of

NACA supplies us with most of the information on

flow through straight systems of staggered, parallel
vanes (refs. 16 to 18). An interesting summary of

these findings has been presented as a series of

related graphs called carpet plots fief. 16). Good
correlations have been found between the flow

observed in straight cascades in cascade tunnels (the

cascade of vanes being stationary) and the flow in

equivalent rotating systems in a space of revolution

(refs. 19 and 20) (with the possible exception of
flow at high Mach numbers).

The vast amount of experimental information

and its theoretical interpretation cannot be covered

here. Instead an attempt is made to extract from

some of the data such information as may even-

tually be used for design purposes.

Figures 2-27(a) to (n) show vane systems selected

from reference 16, and figure 2-27(0) shows one

from reference 17. All pressure distributions are

taken from NACA test results, but are plotted
against the axial extent of the vane system for

reasons that become apparent later.

All parameters from the vane systems of

reference 16 used in this presentation of the theory

and in the design of axial-flow vane systems (ch. 3)
are evaluated and listed in table 2-11. These

parameters are

(1) The lift coeflcient referred to the inlet

velocity, determined from the area inside the
pressure distribution curve on the basis of

_Pau

CL, 1=

where Apav=(l/yv) f_"

extent of the vane.

(2-6O)

Ap dy, Yv being the axial

&Wu, 3_ '

Aw E 4 71 ', _- _.ean velocity .'
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: I_0-_,,,.... : 6 _ - 7.-..-_ ?. _/<;,4,t.k,,,<:.c...... - _--_ .6 =

Pv "_":<:: >/';// -woo ' _. 1/Wd. 1 2 xv//_/" r , ,A, I _::; :_i;_"3 : U. z)v0/:;;: "_

.....?_,._4// _ .// " _,, /_._Al_&tma x Stagnation _>: A2=0.2780"_N,J I .4 _o_

_ 0_" "iO_5",_J,"," , I y_-]H1 :u. zt>o _;;f'C'cfT_,<\;b)

Camber line - Deviation of camber line

from mean streamline, An (Po-P)/(pw]z/2}(a)

(a) Vane, NACA 65-(18)-10; inlet flow angle B/, 60°; solidity l/t, 1.0; vane angle _3_., 42.2°; inlet angle of attack against baseline c_t,

17.5°; angle of deflection O, 25.2 °.

Figure 2-2 7. - Characteristics of cascade of vanes. (See table 2-11for cascade parameters. ) Mean static-pressure curve is obtatnedj?om

local mean uelocity w, and static pressure Po_.i corresponding to that velociO, (i.e., (p, -p,_.,) / (pw_/2) = constant ).
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q

w,_ =O.888 w1

Ic) (b) Vane, NACA 65- (18)'10; inlet flow angle (J_, 30°; solidity l/t, 1.0; vane angle _3_,, 7°; inlet angle of

attack against baseline c_, 23°; angle of deflection O, 36 °. 50; of attack against baseline e_,

(c) Vane, NACA65-(18)-IO;inletfl°wangle_3t'30°;s°lidityl/t" l'5;vaneangle(3v' inletangle

25 °,. angle of defleclion O, 41.6 °• Figure 2-27. - Continued.
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,- Zero-lift
direction

- w2 =O.739wl/

/ /

',,' ,,' tt Wl.2 -- 1 _ ;
' / f,I - I _ll _"

W].6 .......,, : /_ .....

', : C=0.592_ ,......1
/// _w_ /_ &}ean ....../// " !

" /,/J 0_37 wl / streamline--,,/ / / /-
.u. uJf vv]. / ,_. - _ --

/ L, "__--- 7+ -

(po - p2L,"(pw_/';,,I P-?- Pmin_: O.695
- Po - Pmin

/

\'\' M!a_ 6 o
/-

_'ff

............. 2 _o

1.0 1.5 2.0

(d) Vane, NA CA 65-(18) -10,"inlet.rio w angle (3/, 45 °; solidity Itt, 1.0, vane angle ;3_,26°; inlet angle of attack against basehne _x/,
19°; attgle of deflection O, 30 °.

(e) I/ane, /VACA 65-(18)-10," inlet flow angle 13/, 45°; solidity I/t, 1.5," vane attgle i3_, 21 °," inlet angle of attack against baseh'ne oq,
24°; angle of deflection O, 38.4 °.

Figure 2-27. - Continued.
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wl-4 _, " r _" PO - Pmin

' / . .9 P=

_m,_I ___J/£y' _ _ / _/!1_-_ t _.=_

directionZer°'lift ' "'/ .... " ------_ ........ i -.6 _...£_-

,2-0.73w1 [ .'/ ///j//" /L-c-0.678",_ _-- '.5 _ oC

<\n,/ o-
'. j ' - " ' Cu,v_ ,_

_/ _V/_/)_ _;5_;_ v" " _

" / / _ .5 1.0 1.5 2.0

(f) Vane, NA (',4 65-(24) -1 O; inlet flow angle fit, 45 °; solidity II t, I. 0," vane angle fl(., 19°; inlet angle of attack against basefine eel, 26°;

angle of deflection O, 40.9*.

(g) Vane, NACA 65-(24)-10; inlet flow angle fib 45°; solidity l/t, 1.5; vane angle _,, 18°; inlet angle of attack against baseline

e_, 27°; angle of deflection O, 46.9*.
Figure 2-27. - Continued.
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Wl.4 ?,
wl 6 7 , , ,- w, , ,,-Mean P2 - Pmin : O.753

Wl.8. " ; ,/ / *'_ ', streamine i
1" PO-Pmin (-t 1 " "_ _.

Zero-,,. _/,,_ _?; /, _ _ (_ , 1.o__
direction_ ./'_ 4"+: _-'T'2_"/.... i*_ -[ jr Mean static- _--,_"_g

w_.o.6,w,./_..._/,, ,Wl/ , .,>_,/ \ 'q "_,."1 pressure 1.8 _ o E

s gg
.5 1.0 1.5 2.0 - _

/,,

W-W1"2", Mean (Po-P2)_PWl"'ZI[";-\ P2-Pmin ....
4-' / U. IL;

%° = 0'798 wl _ l" 4 _L'-'_"_'_'_ s tr eam Iine,_ _ _ ----" Po -P_min --

" _-_.#-.--" ___ I / t,, /._7' / I \ "N -- Mean static- ! _ _ ---
w2 = 0 617 w_ _ s_'_f_ ....-__/ .UxY/',_ / _ _ N ."

• , , ////_.._.J/J/" ._;_z ' _. _ \- \/ pressure _. 8 _ _-
Zero-lift \////_./J_'.'_w, "--J / ./_ / \ X ."_ curve _- _ '_
direction __-"*1 /k _" ___ _L \ ,":.. _ i 6 _ "6 _o

"" \ \ "'-C = 0.23 0 .5 1.0 1.5

,, ,oo_o,,,,(o+)
(h ) Vane, NACA 65- (18) -10; inlet flow angle [3z, 60°; solidity I/t, 1.5; vane angle _r, 38°; inlet angle of attack against basefine e_,

22°; angle of deflection O, 31.9 °.

(i) Vane, NACA 65-(12)-10; inlet flow angle {3/, 70°; solidity l/t, 1.0," vane angle fly, 57.2°; inlet angle of attack against
baseline e__, 12.6 °; angle of deflection O, 14.4°.

(j) Vane, NACA 65-(12)-10; inlet flow angle _z, 70*; solidity I/t, 1.25; vane angle 13_,, 57.8°; inlet angle of attack against
baseline eQ, 12.1°; angle of deflection O, 15.6 °.

Figure 2-27. - Continued.
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Zero-lift (Po-P2}/(PWt[2) P2- Pmin-O. 173
W _
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w2 : 0'575 Wl / _ £I ;L_ _' _ ...... .4 '.-' "6 __  o==o

, l0
_-C = 0.23 0 .5 1.0 ,.5

Wl.42

/(P 1 /2)w]. 6_, ', Ipo - p2),...,' w_,"

_ _"/_.i T_P0-Pmin _'_

'_/J " -- ___86 °c_

w2 : 0.752 'J43' _ /A,,, Zero-lift /-/IJ]\_ '*_ =

w.l .... ]']LI_/'"/, w''O directi°n",_'7 \ _ _=

w _'; "L _ streamhne_ _ "_:-_'

Zer0-1ift "Wl woo 0 -'X : '_
directi°n"//IJ// - " " _ " ' .............I_4 __

.... 2 =9

.5 1.0 '.5 2.0

(k) Vane, NA CA 65- { 12 ) -10; inlet flow angle 13_, 70°; solidity Ill, 1.5; vane angle _,,, 54 °; inlet angle of attack against baseline _,

16.1°; angle of deflection O, 19.7 °.

(I) Vane, NA CA 65- ( 18/t 21_h ) 10," inlet flow angle {3i, 45 °; solidity 1/t, 1. O; vane angle _3,, 30.5 °; inlet angle of attack against

baseline c_z, 14.3°; angle of deflection O, 26.7 °.

Figure 2-27. - Continued.

(2) The lift coefficient referred to the mean Pl-Pmin_ C,_ (2-61)
relative velocity woo calculated independently from q= Apav CL"

w 2

CL, oo= CL, t _ (2-60) where

and from equation (2-54) expressed in terms of the

turning of the relative velocity

Cp, min_ Pl -Pmin

pw2/2

CL,oo = 2 z_Wu t (2-54a)
Woo I

The relatively good agreements between the two

values of CL,oo are quite reassuring.
(3) The pressure reduction ratio

(4) The pressure reduction coefficient qCL, oo,

which is plotted in figure 2-26. The value of CL,oo
used in figure 2-27 is the average of the two values

determined from equations (2-60) and (2-54a).

(5) The velocity ratios woo�w] and w2/w _, by

scaling from the velocity diagram, and
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woo - 0.824w 1 _,Wl.6
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/ /?/ sireamnne _'U .... Mean static- ._", /

/X'_ //2/y. 165 _ pressure curve _" ,_) /,
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• 0 .5 1.0 1.

]1.0 ,

c

-.8 _
I cU

_ .E
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. 6_ _ -_

".4 _S_

0 c_
LO

(m) Vane, NA(__ 65- l&4elv,)10; inlet flow angle {3_, 45°; solidio, l/t, 1.5; cane angle 3_, 28.5*; inlet atzgle "of
attack against baseline _s, 16.3°; angle of deflection O, 34.1 °.

(n) Vane, NACA 65-( 18A:Iv , ) 10; inlet flow angle 13_, 60°; solidity l/r, 1.5; t,ane angle 3v, 43.5°; inlet angle of attack
against baseline _ez, 16.4°, . angle of deJlection O, 28.7 °.

kTgure 2-2 7. - Continued.

Wmax _ ._/ Po - Pmin" Dlo e - Wmax - w2

Wl -- pwf/2 Wmax

=1 -- W2

Wmax_ (Wmax) ( W' ) Wmax

(2-63)

the last of which is used in section 2.5.4 to compare

the separation limit Dlo e = 0.5 with the Ackeret limit

Of KA=0.8.

(6) The separation coefficients

1 - W2/W 1 +qCL o_
Koo = 4 1 + w2/_ l

(2-69)

K A _ P2-Pmin (2-62)
Po - Pmin o:,w,,-- -- + CL, o_ 1+

wi
(2-72)
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t

0 = 88.607

F Camber line tangent

Camber line tangent ,/ (at 95 percent point)

(at 0.5 percent point) _/ - p)/(pw_/2),J (Pc
-- 131: 300 ,,,

2 3 4

(o) Vane, NACA A3KT," inlet flow angle fit, 30°; solidity lit, 1.8; vane angle fl,, 34"; inlet angle of attack against baseline _/,
63.40°; angle of deflection O>88.6°," camber angle 0,., 95".

Figure 2-27. - Concluded.

(7) The Weinig head coefficient (see sec. 2.5.3)

_l w U
CH--

Aw U

which is taken from figure 2-18 and permits the
determination of the zero-lift direction in relation

to the vane profile. A line drawn in this direction

through the trailing edge of the vane intersects the
mean camber line of the vane profile at point C.

The location of this point of intersection is plotted
in figure 2-28 as a function of the vane angle. Since

the angle between the zero-lift line and the camber

line is quite small, the scatter of these points does

not represent a serious uncertainty about the

direction of the zero-lift line. Figure 2-28 replaces

the previously cited rule (based on the ideal-flow

characteristics of single airfoils with circular-arc

camber lines) that the zero-lift line intersects the

mean camber line at the halfway point between the

leading and trailing edges.

It is hoped that the foregoing considerations in

connection with figures 2-27 and 2-28 give the

reader a reasonably vivid picture of the relation

between certain physical parameters and the shape

Solidity,
t.it

/' 0.5

o 1.0

o 1.25

o 1.50

_i 1.8

Open symbols denote 65-series stan-
dard vanes

Solid symbols denote trailing-edge-
loaded vanes

Half-solid symbol denotes turbine vane

, ; i 0 / /

- I
e_

,.....
"d

Oi

-40 -20 0 20 40 60 80

Vane angle, _, deg

Figure 2-28. - Location of intersection C between zero-lift and
camber lines.
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and form of flow in straigbt systems of parallel,
staggered vanes. Such a picture is certainly needed

for an attack on the problem of designing such a
vane system for given flow conditions (i.e., given

inlet and discharge velocity diagrams). However,
the information given is not sufficient for a solution

of the design problem.
One method of attack would be to select from the

large number of cascade configurations that have

been investigated the configuration which meets the

prescribed operating (or flow) conditions. Such an

attack would be possible if one could interpolate

between the discrete vane system configurations

that have been investigated. Reference 16 provides

the means for this type of an attack on the design

problem, namely the vane shapes and systems
investigated by NACA.

In spite of the merits of the approach described in

references 16 to 18, the method is still limited to the

basic blade shapes used in these investigations and

thereby to some common characteristics of their

performance. The most significant shortcoming of

the 65-series vanes affecting their use in pumps (or

compressors) is probably the fairly large pressure
reduction (and velocity increase) on the suction side

of the vanes. According to section 2.5.4 and figure

1-18, the coefficient of minimum pressure Cp, min
=(Pl-Pmin)/Gow21/2) should not be greater than
0.3 to obtain acceptable cavitation performance.

The NACA 65-series vane systems presented in

figures 2-27(a) to (n) have in only one case a Cp, min
value as low as 0.308. The next lowest is 0.375, the

next is 0.443, and all others are above 0.5.

Cavitation-free performance, therefore, cannot be

ensured by selection of a desirable 65-series system

configuration; instead it is necessary to develop new
configurations with more favorable pressure and

velocity distributions. The same seems to be
necessary for compressor vane systems.

A method of designing cascades of parallel,

staggered vanes for prescribed vane pressure dis-

tributions is presented in chapter 3, specifically in

sections 3.2.4 and 3.2.6 to 3.2.8. In this section only

the basis of this design method is outlined; it is in

the form of a particular method for the analysis of
cascade test data, which may be called the first

phase of the mean streamline method. This method
relates the vane pressure distribution to the vane

shape by means of the mean or average path of the

plane flow through the vane system, which is called
the mean streamline. These relations can be

established definitely for vane systems which have

been subjected to complete cascade tests, so that the

vane pressure distribution is empirically known for

given cascade and vane geometries and for known

inlet and discharge velocity diagrams. The relations
between vane pressure distribution and cascade and

flow geometry, so established, are presented in

dimensionless and otherwise generalized forms. It is
reasonable to assume that they represent useful

approximations of the corresponding relations for

vane systems with geometries different from. those

which were investigated experimentally. The

generalized relations between flow and cascade
design characteristics are the basis for the mean

streamline method of cascade design which is

presented in chapter 3.

The construction of the mean streamline is based

on the simple idea that the progressive changes in
the circumferential component of the mean (or

average) flow through a vane system can be related

to the pressure distribution along the vanes, that is,
to the distribution of the circumferential forces

applied by the vanes to the flow. Furthermore the

changes of the meridional (axial) component of the

mean flow are related by the condition of continuity

to the blockage effect of vanes with finite thickness

and to the changes of the passage width normal to
the plane of the cascade flow (actually a cylindrical

surface). For compressible fluids, changes in the

fluid density enter into this relation.

In principle, the method is quite old. This writer

found it first in the initial edition (1924) of

Pfleiderer's well-known book Die Kreiselpumpen

(ref. 21) under the term point by point calculated

vanes. In Pfleiderer's book, it is not the peripheral

component and the meridional component of the
velocity that are changed, but rather the magnitude

of the relative velocity that is changed progressively

from w I to w2. (It is quite possible that the

principles of this method were known before this

application by Pfleiderer.)
The mean streamline method as outlined in this

section is most directly described by Ackeret in
reference 10, except for the fact that Ackeret
obtained the relation between the mean streamline

and the mean camber line of the vanes by

theoretical means, whereas in the present treatment
this relation is obtained on the basis of the NACA

tests of 65-series vane systems.
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The change in the meridional velocity component

V m is illustrated in figure 2-29. Evidently

AQ= Vm Ab(t-r)N= Vm Ab tN(1- t ) (2-76)

where AQ is the volume flow rate passing through
the annulus with the extent Ab in the meridional

plane and normal to the meridional flow, and N is

the number of vanes in any one system. The
circumferential vane thickness r should include an

estimate of the displacement thickness of the vane

boundary layers.
For incompressible fluids, AQ=constant. For

compressible fluids, its changes have to be

determined on the basis of the information given in

section 2.4; these changes are discussed further in
section 2.5.6.

It is evident that equation (2-76) is nothing but

the condition of continuity between two meridional

stream surfaces in a space of revolution. Under the
one-dimensional assumption of uniform meridional

velocity distribution over the entire cross section

B-B in figure 2-29, one can substitute the total flow

rate Q for AQ and the total width b for Ab.
However, the following considerations are in-

dependent of this simplifying assumption.

The change in the peripheral velocity component

w U is determined by the equality of the change in
circumferential momentum and the same com-

ponent of the blade force (see fig. 2-30). This
relation is, of course, essentially the same as that of

Euler's turbomachinery equations (2-9 and 2-12).

For the elementary step &y in the axial direction,
this relation assumes the form

p AQ OwU
N Oy Ay=AFcos_3=ApAbAlcos/3 (2-77)

where N is the number of vanes.

By the condition of continuity, p AQ/N
=constant. Furthermore Al cos [3=Ay. Hence

equation (2-77) appears in the form

Owu Ay = Aw U = constant x Ab Ap Ay
ay

(2-78)

Thus Aw U is proportional to the elemental strip
of the vane pressure diagram Ap Ay if the vane

pressure is plotted against the axial extent y of the

B

Developmentof section A-A

r
r

--4

V m

Figure 2-29. - Change in axial velocity component }Sn.

vane system. This is the reason for this arrangement

of plotting in figures 2-27, 2-30, and 2-31.
The schematic for the mean streamline method is

illustrated in figure 2-31; the method may be

described as follows: Determine the steps AWu, x of
the peripheral velocity component according to
equation (2-78) in the form

AWu, x _ APx AYx Abx

Awu, tot f
__j APx AYx Abx

Q

(2-79)
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Vane pressure
_U

wU + _ Ay,? diagram;

//' , L.u/

? _L" I---TU--_J i:[nati!n '

w I g " ./_ 1

pressure--' 2

Y

summation ]_ APx Ayx Z_bx must be carried out
a

numerically, by using the local values of Ab x.

The corresponding changes in the axial (merid-

ional) velocity component V,n are determined

according to the condition of continuity (eq.

(2-76)). For incompressible fluids, AQ=constant,
and therefore

Vm, It Abl = Vm.x(t - rx)Abx

Figure 2-30. - Change in peripheral velocity component w u in

retarding vane system.

where the subscript x may designate any of the

stations a to f along the mean flow path through the

Y

system. The sum _ Apx AYx Abx can be approx-
a

imated by the area of the vane pressure diagram,

plotted against the axial extent y, by

,Ap x Ayx Abx = Apx AYx _bav
a

(2-80)

For relatively large variations in abx, the

or

Vm, x _ t abl

Vm, j (t - rx)Ab x
(2-81)

where the index x denotes stations a to f in figure

2-31, and Abl and Vm. 1 are measured in front of the
vane system. Of course, one could also refer to V,n,2

• and Ab2 behind the vane system. For strictly axial-

flow systems, obviously

I = l I = tx = t2 = constant

It has already been mentioned that rx should

include an estimate of the displacement thickness of

the vane boundary layers and will therefore not go

Wu, 1 - "" P2
i Tangents to mean PWt/2 I

- WU.Z "1" . Y_,bWu, x. - _ streamlineT_ / _,, __ ,,.,

IAWu, f/3WU, e/"Wu dnwU c_WU b[ r / i '

te /' /-Mean
I i + tY_ _- _T"b I / _ x/ ---J _ / _ ."_. pressure

'AVm, d/_'_/,_, ''"_ / " _e -/ '

Vmd // //_ ."/I .-'/W _[=..-_'_._ao //, _ #/z }Camber / i _, \

Iv I W2 j/._,'/ J// / "_"" T / /d_ _/ line_ _.. _.......'!..................\

0 Pl

. _ pw l,
/

Cp, min p__ j Pmin

Figure 2-31. -Schematic for mean streamline method.
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to zero behind the vane system. Figure 2-27 gives

some indications of this effect. The boundary layers

on the casing and hub walls can be considered by an

appropriate (estimated) reduction of ,&b or by an
increased allowance for the displacement thickness

of the vane boundary layers.

Often it is advantageous to account for

boundary-layer growth and blade thickness

separately by drawing a smooth curve (nearly

straight line) aof in figure 2-31 from the end of the

inlet velocity vector w I to the end of the discharge

velocity vector w2; this line includes an axial

addition gf, allowing for boundary-layer effects on
the meridional velocity component. The latter can

include estimates of all boundary-layer effects. If

so, the effect of blockage by the vane thickness r

alone (without boundary-layer effects) can be
expressed as follows:

Vm,o,xt = ( Vm,o,x + _XVm,x)(t -- rx)

The subscript o is defined in figure 2-31 as an

example in connection with the station x=d. The

foregoing equation can easily be converted into the
form

zXVm, x _ r x/ t

Vm,o, x 1 - rx/t
(2°82)

If, as suggested previously, Vm,o, x takes
boundary-layer effects into account by being drawn

to the line aof, then r x in equation (2-82) should not
include the displacement thickness of the vane

boundary layer, since all boundary-layer effects are

considered in locating point f and thereby the line

aof. This constitutes a substantial, practical

simplification. The nonlinear growth of the
boundary layer along the vane can be taken into

account (qualitatively) by giving the line aof a

slightly convex shape when seen from the top, that
is, by letting the vertical distance between the line

aog (the frictionless flow variation line) and the line

aof increase slightly faster in the beginning (near %)
than toward the end (near f).

With the points a, b, c, d, e, and f in the velocity

vector diagram of figure 2-31 located according to
equations (2-79) and (2-81) or (2-82), one can draw

the intermediate mean velocity vectors from point 0

to the points a, b, c, d, e, and f along the curve af in

the velocity vector diagram (in fig. 2-31) and

construct the mean streamline by drawing its

tangents at stations a, b, c, d, e, and f parallel to the
corresponding mean velocity vectors. This con-
struction defines the mean streamline.

From the analysis of existing cascade data the

vane shape generating the vane pressure difference

Ap x and the corresponding changes in velocity from

w I to w 2 are known. This vane shape, particularly
its curvature, may now be characterized by the
normal distance zan between the mean streamline

and the mean camber line (see figs. 2-31 and
2-27(a)); the location of these two lines relative to

each other can be found by drawing the mean

streamline through the trailing edge of the vane.

Evidently the distance An describes the departure of

the actual vane from its one-dimensional approx-
imation, which is the mean streamline.

The normal distance An between the mean

streamline and the camber line may, of course, be

normalized by dividing it by the chord length l of
the vane. The distance An can be further

generalized by the assumption that it changes

proportionately to the lift coefficient CL, oo of the
vane. This proportionality follows for a vane in a

straight-line stream from geometric reasoning
illustrated in figure 2-32, which shows two camber

Figure 2-32. -Relation between departure An of nlean camber line from direction of flow and hft coeJficient expressed

by angle of attack _ between zero-lift line and direction of flow.
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lines, one characterized by the subscript o and the
other by symbols without subscripts. If the camber

ratio An�An o is assumed constant along the vane
and the small changes in the vane length l with

changes in the camber are neglected, the sine of the

angle attack o_ against the zero-lift line varies

proportionally with An (at any one location). Since

the lift coefficient CL, oo is proportional to the sine
of the angle of attack a measured from the zero-lift

direction, it follows that An changes proportionally

with CL. oo in a straight stream. The application of
this proportionality to the flow in a cascade of
vanes, where the mean streamline describes the

direction of the mean flow, confirms this theory. It

is, therefore, permissible to define a standard,

normal distance An I between the camber line and

the mean streamline by CL, o_= 1, which leads to the
relation

An
An] - (2-83)

CL, oo

In this manner, the deviations of the standard

65-series cascades represented in figures 2-27(a) to

(k) could be brought into a reasonable relation to

each other. Figure 2-33 shows as a heavy solid curve

the maximum deviation (Anl/l)ma x for a unit of lift
coefficient and for solidities from l/t = 1.0 to 1.5.

For lower solidities, only one point (the diamond)
was obtained from the configuration NACA

65-(18)-10, [31=45 °, l/t=0.5 (ref. 16). It is natural
that this configuration led to a higher (Anl/l)ma x

than higher solidities, since zero solidity (l/t=O)

can easily be estimated to lead to a still higher value

of approximately An l/l = 0.8.
Figure 2-33 also shows as open double lines the

maximum circumferential deviations (atl/l)
between the mean streamline and the mean camber

line. This representation of the deviation is far less

advantageous than the normal deviation (An]/l),

since (Atl/l)max forms two separate curves for

l/t = 1.0 and I/t = 1.5 which are much steeper than

the (Anl/l)ma x curve.

The distribution of the normal deviation An

along the vane is shown in figure 2-34 in terms of

the ratio An/Anma x, where in all cases Anma x has

the value given by the heavy solid curve in figure
2-33. The shaded area in figure 2-34 covers the

range of deviation distributions of the standard

65-series cascades shown in figures 2-27(a) to (k).

The density of the shading represents qualitatively

the frequency of deviation; that is, most deviations

fall within the region bounded by two solid curves.

The width of the shaded region around maximum

§2.5.5

_.._ [---- t "]×, _Camber
f_ _'" line

Mean streamline --'_t _'LJ

"02i '-(Anl./xT-/ma x
I I

0 lO 20

Vane chord angle measured from axial

direction, 13v, deg

Figure 2-33. - Maximum deciation of camber line from
mean streamline.

deviation represents the scatter of Anma x around the
solid curve shown in figure 2-33. The fact that this

scatter is quite small for most cascades investigated

(i.e., between the solid curves in fig. 2-34)

demonstrates the validity of applying equation

(2-83) to cascades of vanes, the accuracy being

indicated by this scatter.

× 2.0 • _

10

N-_ .5

_ 0
1.0 .9 .8

Cascade and blade

geometry shown in fig. -

2-27([)

o 2-27(m)

[] 2-271n)

.6 .5 .4 .3 .2 .1 O

Distance from leading edge/Chord

Figure 2-34. - Distribution of camber line deviation from mean

streamline for cascade of vanes NA CA 65- (18Aelsh) 10.
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Also shown in figure 2-34 is the chordwise

distribution of deviation for the trailing-edge-

loaded vane profiles shown in figures 2-27(1) to (n),

referred to the same Anma x as shown by the heavy,
solid curve in figure 2-33. The maximum deviation

from the mean streamline for trailing-edge-loaded

profiles is 40 to 70 percent larger than that for the

standard 65-series profiles. Chapter 3 shows that

the trailing-edge-loaded profiles are of particular

importance for pump or compressor vane systems.

Assume that the deviations of the camber line

from the mean streamline shown in figures 2-33 and

2-34 not only apply to the cascade forms from

which these deviations were derived, but also are
useful approximations for the same deviations of

other cascade forms. Under this assumption the

foregoing empirical derivation establishes a general

relation between the vane pressure distribution and

the form of the vane profiles. This relation is, of
course, not as general as a relation based on

theoretical considerations, for example, the method
of Ackeret described in reference 10. The fore-

going empirical derivation has, on the other hand,
the advantage that it includes the effects of fluid

friction on the overall flow, which would be

difficult to achieve by theoretical means.

A relation between the vane pressure distribution
and the form of the vane profile, as derived here, is
reversible; that is, it can be used for the con-

struction of the vane shape from a given or assumed

vane pressure distribution. This process is described
in chapter 3.

2.5.6 Effects of Compressibility on Flow Relative to

Axial-Flow Vane Systems

The most important effects of compressibility on
the flow in turbomachines, outlined in section 2.4,
are applied in this section to the relative flow in

axial-flow vane systems. The intent is not to present

a complete description of this flow, but rather to

characterize only some major effects of com-
pressibility on this flow and to divide the flow

conditions roughly into those of completely

subsonic flow, completely supersonic flow, and
flow with transition from supersonic to subsonic.

As in section 2.5.5, only flow considerations

forming the basis for the design of such vane

systems (i.e., plane-flow cascades) are discussed,

while the design problem itself is considered in

chapter 3 (sec. 3.2.7).

The principles of subsonic flow (outlined in sec.

2.4) are essentially one-dimensional, and these

principles alone are not sufficient to explain the
general characteristics of supersonic flow and those

of flow with transition from supersonic to subsonic.

In this respect, the following outline is based on the

methods established many years ago by Prandtl and

Busemann (see refs. 22 (ch. IV), 4, 5, and 14 (ch.

19)). The considerations which follow may not be

understandable without some knowledge of the

philosophy of Prandtl and Busemann in dealing
with the flow of compressible fluids.

The relation between the flow velocity and the

pressure and density of a compressible fluid is
described in section 2.4 on the basis of Bernoulli's

flow-energy equation. As shown in section 2.5.1,
this equation applies also to the relative flow in

axial-flow vane systems, because the motion of the

vane system appears in the development of

cylindrical stream surfaces as a translatory or
nonaccelerated, motion. Such a motion of the

system has no influence on the laws of mechanics in

the system, such as Bernoulli's equation. Therefore

the velocity of the relative flow determines the

specific volume and thereby the volume flow rate Q
anywhere else in the system on the basis of its total

enthalpy and the specific volume v at the system
inlet.

In accordance with the principles outlined in

section 2.5.5, the condition of continuity is used

primarily with respect to sections parallel to the

planes containing the leading and trailing edges of

the vane system (see fig. 2-29) and involving the
meridional velocity component Vm. As outlined in

section 2.4, the determination of Vm from the

geometry of the system requires a process of

iteration, which converges as long as V m does not
approach sonic velocity. For given or assumed
velocities, no iteration is required to determine the

system geometry, unless the prescribed velocities
lead to zero or negative vane thickness.

To obtain a first approximation of the flow

entering and leaving an axial-flow vane system at

any one cylindrical stream surface, assume that the

width of the flow (b or Ab in fig. 2-29) normal to

the cylindrical stream surface is constant.

Furthermore assume that the thicknesses of the

vanes and of the boundary layers have only

negligible effects on the flow entering and leaving

the system. Under these assumptions, figure 2-35
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(a) Completely subsonic flow.
(b) Sonic flow.

(c) Completely supersonic flow.

(d) Supersonic to subsonic flow entirely by normal
shock.

Figure 2-35. - Velocity diagrams for compressible flow in

axial-flow cascades of constant width.

shows the relative inlet and discharge velocity
vectors for four conditions:

(1) Subsonic inlet and discharge velocities rela-
tive to the system (cascade)

(2) Slightly supersonic inlet and slightly subsonic

discharge velocities, that is, essentially

sonic flow relative to the system

(3) Supersonic inlet and discharge velocities

relative to the system

(4) Supersonic inlet and subsonic discharge

velocities relative to the system, the change
in velocity being entirely due to a normal

shock in the system

Section 2.4 and references 22 and 14 show that (1)

in subsonic flow the specific volume and thereby the

volume flow rate change less than the flow velocity,

(2) at sonic velocity the specific volume and volume

flow rate change proportionally to the flow velocity
and thus call for a constant cross section of the

flow, and (3) in supersonic flow the specific volume

and volume flow rate change faster than the flow

velocity. With these statements and the fact that the

axial velocity component Vm is proportional to the

specific volume v and Q, the flow configurations in

figures 2-35(a) to (c) become self-evident, con-

sidering that the velocity vectors shown represent

average velocities along the vane system (in the
circum ferent ial direction).

Furthermore it should be evident that flow across

a normal shock must be a flow of constant cross

section, since the shock front is so thin as to

prohibit any change in cross section of the flow
normal to the shock front. This explains the flow

configuration shown in figure 2-35(d), where any

growth in boundary-layer thickness has been
ignored.

Figure 2-35 indicates that subsonic cascade flow
of constant width is curved in the same direction as

but somewhat less than incompressible flow, sonic
cascade flow of constant width has no net curvature

(no change in direction from inlet to discharge), and

completely supersonic relative flow curves in the

opposite direction from incompressible flow. In the
third flow, the convex side of the vanes faces the

high-pressure side of the system. The fact that this
does not involve any contradiction is demonstrated

in figure 2-36 by means of the Prandtl-Meyer

method of characteristics (see refs. 22 and 14).

The principle of this method is illustrated in

figure 2-37. The flow changes direction only across

Mach lines, which are inclined against the flow by

the Mach angle ,_, for which sin c_=a/V=the

reciprocal of the local Mach number. The law of
momentum dictates that there cannot be any change

in the velocity component parallel to the Mach line.

The change in velocity and momentum normal to

the Mach line must be small, a change from a small
velocity difference below the local velocity of sound

a to an equally small velocity difference above the
velocity of sound. Thus the mean velocity normal to

the Mach line is the velocity of sound a as has been

evident by the Mach angle a. With the flow

direction and the changes in the flow direction

dictated by the direction of the flow boundary,

these definitions permit the construction of a flow
field from its boundaries by using the changes in the

direction of the boundary in small, finite steps (dO,

in fig. 2-37).
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Figure 2-37. -Supersonic" velocity change across Mach line.

A repeated use of this principle leads to the
solution expressed by the velocity diagram

(hodograph) in figure 2-36. The local acoustic

velocities are correlated in the velocity diagram with

corresponding flow velocities by the letters E to K.
The numbers 1 to 5 denote the same velocities in the

flow field and in the velocity diagram. Consider,

for example, the flow field (_) on the concave side
of the vane, which is opposite the flow field (_) on

the convex side of the vane. The velocity diagram

gives the corresponding velocity vectors drawn to

their end points 3 and 3' and shows that V 3> V3,.

Hence, according to Bernoulli's equation and the

gas laws, p3<P3,; that is, pressure on the convex
side of the vane (field (_) is higher than that on

the adjacent concave side (field (_)).

This discussion shows that the curvature of (thin)

vanes in a system with completely supersonic flow

does not constitute a contradiction regarding the

pressure differences across the vanes and the entire

system. Figure 2-36 actually established the

theoretical feasibility of completely supersonic

axial-flow compressors in the early days of this

development.

Generally supersonic inlet flow into a vane
system does not continue to be supersonic, but

changes to subsonic flow by way of a normal shock

within the system. However, the entire change in

velocity does not have to take place in the shock, as

assumed in connection with figure 2-35(d). First the

flow may be retarded supersonically, then the

normal shock takes place before the velocity drops
to sonic, and after the shock the flow may be

further retarded subsonically, but only slightly,

because the shock causes a very rapid increase in

boundary-layer thickness. The total flow resulting

from supersonic inlet flow and subsonic discharge

flow is, therefore, usually a successive combination

of the flows described diagrammatically in figures

2-35(c), (d), and (a).

As mentioned previously, the foregoing

considerations are based on the assumption of

constant width b or z_b (fig. 2-29) normal to the

flow section considered. This assumption may be

negated for two reasons:

(1) The physical walls of the space of revolution

in which this flow takes place may be changed so as

to influence the axial velocity component V m

substantially. For example, the normal or radial
width b might be changed proportionally to the

specific volume u in order to keep the meridional

(axial) velocity V m constant. The shape of
cylindrical flow sections through the system would

then be (approximately) the same as that for an

incompressible fluid with the same flow coefficient

Vm, t/U and the same circumferential deflection
Awu/U. Additional corrections for compressibility

pertaining to the local flow conditions are
considered later.
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(2) For radially deep vane systems, say for

Dh/Do<_0.5, one may encounter quasi-transonic

flow conditions, supersonic relative inflow at the

tip, and subsonic relative inflow near the hub. In
such cases there may exist a radial interaction
between coaxial stream surfaces of different

diameters; that is, coaxial stream surfaces between

the supersonic, sonic, and subsonic flow regimes

may not be cylindrical. Early experiments with

axial-flow rotors of this type showed this
interaction to be favorable. Nevertheless it is

evident that departures from flow between coaxial,
cylindrical stream surfaces are of practical

importance, although these departures are often

difficult to predict.

Figure 2-35(a) indicates clearly that (at least in the

subsonic flow regime) the ratio of retardation

w2/w I diminishes for fixed inlet and discharge

angles /31 and /32 with increasing reduction in the

fluid volume, that is, with diminishing ratio of the

axial velocities Vm,2/Vm, l. Thus an increasing inlet

Mach number wl/a I leads to increasing flow

changes in a given vane system and to an increasing
rotor head coefficient 2gHr/U2 until the limit of

flow retardation W2/W 1 is reached. Stall due to

increasing Mach number is probably caused to a

large extent, but not entirely, by this reduction in

the relative velocity ratio w2/W 1.

A few words should be said about the local effect

of increasing Mach number of the inlet relative flow

w_/al with particular reference to the previously

mentioned case where the normal (radial) width of

the flow is changed proportionally to the change in

specific volume v, so that the average axial velocity

component V m as well as the inlet and discharge

flow angles /31 and /32 can remain the same as for
incompressible flow.

As indicated previously, the curvature of the flow

of an incompressible fluid decreases rapidly with

increasing distance from the curved boundary (see,

e.g., fig. 2-8), since the spacing between the

streamlines is a minimum near a convex boundary

(because of maximum local velocity), is a maximum

near a concave boundary, and approaches an
average value away from the curved boundaries.

This change in streamline spacing diminishes with

increasing Mach number and approaches zero at

sonic flow velocity (see, e.g., figs. 4.37 and 4.38 in

ref. 22). Thus the cross-stream extent of the effects

of boundary curvature into the flow field increases

with increasing Mach number and calls for dimin-
ished vane curvature and thickness at increased

Mach numbers, particularly near the leading vane

edges of a retarding vane system (compressor) and
near the trailing edges of an accelerating vane

system (turbine).
The natural conclusion from these facts must not

be driven to the extreme of an impossibility

(choking) at a Mach number of 1, since, contrary to

early expectations, axial-flow vane systems with

slender vane ends have been operated quite
successfully with sonic relative flow at their inlet

and/or discharge, probably because of three-

dimensional effects and the unending extent of

actual vane systems in the circumferential direction.

Nevertheless, for high Mach numbers of the relative

flow, one should observe rules similar to those

observed for flow with low cavitation numbers, that

is, for low minimum-vane-pressure coefficients:

Cp, min Pl -Pmin w2 - w2 w2= __ max -- max _ 1 (2-84)
aw21/2 w 2

This coefficient is directly related to the ratio of the

maximum velocity at the vane to the average inlet

(or discharge) relative velocity. For accelerating

vane systems, w I in equation (2-84) is, of course, to

be replaced by w 2.

Obviously the local Wmax must be kept as low as
possible in order to reduce detrimental com-

pressibility or Mach number effects; that is,

Cp, rnin = W2max'/W21 - 1 must be kept as close to zero
as possible in order to minimize the Mach number
effects in the extended field over which the local

increase in Mach number is noticeable in a flow

with high average Mach number. As mentioned

previously, the same considerations apply to
accelerating vane systems (turbines), where the

discharge velocity and pressure (subscript 2) take

the place of the inlet velocity and pressure in

retarding vane systems (subscript 1), because

w2>w 1 and p2<Pl .

As indicated previously, in the high subsonic and

probably in the low supersonic flow regimes, design

practices useful in the field of low cavitation

numbers (high suction specific speeds) apply also to

vane systems with high Mach numbers of the
relative flow. This writer has found this reasoning

to be of considerable practical value, as long as

changes in the average specific volume and the
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resulting changes in the overall volume flow rate Q
are properly taken into account. Thus the fields of

hydrodynamic machinery design (with respect to

cavitation) and gas-dynamic machinery design (with

respect to Mach number effects) can clearly benefit

from each other. The pertinent vane design consid-

erations are presented in some detail in chapter 3.

2.5.7 Secondary Flow in Axial-Flow Vane Systems

Generated by Boundary-Layer Effects

In the beginning of section 2.5 it is stated that the
flow in axial-flow vane systems can be assumed to

proceed along coaxial, cylindrical stream surfaces.

However, there are several reasons why this
assumption is not correct in all parts of the flow.

Flow departing from the coaxial stream surfaces

of revolution prescribed by the meridional

velocities, here cylindrical surfaces, or from the

associated condition of continuity, is called sec-

ondary flow. The basic reason for such secondary
flow is usually the existence of vorticity in the flow,

that is, the existence of departures from the so-

called potential or ideal flow pattern. The principles
of flow with vorticity are outlined in section
2.6.3.1.

There are at least three reasons for the existence

of vorticity in the relative flow of turbomachinery
rotors:

(1) The relative flow in the rotor has in sections

normal to the axis of rotation a vorticity _rel = - 2co,
where ¢0 is the absolute angular velocity of the

rotor. The existence of this vorticity is explained in
section 2.6.3.2, where vorticity is of major

importance, because at least a component of it is
effective in the meridional stream surfaces of

radial-flow rotors. However, in axial-flow rotors

this vorticity does not affect the flow in cylindrical

stream surfaces, because the vorticity vector _rel
has axial direction and, therefore, has no

component normal to the meridional stream

surfaces. For this reason, the frictionless, relative

flow along these surfaces can be treated as

irrotational, as stated in section 2.5.1.

Furthermore it is shown in appendix 2-A that this

vorticity does not generate secondary fluid motions,

because its effect is fully covered by the

circumferential component of the relative flow if
the absolute flow is irrotational. Therefore the

vorticity _rel= -2o_ does not have to be considered
in this section.

(2) Vane systems with radially nonuniform vane

circulation shed a trailing vorticity into the stream

which is parallel to the relative flow. This vorticity,

along with its effect on secondary flow, is treated in
section 2.7 and is, therefore, not considered here.

(3) The vorticity which is considered in this

section is that generated by fluid friction on the

vane surfaces and on the cylindrical (or nearly
cylindrical) walls bounding the flow space of an

axial-flow machine. The effects of vane boundary

layers are described qualitatively according to

figure 2-38 (see also ch. XV of ref. 6).

The effects of the boundary layers on the
cylindrical casing and hub surfaces are outlined in

accordance with the work by Leroy Smith, pre-

sented in reference 23. They are caused by a

secondary fluid motion shown in figure 2-39, but

their most important effect is a flow along the
meridional stream surfaces at the spanwise ends of
the vanes.

As yet, quantitative predictions of the boundary-
layer effects described in this section have not

reached the simplicity necessary for preliminary

design. The qualitative descriptions given in the
following discussion are all that can be offered to

guide the design engineer.

Figure 2-38 represents diagrammatically the

secondary motion which is due to the rotor blade

boundary layers of axial-flow machines. In the

boundary layer, the relative velocity w L is smaller

than the relatiue velocity w o outside the boundary
layer. For blades staggered in the usual manner of

Boundary layer
or wake

//W 0 _

Axial w_ VU.L 7

direction _ v.O_ - / //i/

Peripheral]'_ _,TV;'_ °t"',,,_/ Development

UI/_/ j f/ cylindricaldirection _ ,IVL / F If/7 of

_d___ J L/_ section

Velocity diagram

within vane sys-
tem

Outward _tion

boundary layer ',l_ [, of rotation

Y+½
Sectionnormaltoaxisof rotation

• Outwardflow in
' boundarylayer

, ..... ',

'- Axial flow outside

boundary layer

Meridionalsection

Figure 2-38. - Radial motion of blade boundary laver in axial-
flow rotor.
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Figure 2-39. -Secondary end flow in axial-flow vane s.vstem.

axial-flow rotors, as shown in figure 2-38, the

circumferential component of absolute velocity V U

is larger in the boundary layer than outside the

boundary layer (Vu, L > Vu, o). The fluid is dragged
along in the circumferential direction by the
rotating blades. With the radial pressure gradient

dictated by the circumferential component of the

absolute flow outside the boundary layer (Vu, o),
the faster rotating fluid in the boundary layer is

centrifuged out, and the outward motion in the

boundary layer indicated in figure 2-38 is generated.

This radial outward motion in the boundary

layers of rotor blades causes a thickening of the

blade boundary layers in the tip section. The tip
section of the blade is, therefore, likely to stall

earlier than would be expected without the radial

motion of the boundary layer. For the same reason,

the boundary layer of the root section of rotor

blades is thinner than would be expected without

this secondary motion. In fact, tip sections of rotor
blades often stall earlier than the root section,

although the root section usually has a higher lift

coefficient CL,oo and a more serious retardation
(lower ratio of W2/WI) than the tip section and,
therefore, should, according to figure 2-26, be more

likely to stall than the tip section. The practical

design consequence is that one must be much more

conservative with respect to separation or stall at

the tip section than at the root section of axial-flow

rotor blades. However, no general quantitative
information on this difference in stall charac-

teristics between root and tip sections of axial-flow
rotor blades is as yet available.

The first experimental observation known to this
writer of this effect of the radial motion of rotor

blade boundary layers was published in 1944 by
Weske in reference 24.

A corresponding but opposite (radially inward)

motion of the vane boundary layer exists in axial-

flow stator vane systems if the flow through the

system has a substantial circumferential com-

ponent. Then the radial pressure gradient is

generated by the circumferential component of the
(absolute) velocity outside the boundary layer.

Since the same velocity component inside the

boundary layer is lower, the boundary layer cannot

sustain the radial pressure gradient and is moved in

the radial inward direction. As a consequence, the

vane boundary layer is thickened at the root

sections of the stator vane system and, therefore,

tends more toward separation than it would if the
radial motion did not exist. For the root section of

stator systems, one should use separation criteria

more conservative than those suggested by figure

2-26. Inversely one can be slightly more aggressive

at the outer tip section of the stator, always under

the assumption that the flow through the stator

system has a substantial circumferential compo-
nent.

Rotor or stator vane systems with substantially

axial vane sections (see, e.g., figs. 2-27(b) and (c))

do not have significant radial motion of their vane

boundary layers. Therefore information on sep-

aration or stall limits presented in section 2.5.4,

particularly in figure 2-26, applies to these systems
without modification.
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There exists another type of secondary motion in

axial-flow vane systems which should be briefly

described, although its consideration in the design

of such vane systems is even more difficult than that

of radial boundary-layer motions along the blades.

This additional secondary motion is generated by

the boundary layers of the outer and inner cylin-

drical walls (shrouds). Together with the main flow,

these boundary layers are turned (or deflected) by
the vane system in the circumferential direction. It
is well known that this kind of motion of a

boundary layer (a layer of shear flow) leads to a

secondary fluid motion, as shown diagrammatically

in figure 2-39. This secondary motion can be

explained in several ways. It is essentially the same

motion as that existing in an ordinary pipe bend or

elbow in the form of a pair of vortices with their
axes in the direction of the main flow.

A simple, physical explanation of this secondary
flow is as follows: The curved main stream between

the curved vanes generates (by centrifugal forces) a

pressure gradient across the stream (i.e., a pressure

increase on the concave side and a pressure
reduction on the convex side of the vanes). This

pressure difference is determined by the flow

outside the boundary layers of the end walls.

Therefore the boundary-layer flow of reduced

velocities cannot sustain this pressure difference
without being curved more sharply than the main

flow and thus deflected toward the low-pressure

side of the channel. It is customary to describe this

secondary motion as overturning of the end wall

boundary layer. To satisfy the condition of

continuity for this secondary motion, one must
assume that the main flow outside the end wall

boundary layers is displaced slightly toward the

high-pressure (concave) wall of the channel, and
thus the curvature (deflection) of the main flow is

slightly reduced. In unshrouded pump rotors, this

secondary motion is reduced by friction on the wall

having the opposite motion relative to the system.

This secondary motion is increased by the same wall
friction effect in turbine rotors.

The same secondary motion has been explained

in a more exacting manner by Hawthorne (ref. 25)

on the basis of Helmholtz' vortex law that vorticity

remains connected to the fluid. The vorticity

representing the velocity gradient in the boundary
layer is a vector normal to the boundary-layer flow

in front of the vane system and parallel to the end

wails. This vorticity vector remains connected to the
fluid particles and, therefore, does not continue to

be normal to the flow as the flow is turned by the

vanes. If the vorticity vector is not normal to the

flow, it has necessarily a component in the direction
of the flow which describes the secondary motion.

Hawthorne demonstrated the validity of this rea-

soning experimentally. (It should be understood

that the first explanation given in this section and

the more rigorous explanation by Hawthorne are

not fundamentally different.)

Quantitative predictions about the effects of this

secondary motion obviously depend on the

thickness of the end wall boundary layer in relation
to some other significant linear dimension of the

system. Such a dimension may be the vane spacing
t, t-r, or the width of the system b. Furthermore

the boundary-layer thickness depends on the

configuration of the passages ahead of the vane

system in a somewhat complicated manner. The

probability that quantitative predictions can be

made for design purposes is, therefore, somewhat
remote and is not considered further in this section.

It is somewhat improbable that 6 would be
proportioned to b, for multistage units. Under the

natural assumption that greater end motion effects

occur with larger 6/b, the condition that _ increases

with t leads to the result that the aspect ratio b/t
determines the effect of this end motion on

performance and design. The larger the aspect ratio

b/t, the smaller the end motion effect. However,

even for b/t _<1, one usually ignores the end motion

effects because of the present lack of knowledge on
how this effect might be taken into account. It is

even possible that the overturning in the end region
might have a favorable effect on pump or

compressor rotors by increasing the work input in

the end region. If this reasoning were to some

degree correct, it would imply that the same
phenomenon should have an unfavorable effect on

turbines, where it would increase the flow energy

withdrawal from the end regions.

There is at least one other real flow effect causing

local secondary motions; it is the leakage stream

past the ends of unshrouded vanes. This stream

often produces at its downstream side a significant

vortex with its axis not quite parallel to the suction

side of the vane tip section. Again no simple way

has been suggested to predict the effect of this

vortex on the performance or on the design of the
vane system.

As mentioned previously, the secondary motions

can also be produced in a frictionless fluid by

spanwise nonuniform vane circulation, so that a

trailing vorticity is shed into the main stream in

accordance with Prandtl's wing theory. This type of
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secondary motion is discussed in section 2.7, which

includes a summary of all types of secondary

motions.

2.6 Theoretical Background of

Hydrodynamic Design of

Radial-Flow Turbomachinery

2.6.1 Introduction

The term radial-flow turbomachinery, as used in

this section, denotes turbomachinery in which the

flow through the rotor has a substantial radial

component. By this definition, the term is not
limited to purely radial-flow machines, like that

shown, for example, in figure 2-40, but also

includes conical-flow machines (called mixed-flow

machines), like that shown in figure 2-41, as well as
machines where the meridional flow in the rotor

changes from axial to more or less radial (see figs.

1-7 and 1-25).

Radial-flow rotors are hydrodynamically distinct
from axial-flow rotors because coaxial stream

surfaces composed of the meridional flow have
changing radii (distances from the axis of rotation)

and, therefore, the vane systems of such rotors have

changing circumferential velocity U(r) through the

rotor. Thus analysis of the relative flow through
such rotors must take account of the acceleration of

this flow as a consequence of the change in radius.

This acceleration exists regardless of the existence

or absence of changes in the angular velocity of the

system. Because of this acceleration, the relative

flow along the stream surfaces of the meridional
flow in radial- or mixed-flow rotors cannot be the

same as the flow relative to the same system at rest,

since an accelerated motion of the system changes

Figure 2-40. - Radial-flo w centrifugal pump impeller.

§2.5.7-2.6.1
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Figure 2-41. -Mixed-flow or conical-flow pump impeller.

the laws of mechanics for motions relative to the

system. This change in flow is expressed most
effectively by the so-called vorticity of the relative

flow in rotating, radial-flow systems, as discussed
in section 2.6.3.2.

It should be recognized that this situation is
different from that described in section 2.5 for the

flow within the cylindrical stream surfaces of an

axial-flow rotor, where the motion of the vane

system in the plane development of this surface is

not accelerated (at uniform angular velocity of the

rotor) and, therefore, follows the laws of mechanics

of a stationary system. This difference between

radial- and axial-flow vane systems is responsible
for the fact that the relative flow within a

cylindrical flow section through an axial-flow rotor
can be simulated by tests with a stationary vane

system (cascade tests), whereas the flow through
rotating, radial-flow vane systems cannot. It should
be noted that the flow in an axial-flow rotor as a

whole is not the same as that for a corresponding

stationary vane system, since the flow in different

cylindrical sections has quite different relations
from section to section for a rotating system than

for a stationary system.
The distinction outlined here between radial- and

axial-flow rotor vane systems is the only fun-

damental hydrodynamic difference between them.

However, there are other important distinctions of
a less fundamental nature that need to be con-

sidered in the theoretical background of radial-flow

turbomachinery design.

Usually radial- and mixed-flow vane systems
have a higher solidity (vane length-spacing ratio)

than axial-flow vane systems. Furthermore the
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aspect ratio (vane span-length ratio) is usually much
lower in radial-flow than in axial-fow machines.

Both distinctions lead to a greater influence of real-

flow effects on the flow in radial-flow systems than

in axial-flow systems. While this may increase the

skin friction and resulting secondary flow losses in

radial-flow machines, the useful action of a single,
radial-flow rotor is usually larger in relation to the

velocity head than that of a single-stage axial-flow

rotor. It is apparently for this reason that single-

stage, radial-flow machines have been developed to
efficiencies as high as (or higher than) those of
axial-flow machines.

Because of the increased importance of real-flow

effects, the design of radial-flow machines depends
more on empirical data than the design of axial-

flow machines. This dependence is also due to the
strongly three-dimensional flow in radial-flow

rotors, which involves transition from axial to

radial flow. Even under ideal flow conditions, this

three-dimensional flow problem is not near a

solution, nor are the complex real-flow effects
under such three-dimensional flow conditions.

The resulting design problems of radial- and

mixed-flow machines are discussed in chapter 4.

This section presents only that part of the

theoretical background that can be applied to the

design of radial-flow machines in a simple and
straight forward manner.

2.6.2 Flow and Design Principles of

Stationary, Radial-Flow Vane Systems

Consider the flow in a stationary, radial-flow

vane system, where the aforementioned problem
resulting from the rotation of the system does not
exist.

Stationary, radial-flow vane systems are usually

used as diffusers around the outside of pump or

compressor rotors (impellers) with radial outward

flow, or as nozzle rings or guide-vane systems
around the outside of turbine rotors with radial

inward flow. In pumps and compressors, the guide

vane system receives a flow with substantial angular
momentum from the inside (i.e., from the im-

peller), and in turbines, a flow with or without

angular momentum from the outside, which

discharges with strong angular momentum.

The flow is considered frictionless, incom-

pressible, and, as a first approximation, two-

dimensional and plane, that is, as proceeding

between two parallel walls normal to the axis of
rotation.

Consider first a circumferentially and axially
uniform flow in such a space of revolution without

vanes. This flow may be regarded as the basic flow

which is to be altered by the action of the vanes.

For the radial component V r the condition of
continuity demands that the volume flow rate be

Q= 2rrb Vr = constant (2-85)

where b is the depth of the flow normal to the plane
of the flow (i.e., in the direction of the axis of

rotation) and is assumed to be constant. Hence

Vr - Q 1 _ constant
2rrb r r (2-86)

In the absence of any circumferential force acting
on the flow, this flow satisfies the law of constant

angular momentum:

constant
Vu = ---- (2-87)

Y

The direction of a streamline of this flow,

measured from the radial direction, is obviously

Vu
tan/3 = -_2_ = constant (2-88)

which characterizes the streamline as a logarithmic
spiral (i.e., a spiral with constant inclination 13

against the radial direction). Its equation is

f

¢-_1 =tan _3 In -- (2-89)
rl

where ,¢ is the angular coordinate, r is the distance

from the center of the polar system, and 'Pt and r l
are constants.

The rotating and radial outward flow between

two parallel walls, having theoretically this form of
streamlines, is called the flow of a vaneless diffuser

or, hydrodynamically, the flow of a vortex source,

and the corresponding inward flow that of a vortex

sink. Except for real-flow effects discussed later,

vanes are needed in such a system only if departures

from the natural flow of constant angular
momentum are desired.

The flow in stationary, radial-flow vane systems

is closely related to the flow through straight
systems of parallel vanes, which is discussed in

section 2.5 in connection with the flow through
axial-flow systems. In fact, one such flow can be

transformed into the other by a process of

conformal mapping, a transformation which

preserves geometric similarity in infinitely small

regions everywhere in the two pictures compared. If
the orthogonal (Cartesian) coordinates of the
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straight system of parallel vanes are designated x in

the tangential direction and y in the axial direction
and so and r are the circumferential and radial

coordinates of the radial-flow (polar-coordinate)

system, the conforma[ transformation of one

system into the other is described by

x=aso+ b

y=a In r+c

(2-90)

It follows that

dx = ad_

(2-91)

dy=ad__r
r

which show that the inclination of any line in one

system is equal to the inclination of the corre-

sponding line in the other system, since

dy dr
- (2-92)

dx rdso

It can also be seen that an inclined, straight line in

the Cartesian system described by the equation

y = mx + n (2-93)

and having an inclination against the x-direction of

c&
-- = m (2-94)
dx

is transformed into a logarithmic spiral with the

same inclination against the peripheral direction.

Substituting equations (2-90) into equation (2-93)
leads to

a In r+c=maso+mb+n

1 mb +n - c
--ln r = so+ - so+ constant (2-95)
m ma

which is indeed a logarithmic spiral with the

inclination 1/m against the radial direction or the

inclination m against the peripheral direction. (The

term inclination denotes here the tangent of the

angle of inclination.)

An orthogonal network of lines x = constant and

y = constant in the Cartesian system (straight system
of parallel vanes) is transformed by equations (2-90)

into an orthogonal network of lines _=constant
and r=constant in the polar (radial-flow) system.

Constant spacing ,5.x of the x=constant lines
results, according to equation (2-91), in constant

angular spacing ASO=,Sx/a of the radial lines, and

constant spacing Ay of the y = constant lines results

in a radial spacing ,_r of the circles r=constant,

which, according to equation (2-91), is proportional
to r, that is,

Ar = '_y- r = constant x r (2-96)
a

A system of parallel curved vanes in the Cartesian

system is transformed into an equivalent system of
vanes in the radial-flow system simply by giving

corresponding points along the vane contours the
same locations relative to the two networks of

orthogonal coordinate lines just derived. Figure
2-42 shows this transformation.

The laws of fluid mechanics state that a

conformal transformation of a plane, irrotational

r0

Figure 2-42.- Conformal relation between stationao,, radial-

flow vane system and straight cascade of vanes.
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flow (see appendix 2-A) of a frictionless, incom-

pressible fluid results in a flow obeying the same
laws. This means that a plane, irrotational flow

through the system of straight and parallel vanes is

transformed into an equally valid flow through the

radial flow vane systems, with all flow angles

measured from the respective coordinate lines being

the same in both systems. For example, with the

inlet flow angle (measured from the axial and radial

directions, respectively) the same in both systems,

the discharge flow angles are also the same in both

systems. The angular departures of the frictionless
flow from the one-dimensional approximations are

also the same, and all theoretical information

available on the frictionless, incompressible flow

through straight systems of parallel vanes (such as

Weinig's results given in sec. 2.5) applies to the

conformal, stationary, radial-flow system. (Weinig's

results apply directly to a radial-flow system of thin

vanes curved as logarithmic spirals, which may be

regarded as the zero-lift direction of other radial-
flow vane systems.)

The correspondence between the two flow

pictures compared has so far been described only by
the equality of flow angles relative to the two

coordinate systems. However, the velocities in the

two systems, while not equal, also have a very

simple relation to each other. If the condition of
continuity of an incompressible fluid in both

systems is to be satisfied, the product of the velocity

and any characteristic linear dimension of the

system must stay the same, because in a plane, two-

dimensional system a linear dimension is equivalent

to an area, since the dimension normal to the plane
is constant. Thus the velocities at corresponding

points of the two systems are related by the local,
linear scale ratio, which, according to equations

(2-92) and (2-91), is

r d_ _ dr _ r (2-97)
dx dy a

This is the local radial flow system scale divided by

the scale of the straight system. When the velocities

in the straight system are designated Vst r and
velocities at corresponding points of the radial

system Vrd, the velocity ratio becomes

Vrd a
- (2-98)

Vst r r

The factor a is a constant scale ratio of the drawings

compared. For example, if one sets the scale ratio

equal to 1 at any particular radius rl of the radial

system, so that rl/a= 1 or a=r I, then

Vrd _ rl

Vst r r
(2-99)

Velocities in the two systems are, therefore,

definitely related by magnitude as well as direction.

There exists an extremely important limitation

regarding the equivalence of flow pictures related

by a conformal transformation.

As observed previously, all statements regarding

conformal transformations of flow pictures pertain

only to frictionless fluids. Therefore the equiv-

alence between conformal flow pictures does not

apply to any phenomena related to fluid friction,
such as viscosity and turbulence. This can be
demonstrated best in connection with the most

important effect of fluid friction, namely,

separation or stall.

In section 2.5.4, separation is related to the

pressure rise along the low-pressure side of the

vanes. There is no obvious reason why this criterion

should not apply to stationary radial-flow vane

systems, and it is so applied throughout this com-
pendium. However, the specific results derived

from this principle change as a result of a
conformal transformation. This should be obvious

from the fact that the pressure rise from the point

of minimum pressure to the trailing end of the blade

changes according to the difference in the square of
the local scale ratio between these two points and

produces an additional change in velocity and
thereby an additional change in pressure.

A fairly exact consideration of this effect would

probably be too complex for design purposes and

hardly justified in view of the highly approximate
character of all calculations regarding separation.

However, a first approximation is very simple to
achieve.

The ratio of discharge to inlet velocity is of major

significance and is used as one of the principal

variables. Assume that this ratio is V2,str/Vl,st r in
the straight system of parallel vanes. To simplify

the consideration without any real loss in

generality, one may assume that the local scale ratio

is unity at either r I or r2, say at rj, so that

Vl,str = Vl,rd. The ratio of velocity change in the
radial system is then

V2,rd V2,str ' V2,rd Vl,str

Vl,rd Vl,str V2,str Vl,rd
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From equation (2-99), V2,rd/V2,str=rl/r2 . With

Vl,str = Vl,rd, it follows that

V2,rd _ V2,str rl

Vl,rd Vl,str r2
(2- !00)

Assume, for example, that the radial-flow system

is an outward flow system, so that r2>rl; then

172, rd < V2,str

VI ,rd VI ,sir

which means that with retarded flow in the straight

system (V2,str/Vl,str<l) the retardation in the
radial outward flow system is more severe than that

in the straight system. For design purposes, one can

set a lower limit for V2.rd/V l,ra according to section

2.5.4 and figure 2-26 and then determine V2,st r

/Vi,st r from equation (2-100) so that the limit of

V2,rd/Vl,rd is not violated, in other words, sep-
aration limits must be considered in connection

with the finally desired system and must be

computed by means of equation (2-100) to establish

the conformal system to be used to develop the final

system.

In addition to the effects of fluid friction, there

are other limitations on the use of conformal

mapping, such as compressibility and non-

uniformities in the axial width of the vane systems.

Such departures from the ideal conditions can be

handled by approximate corrections, which are
discussed in chapter 4 in connection with the

practical design of stationary, radial-flow vane

systems. The same is true for the design of such

systems by methods different from those of a

conformal transformation from a straight system of

parallel vanes.

2.6.3 Flow Through Rotating
Radial-Flow Vane Systems

2.6.3.1 Summary of laws of incompressible,

frictionless flow.-This section merely states the

laws of incompressible, frictionless flow used in this
and later sections. The derivations of these laws are

presented in appendix 2-A, and the equation

numbers are those used in the appendix. Particular

attention is given to the laws of vorticity.

§2.6.2-2.6.3.1

From section 2-A.I, with u and v denoting the

velocity components in the Cartesian coordinate

directions x and y, the condition of continuity is

Ou Ov

0x + 0-y =0 (2-A-l)

and the condition of irrotational flow is

Ov Ou
.... 0 (2-A-16)
Ox Oy

(The term irrotational is also used where the entire

flow rotates about one center at radially uniform

angular momentum, which satisfies eq. (2-A-16).)

Equations (2-A-l) and (2-A-16) together satisfy
the general momentum equations by Euler for any

plane, frictionless flow. Equation (2-A-16)

expresses the fact that a fluid particle dx, dy does
not rotate and that the circulation around this

particle is zero.

The general momentum equations by Euler can

also be satisfied by equation (2-A-l) and the

condition that for any fluid particle

d_x,y) _ 0 (2-A-19)
dt

where

Ov Ou

_(x'Y)=- _ Oy (2-A-17)

and is called the vorticity of the flow.

Equation (2-A-19) expresses the second vortex

law by Helmholtz: The vorticity _'= Ov/Ox-Ou/Oy

of a particle of a frictionless fluid does not change
with time; that is, the vorticity remains connected to

the fluid. Consequently the vorticity is constant

along the streamlines of such a fluid in steady
motion.

The vorticity describes the rotation of a fluid

particle according to the relation

1

_o= _ _x,y) (2-A-23)

where _0 is the average angular velocity of the fluid

particle.
The circulation around a fluid particle dx, dy is

aT = _(x,y)dx dy (2-A-25)

that is, the circulation is equal to the vorticity of the

particle times its area (or volume).

The circulation along a finite, singly connected,

closed contour C is equal to the (algebraic) sum of
all circulations inside the contour:
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Paround C = _I'within C (2-A-26)

As a consequence, the circulation about a finite
contour is

I" = iif(x,y)dx dy (2-A-27)

where the integrals cover the area inside the
contour.

The vorticity in polar coordinates is

_(r,_)= Vu OVu-- + -- (2-A-28)
r Or

where V U is the circumferential velocity compo-

nent. The vorticity is connected with the radial

change in the angular momentum, or moment of

momentum rV U, as follows:

_'(r,¢)= 10(rVu) (2-A-29)
r Or

Therefore a curved, irrotational flow (_-(r,p) = 0) is

a flow with radially constant angular momentum

(rVu= constant) about the center of curvature.

From section 2-A.2, with u, v, and w denoting

the velocity components in the directions of the
Cartesian coordinates x, y, and z, the condition of

continuity is

Ou Ov Ow

3_ + _ + _ =0 (2-A-30)

The vorticity is a vector normal to the plane of
the vortex motion. Its three corn _onents are

Ow Ov .

_'x= Oy 3Z (m the y,z - plane)

Ou 3w
_'Y= 3_ - 3._ (in the z,x-plane) (2-A-31)

3v 3u .

fz = Ox _ (m the x,y-plane)

The first vortex law by Helmho[tz expresses the

condition of continuity of the vorticity vector:

Ofx Ofv Ofz = 0 (2-A-32)
ox

If vortex lines are defined as having everywhere
the direction of the local vorticity vector, the first

vortex law by Helmholtz (eq. (2-A-32)) can be

stated in the following form: vortex lines cannot
end in a frictionless fluid.

The second vortex law by Helmholtz can be
stated for three-dimensional flow in the following

form: vortex lines and vorticity vectors remain
connected to the fluid and move and are stretched

(or shortened) with the fluid; that is,

_'1A 1= _'2A 2 (2-A-34)

(If the vortex lines are curved, the vorticity vectors

must be drawn at a sufficiently small scale to

coincide everywhere with the vortex lines.)
2.6.3.2 Vorticity of relative flow.-The flow

entering a rotor without any rotation of its absolute

flow (no prerotation) will rotate relative to the rotor

at an angular velocity oppositely equal to the

angular velocity o_of the rotor. Thus the vorticity of

the flow entering and relative to the rotor is,

according to equation (2-A-23),

fre/,¢= - 2+.o (2-101)

In the more general case, where the fluid at the

inlet has a tangential component, the vorticity

relation can be expressed as

Gbs - _rel = 2&-" (2-101a)

From this expression, it is evident that, whenever

the radial distribution of the inlet tangential

velocity is such that faas=O, which implies that it
must obey the law of constant angular momentum,

equation (2-101a) reduces to equation (2-101).

If the rotor is a mixed-flow rotor (fig. 2-41), the

vorticity of the incoming flow is determined by the

angular velocity of the rotor, as shown in the

development of a conical flow surface. This angular

velocity is

_,_=w sin ¢, (2-102)

where co is the true angular velocity of the conical-

flow rotor. The vorticity of the relative flow in the

conical stream surface is, therefore,

frel,¢ = -- 2c0¢ = -- 2o_ sin (2-103)

Evidently this vorticity goes to zero as the cone

angle _ goes to zero, that is, as the system
approaches axial flow. (Eq. (2-102) is most

convincingly derived from the peripheral velocity at

any point A: U A = rw = r¢co¢; therefore w_ = cor/r_
= o_ sin so.)
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Forkinematicreasons(whenflowisviewedfrom
a rotatingplatform),the axial component of the
vorticity of the relative flow must remain constant

as long as the absolute flow continues to be

irrotational. This vorticity cannot influence the

relative flow under the one-dimensional assumption
of an infinite number of frictionless vanes, since the

form of the relative flow is uniquely prescribed. The

vorticity of the relative flow, therefore, can

influence only the departures of this flow from the

one-dimensional assumption, that is, from the vane

shape. If the absolute flow between the vanes (of
finite spacing) is assumed to remain irrotational,
the relative flow between the vanes should have

vorticity with a constant axial component.

The vorticity of the relative flow in radial-flow

rotors complicates its theoretical analysis con-

siderably. As a result, only one approximate

solution of the relative flow problem has been used

extensively in the design of radial-flow rotors. This
solution is described in section 2.6.3.5 and is

compared with an exact solution of this flow

problem obtained by investigating the absolute flow
through radial-flow rotors. This comparison shows

an amazingly good agreement between the exact

solution and the approximate solution.

2.6.3.3 Static pressure, circulation, lift

coefficient, and separation. - Since the relative flow

in radial-flow rotors is not irrotational, the laws of

relative fluid motions are expected to be

substantially different from those of irrotational

flow through the same passages at rest. The first

relation to be investigated in this section is that

between the static pressure and the relative
velocities.

According to Euler's turbomachinery equation,

the change in total head from inlet r I to discharge r2
of the rotor is

Hr= U2Vu'2- UI VU'I (2-104)
go

For a frictionless fluid, if all head losses are

neglected, the change in rotor head is also

2 2
Vz- VI (2-105)

Mr = hst, 2 - hst, 1+ -2go

where V denotes absolute fluid velocities, and hst

denotes the static head hst=p/goO. The change in
static head is, therefore,

U2Vu, z-UIVu, l V 2- V_ (2-106)
hst, 2 - hst, 1= go 2go

§2.6.3.2-2.6.3.3

In the following derivations up to equation

(2-108), the subscript r denotes not only the strictly
radial direction, but also the radial direction in the

development of a conical flow section such as that
shown in figure 2-41. With this definition, the

meaning of these derivations is not restricted to

flow along planes normal to the axis of rotation,

but applies also to conical stream surfaces. Using
the substitutions

= vb+

Vu= U- w U

V 2 = (U- wu) 2 = U 2 + w2- 2Uw U

one obtains

go(hst,2- hst, 1)= U_- U2Wu, 2 - U_ + U 1Wu, 1

U_ w22 + U2wu,2 _rr__2
2 2- --2

go(hst,2 - hst, 1)

_ U'_-U_l-W2,2+W2,l- V_r,2+_rr, l
2

(2-107)

Considering that

w2,2 + 2 _Vr,2-

w2 v+ :U,I + r,l

one obtains

2 2u2- ul
hst,2 - hst, l - -25° + 2g °

(2-108)

The term (U_- U_O/2g o is the difference in static

head between the radii r2 and r I in a body of fluid
rotating at uniform angular velocity _, since

U l = rico and U2 = r2o_. The term (w 2 - w_)/2g o is the
static head difference due to the change in relative

velocity from w I to w 2, according to Bernoulli's

equation.

The foregoing derivation is obviously based on

the assumption of complete axial symmetry. Thus

the results apply only to changes along the
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streamlineof therelativeflow,sincechangesacross
thestreamlines,specificallyin thecircumferential
direction,areeliminatedbytheassumptionof axial
symmetry.Equation(2-108)and the subsequent
paragraphcan, therefore,be expressedby the
followingstatement:

Differencesin staticheador pressurealongany
streamlineof therelativeflowin radial-flowrotors
areobtainedbyaddingthestaticheador pressure
differencecalculatedfrom the relative flow
accordingto Bernou[li'sequationto thestatichead
or pressuredifferencethatwouldexistif thefluid
within the rotor wererotatingat the angular
velocityof therotor likea rigidbody.

It shouldbe notedthat Bernoulli'sequation
cannotbe valid along the streamlinesof the
absoluteflow throughany turbomachinerotor
(radial or axial), becausethesestreamlinesare
intersected(generally)bytherotorvanesinmotion,
that is, theyare subjectto movingforcesand
therebyto a headadditionor subtractionwhichis
ontheaveragejustequalto therotorheadH r.

The static-pressure or head changes, according to

equation (2-108), are partly due to the rotation of

the fluid and partly due to the (radial) vane forces.

A general derivation of these forces would be quite

complex. However, the validity of the foregoing

result can be demonstrated by cases where the radial
vane force is zero.

First, consider a rotor with straight radial vanes

(fig. 2-43). The flow is assumed to enter at such a

velocity that Vu, I=U1 and the circumferential

component wu, l=0. According to the one-
dimensional theory of the relative flow, w U is zero

everywhere. To simplify the reasoning, assume

Vr= constant. Then, according to equation (2-107),

the static head increase from r I to r2 is

hst,2- hst 1- U_- U_I
, 2g o

which is immediately seen to be valid since the

absolute peripheral velocity within the rotor is

indeed Vu= U=rw and conforms to solid body
rotation.

Second, consider flow in a fictitious vaneless

rotor. It has the same meridional profile as the first

rotor (fig. 2-43), but has no vanes, so that there are

no vane forces. Hence the absolute flow must obey

the law of constant angular momentum:

rl

Vu = Vu, 17

Assume again that at radius r I

(2-109)

Vu, 1= UI

so that

Vu = UI r_
F

(2-110)

Since the pressure p is here a function of r only

(axial symmetry), the equation of simple radial

equilibrium appears in the form

ap vb
(2-111)

dr -o r

or

i21 2 v,2 d rdp=P2-PI=Pfl U r

Substituting equation (2-1 I0) gives

P2-PI=OU_Irlfl r3 - 2 1- r_ (2-112)

This result, derived independently of the previous

derivations of equations (2-107) and (2-108), can be
compared with (2-107) and (2-108) to check their

validity. Evidently, according to equation (2-110),

Wu= U- V u = U- UI r-A
r

Hence

( rl)WU, 1 = U 1 1 - _ =0

Wu, 2 = U 2 - U! r ll
r2

W2u,2 = U_ + U_I_ - 2U2U 1 rlr2

w2,2 = U_ (1- 2 r_,] + U_Ir-_r12"_ r2

(2-113)

(2-114)

Substituting equations (2-113) and (2-114) and

Vr, 2 = Vr, 1 into equation (2-107) leads to
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P2 - Pl = Pgo(hst,2 - hst, t)

=P[_ U_I2 U_( 1-2 r2"_- U_Ir212 r_2,,] 2- r_J

With U2/U] = r2/rl,

P2-Pl =p-_ (r_r_l_l_ r_1r2+2_ r_Jr2 '_

P_f_ (1- r12_P2 - Pl = -- r--_)
(2-115)

which agrees with equation (2-112) and proves that,
in the absence of vane forces, considerations of

simple radial equilibrium give the same results as

equations (2-107) and (2-108), derived from Euler's
turbomachinery equation.

Finally, consider velocity and pressure changes

across the relative flow in a rotating vane system

which would have no such velocity or pressure

changes if it were at rest. The velocity and pressure

changes in such a system are entirely due to the

rotation of the system.

Refer again to figure 2-43. The flow is again
assumed to enter at the circumferential velocity

Vu, I = U1, so that Wu, 1=0. The condition wu=O or
Vu= U is assumed to be satisfied throughout the

system.
The change in angular momentum for an

infinitesimal radial step dr is equated to the moment

applied to the flow by the vane pressure difference

ap:

sVu ° rw
b2

III

Figure 2-43. -Radial-flow rotor with straight radial vanes.

(2-116)

where QI is the rate of volume flow per blade.

With Vu=U=r_o, evidently OU/Or=co. Fur-

thermore Ql =r Aso bV r. Hence

dM = Ap rb dr = pr A¢ b Vr( Ur + wr dr + Udi- Ur)

Ap r dr = pr A¢ Vr2U dr

and thus

Ap=2p A_# UVr=2 p A¢ rwV r (2-117)

(which could be derived also from the Coriolis

forces).

The circulation over the element by the vorticity

of the relative flow _rel is obtained by equating the
differential form of the equation (2-31) to equation

(2-A-25):

drrel = r_rel A_ dr= 2 V_, r dr (2-118)

where V_, r is the velocity generated by the vorticity

Fret. (Since radially adjacent elements can be
assumed to have the same flow within the limits of

the equality of these flow fields, there is no

significant contribution to dr from the flow along
the outer and inner sides of the element. An analysis

of this problem has shown that any contributions of
these sides to dI' must be of a lower order of

magnitude than that expressed by eq. (2-119). This

argument does not hold true in the radial end

portions of the passage and is further investigated
in sec. 2.6.3.5.)

By equation (2-118)and _rel = - 2_o,

V_,r=r_rel ? = - r A,¢ co (2-119)

Accordingly equation (2-117) can be rewritten so

that the vane pressure difference is

Ap = - 2p VrV_;, r (2-120)

This vane pressure difference can also be

computed by using the circulation dr over the vane

element of length dr. According to the law by Kutta

and Joukowski (see eq. 2-32) and equation (2-31),

the force on the blade element of the length dr is
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dF 1=pV r dI'v=pV r 2dr Vr,t,= Ap dr

or

ap= 2p Gvr, v (2-121)

where Vl,,v is the velocity induced by the local vane
circulation.

Note that in figure 2-43 the circulation dFre I

about the fluid element (r _¢ dr) has the opposite

direction from the circulation dF v about the vane
element dr; this difference accounts for the

difference in signs between equations (2-120) and

(2-121). These two equations and figure 2-43 show

that V¢, r and VF, v are actually identical.
Finally, one must consider the departure A VB

from the uniform radial velocity Vr which would

exist if it were related by Bernoulli's equation to the

vane pressure difference Ap determined by the
change in angular momentum over the radial

distance dr. With p denoting the mean pressure,
Bernoulli's equation takes the form

P+ + _P(Vr-_VR)2=P - + P_(Vr+ _VB) 2

or

2q)= 2 ( _+ AV2B+ 2Vr aVB-- _-AV2B+ 2Vr AVB)

Hence

Ap = 20 Vr AVB (2-122)

Equations (2-117) and (2-119) to (2-122) show

that, in a rotating system of straight, radial vanes,

the departures V¢, r from the average radial velocity
Vrdue to the vorticity ere[= -2_ are identical to the

departures Vr, v from the average radial velocity
caused by the local vane circulation according to the

law by Kutta and Joukowski. Both departures V;, r
and Vr, v are related to the vane pressure difference

Ap (as determined from the radial change in angular
momentum) by Bernoulli's equation. In a rotating

system of straight, radial vanes, Bernoulli's

equation, therefore, holds for the changes in

relative (radial) velocities across the relative (radial)
flow.

The vane circulation in rotating, radial-flow vane
systems is determined from the absolute fluid

velocities in the same manner as for axial-flow vane

systems. As can be seen from figure 2-44, the

contributions of the contour portions BC and DA
to the circulation about the contour ABCD cancel

out, since these lines can be chosen to be in identical
positions relative to the blades. All that needs to be

assumed is perfect periodicity of the flow picture

from blade to blade. (It is also assumed that r2 and

r I as defined by fig. 2-44 are far enough from the

vane system to justify the use of average values of

Vu, 2 and Vu, l at these radii.) As a consequence, the
vane circulation I' v is

F v = Vu,2r 2 ,.X¢- VU, lrl A_p (2-123)

where A¢ is the angular spacing between the vanes.

The lift coefficient is derived by the same
principle as for axial-flow vane systems (see sec.

2.5.2), by equating the vane force per unit span

pw_,
Ft =CL,_, (2-124)

(where CL, oo is the lift coefficient) to the same vane
force according to the law by Kutta and Joukowski:

FI = pwo_Pv (2-125)

The mean velocity woo of the flow relative to the

blades of a rotating, radial-flow vane system is

defined by equations (2-124) and (2-125). A

separate investigation would be necessary to

VU, 2

D_

x,

" Ao\

_. _ _'_
"'_Vu 1rl_ ,

¢

Figure 2-44.- Circulation about vane of radial-flow rotor.
A¢ = 2r/N= constant.
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determine how woo is related to the relative

velocities at the inlet and discharge of the system. In

the absence of such an investigation, it may be
assumed that

w I + w 2

woo - 2 (2-126)

Equations (2-124) and (2-125) obviously lead to

the same relation as for single airfoils and for

straight systems of parallel vanes:

2G
CL. oo= _-_l (2-127)

With equation (2-123),

CL, oo=2 ASoVu'2r2- Vu'lrl (2-128)
wool

When the peripheral vane spacing at the radii r2
and r 1

12 = r 2 A¢

(2-129)

tl=r 1 ASo

is introduced, equation (2-128) may be written in
the form

VU, 2 g2 ( VU. Irl
CL,

oo=2 w_-_ 7 kl Vu, zr2 J
(2-130)

which applies primarily to pumps or compressors

where Vu,2r2> Vu, lrl, the subscript 2 applying to
the rotor discharge and the subscript 1 to its inlet.

For turbines, where Vu, lr I > Vu,2r2, one avoids
negative values by defining the vane circulation by

Fv= Vu, lr I A¢- Vu,2r 2 A_ (2-131)

so that

CL,oo = 2 A_ Vu, lrl - Vu,2r2 (2-132)
wool

which leads to

CL'oo=2 VU'lwoo tll (1- VU ,VU'2r2_lrl/ (2-133)

For zero angular momentum of the flow on the

low-head side of the rotor (Vu, j=O for pumps;
Vu, 2 =0 for turbines), equations (2-130) and (2-133)
assume the same form as equation (2-54), derived in

section 2.5 for axial-flow vane systems.

In the field of axial-flow turbomachines, the lift
coefficient can be used to obtain a first

approximation of the vane shape, and in

combination with figure 2-26, it constitutes a

criterion for separation or stall.
The relation between the lift coefficient and the

form of the vane (including its angle of attack)

stems primarily from the comparison between the
vanes of axial-flow turbomachines and single

airfoils in an infinitely extended flow. This

comparison is not directly applicable to design

problems of radial-flow rotors, partly because of
the vorticity of the relative flow and partly because

of the predominant use of vane systems of high

solidity. It is indicated in section 2.5 and becomes

more apparent in chapter 3 that even the design of

axial-flow vanes begins to differ very strongly from

that of single airfoils whenever the solidity of the

system approaches or exceeds unity. Therefore, it is

safe to conclude that the lift coefficient generally
cannot be related effectively to the shape of vanes in

rotating, radial-flow (and some axial-flow) systems.

Such a relation is, therefore, not further explored in

this compendium.

The situation is somewhat different with respect
to separation or stall. While it is true that the flow

conditions in radial-flow rotors differ markedly

from those in axial-flow vane systems, the lift

coefficient, nevertheless, describes for both the

ratio of the average vane pressure difference to the

velocity pressure of the mean velocity relative to the

blades. Since this velocity pressure (or energy) must

be expected to be of major importance in
negotiating the vane pressure variations without

separation, it is reasonable to assume that the vane

lift coefficient plays with respect to separation in

radial-flow rotors a part similar to that in axial-flow

machines, although this comparison is as yet purely

qualitative.
Recall that, in addition to the lift coefficient, the

retardation (or acceleration) of the general relative

flow (the ratio Wz/Wt, in fig. 2-26) has an important
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influence on separation in axial-flow vane systems.

Pressure changes (gradients) of the mean relative

flow should be expected to have a similar effect in

radial-flow systems.

Many years ago yon Karman called this writer's

attention to the fact that pressure differences

resulting from a centrifugal force field cannot have

any effect on separation any more than a
gravitational field can have such an influence,

because the body force that produces this type of

pressure gradient is identical to the body force

acting on the fluid particles, and thus the effect is
cancelled.

The static-pressure gradients in radial-flow rotors

are described previously as being partly due to a

centrifugal force field and partly due to changes in
the relative flow velocities. With some reservations,

one can say that only those pressures gradients that

are due to changes in relative velocities should be

taken into account with respect to separation in
radial-flow rotors, This means that only the second

term in equation (2-108)

Ahst, w-w2-w_-2g° 2g °w2 (1-W_)w_l (2-134)

contributes to the danger of separation. Accord-

ingly the relative velocity ratio w2/w t, which is

important for axial-flow vane systems, has con-

ceivably the same significance for radial-flow
rotors. (There is no reason why it should not be

used in the same manner for stationary, radial-flow

vane systems; it can be written with respect to the

absolute velocities in the forms (V_I- _)/2go, and

V2/V t, as can be seen from eq. (2-106) with
Ut = U2 = 0.)

Since the vane lift coefficient has with regard to

separation at least qualitatively the same

significance for radial- and axial-flow rotors, it can
be concluded that in tile absence of better

information, figure 2-26 can bc used also for radial-

flow rotors (and radial-flow stator vane systems)

with the understanding that the limiting values of

various separation coefficients may bc different for
radial- and axial-flow systems, since no test points

are available for radial-flow systems. Our relative

ignorance of the flow in rotating radial-flow

passages and certain theoretical and experimental

results by Johnston, which are discussed briefly in

section 2.6.3.8, strongly suggest that more

conservative limits of CL and w2/w ] be used for

radial-flow rotors than for axial-flow vane systems.

On the other hand, radial-flow rotors with axial

inlets and straight radial vanes in their discharge

portions have been operated with reasonable

success at ratios of relative flow retardation w2/w I

far below the lower limits indicated by figure 2-26.

It is as yet not clear whetlmr such rotors operate

with a more or less separated form of flow. Overall

pump or compressor efficiencies obtainable with

such rotors may exceed 80 percent, but they have
not yet reached tile 90-percent level achieved

reliably with radial-flow pumps with backward-

bent rotor vanes, which permit thc flow to stay

within the w2/w I limits indicated by figure 2-26.

2.6.3.4 Results o1" exact theoretical anal.vs'is of

abs'olule friclionles's flow.-The inward flow

through radial-flow vane systems, usually used in

hydraulic turbines, is fairly well described by tile

one-dimensional theory, partly because the relative
flow in such systems is mostly accelerated and

partly because departures of the discharging flow
from the direction of the vanes are effective at the

minimum diameter of tile system, so that their
effect is reduced.

The opposite is true for the outward flow in

radial-flow systems used with centrifugal pumps

and compressors. Tile departures from the one-
dimensional theory in well-designed radial-flow

pump rotors as measured by the change in angular

momentum (the rotor head Hr) are about 20

percent.

t:igurc 2-45 sho_s the inlet and discharge velocity

diagrams ol a slandard ccnlrifugal pump rotor with

Direction of

Direction vane or w2 7
of vane

" -_ ---V U". U, 2 ,2 J, I /

/
/

/

/

./

Figure 2-45.- Velocity diagrams of radial-flow pump rotor.

FIo w angles c_ and t3 are measured from peripheral direction,

in agreement with Busernann "s paper (re.[. 30).
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backward-bent vanes. The discharge diagram is

shown in relation to tile discharge direction of the

vanes and to a fictitious relative discharge velocity

w 2. The magnitude of this velocity is calculated by
the condilion of continuity from the volume flow

rate Q and the cross-sectional area between, and

normal to, the vanes at their discharge ends (d 2, as
shown in fig. 2-46, times the average axial width of

the impeller over the vane distance d2). The
fictitious velocity diagram obtained on this basis

contains a fictit ious absolute discharge velocity with

a peripheral component Vu, 2, which may be used in
Euler's turbomachinery equation in the form

H b VU, I UI
-- H r -- C H I/_'2U2 - (2-135)

_lh go

(It should be understood that the inlet velocity Vu, 1
is not part of the rotor problem but is determined

by similar considerations from the inlet passages or
guide vanes ahead of the rotor.)

As indicated previously, the head correction

factor Ctt is equal to or slightly less than 0.8 if w2 is
determined from the discharge cross section

between tile vanes. This method of approximaling

the relative flow one dimensionally from the cane

shape has the advantage of taking a fair portion of

the vane shape into account and thus avoids the

difficulty of defining a representative discharge
vane angle for vanes with finite thickness and

radially varying vane angle.

Figure 2-46. - Logarithmic spiral uanes with notation of figure
2-47.

Because of the substantial departures of Ctt from
unity, the two-dimensional outward flow through
radial-flow rotors has received extensive attention

in Europe during the second and third decades of

_his century in tile form of a number of theoretical

investigations (see refs. 26 to 30). The following

presentation is based on the last of these

investigations (ref. 30, by Busemann), because its

results are given in a form readily applicable to the
design of turbomachinery.

All investigations described in the references are

based on the theory of plane, two-dimensional

motions of an incompressible, frictionless fluid.

Because of the vorticity of the relative flow through

radial-flow rotors, the absolute flow is investigated.

In the investigation by Busemann (ref. 30), the

vane system is approximated by a finite nurnber of

logarithmic spirals grouped symmetrically around
the center of the system. All vanes of the system arc

transformed conformally into a single circle. The

center of the system appears as a vortex source close

to the circle representing the vanes, and infinity is

transformed into infinity.

The flow lhrough the system is divided into three

parts:

(i) Through flow, that is, the absolute flow

through the syslem at rest
(2) Displacement flow, that is, the absolute fluid

motion produced by the rotation of the

vane system at zero through flow
(3) Circulation flow, the flow about the vanes

whereby the Kutta condition of smooth

flow at the trailing vane edges is satisfied

If the circulation flow is divided into two parts,

one satisfying the Kutta condition for the through
flow alone and the other the condition for the

displacement flow alone, the following statements
can be made:

(I) The displacement flow with its part of the
circulation describes the ideal-flow characteristics,

particularly the ideal head H r at zero through flow
(shutoff conditions). According to the one-

dimensional theory, Vu,2 = U 2 and Vu, t =0 under
these conditions, so that the shutoff rotor head is

Ho, l - U2 (2-136)

go

where the head subscript o refers to Q=0, and the

subscript 1 refers to the one-dimensional theory.
Figure 2-47 shows the results by Busemann

regarding the shutoff rotor head H o under ideal,

two-dimensional flow conditions by the ratio ho of
this head to its one-dimensional approximation.
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Combining equation (2-136) and the results in Hr =
figure 2-47 gives

H o = ho U5 (2-137)
go

(2) The through flow, including its part of the
circulation, is the flow through the vane system at

rest and thereby accounts for the departures of the

ideal-flow characteristics, particularly tile head,

from tile ideal shutoff (zero-flow) conditions. By

this definition, the velocities of this I]ow are

obviously proportional to the volume flow rate so that
through the machine.

From his theoretical work, Busemann was able to

conclude from this situation that, at constant

rotational speed, the relation between the ideal
rotor head H r and the flow rate Q can be

represented by a straight line. This conclusion can

bc made plausible on the basis of Eulcr's

turbomachinery equation (2-19) in the following

manner. Evidently

VU, 2 = U 2 - WU,2

Therefore

U2(U2 - WU,2) UI VU, I

go

_ U_-(U2w<2+U_Vu.l)

go
(2-138)

According to figure 2-45,

wU, 2- W2 COS,J2

l/U,l-- VI cos o_ l

Hr= U_-(U2w2c°s32+UIVIC°SC_I) (2-139)
go

where ,/32 and o_1are, in the notation of Busemann's

paper, the flow angles measured from the
circumferential direction.

From the condition of continuity, one can

conclude that w 2--constant 2xQ and V l

=constantjxQ, since V l is controlled by a

stationary guide-vane system in front of and inside
the rotor inlet. Hence

Hr = _ - Q[U2(constant 2 X COS _2) + Ul(Constantl × cos oq)]
go

(2-140)

This equation demonstrates the aforementioned

straight-line relation between Hr and Q, since there
is no reason to assume any variation in the flow

angles c_l and/_2 under ideal flow conditions.
For pump rotors with backward-bent vanes, that

is, with the relative flow discharging backward, so

that VU,2<U 2, the ideal head-capacity (H,., Q)
curve is generally a straight line falling off in the

direction of increasing capacity Q. With radial

discharge relative to the rotor (Vu,2=U2) and

Vu, t=O, the ideal head-capacity curve is a
horizontal straight line. With forward-bent vanes

(Vu,2> U2), this curve is a straight line rising with
increasing capacity. These resuhs are nearly self-

evident from the one-dimensional application of

Euler's turbomachinery equation, but according to

Busemann's analysis, arc also valid for the two-

dimensional flow of an ideal (frictionless and

incompressible) fluid through pump rotors.

Busemann's ho curves shown in figure 2-47

correspond to the point of intersection between the

Hr, Q line and the Q=0 axis for the one-
dimensional approximation of this line. The same

results also show that the two-dimensional line is

approximately parallel to its one-dimensional

approximation in the range where the ho, rt/r2
curves are straight and horizontal, thal is, where the

discharge of a radial-flow pump rotor is not

inlluenced by the inlet to tile system. Thus in this

range the head reduction
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H 1 - H=(I - ho) 2U_ (2-141)
go

is approximately constant at varying flow rates Q,

where H I is the ideal shutoff head determined by
the one-dimensional approximation.

In order to illustrate the physical meaning of the

Busemann curves, this writer has drawn in figure

2-47 a few additional curves describing the solidity

(or ratio of overlapping) of the vanes in the system.

Here _'v is the angular (or circumferential) extent of
a vane (see fig. 2-46), and z is the number of vanes.

Evidently Cv=2rr/z denotes the solidity where the

end of one vane is radially in line with the beginning

of the next vane. The vane angle/3 is measured from
the circumferential direction (in contrast to the

general practice of this compendium). Since the ,,%
criterion of solidity does not apply to straight radial

vanes, curves for the vane length/= 2rrr2/z are also

shown; this equation corresponds to the conven-
tional definition of a solidity of 1 for the vane

spacing at the outer periphery.

It is evident from figure 2-47 that the h o curves

depart from their straight, horizontal trend

approximately when the solidity by either definition

drops below 1. In other words, the inlet to the vane
system ceases to have an overall effect on the

discharging flow when the solidity of the system

substantially exceeds I. It is this range of over-

lapping vanes where the curves in figure 2-47 have

their most definite practical meaning. This meaning
is further discussed in the next section.

2.6.3.5 Semiempirical corrections of discharge

velocily diagram. - Besides the exact solut ion of the

ideal-flow problem of centrifugal pump impellers
discussed in the preceding section, there exist a

number of semiempirical solutions of the same

problem thai attempt to correct the one-dimen-

sional discharge velocity diagrarn on some rational

basis with support where possible by comparison
with test results.

In this section, only one method of this type, that

by Stodola (described at the end of his famous book

on steam and gas turbines, ref. 2), is discussed in
some detail, since it is by far the most rational and

at the same time the simplest method of correction.

It is compared with the exact solution by Busemann

and is thereby found to be quite good within the
limits of ideal (frictionless) flow considerations.

Another correction method of this general type

was suggested by Pfleiderer in his well-known book

on centrifugal pumps (ref. 21). It is shown here by a

qualitative comparison with the results by
Busemann that Pfleiderer's method does not apply

in the important field of impellers with strongly

overlapping vanes, in which its author intended it to
be used.

The method by Stodola is based on the principal

difference between radial- and axial-flow rotors,

namely, the vorticity of the relative flow. Stodola

actually investigated by the so-called soap film
method the flow within the vane channel of radial-

flow compressor impellers generated by the uni-

formly distributed vorticity of the relative flow.

However, the practical value of the method stems

from the ingenious, very simple way in which
Stodola derived from this vorticity a correction of

the one-dimensional discharge velocity diagram:
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In figures 2-46 and 2-48, a circle (circular

cylinder) is inscribed into the discharge opening of

the vane channel. Its diameter d2 is the normal
distance between two adjacent vanes, measured

from the discharge edge of the outer vane forming
the channel. According to section 2.6.3.2, this

cylinder may bc considered as rotating relative to

the chain]el at an angular velocity co which is

oppositely equal to the angular velocity of lhe

rotor. The relative peripheral velocity of this

cylinder WSA is the Stodola correction of the one-

dimensional discharge velocity diagram

d2
wSA = _ _- (2-142)

which is assumed to exist at the outer periphery of

the rotor in the circumferential direction opposite

U2. From previous statements, it is immediately
evident that

wSA = U 2 d2
O_ (2-143)

which illustrates the simplicity of this correction.

The extreme simplicity of the foregoing

determination of the Stodola correction (highly
desirable for design purposes), of course, raises the

question of the accuracy of this correction. This

question can be answered by comparing the Stodola

V2 _ wSA

---_- _ _Ws A w2 w_

D2
"_0

Figure 2-48.- Stodola correction of JTow leaving centrifugal

pump rotor.

correction with the exact results obtained by
Busemann (see. 2.6.3.4).

The Stodola correction velocity WSA is evidently
independent of the rate of flow through the rotor.

To permit easy comparison with Busemann's results
as presented in figure 2-47, it is, therefore, desirable

to apply the Stodola correction to the shutoff

conditions (Q--0). With the same notation as used
in section 2.6.3.4 and with reference to Euler's

turbomachinery equation (with Vu, l=O at Q=0),

one finds the shutoff head H o to be

( U 2 - wSA) U2
Ho - (2-144)

go

Hence, with the one-dimensional head Ho, l
= U_/go,

tt° -- U2- wSA - 1 - wSA (2-145)
hsA - Ho, l U2 U2

where the introduction of the symbol hSA suggests

comparison with the Busemann head ratio ho.
Substitution of equation (2-143) into (2-145)

yields

hSA = 1 - d2_ (2-146)
D2

which may be compared with the h o values in figure
2-47.

The determination of the discharge opening ratio

d2/D2 constitutes something of a problem. The

general shape of the logarithmic-spiral vanes is

determined from the equation of a logarithmic
spiral in the form

In r2 =(tan _)(¢2--_pl) (2-147)
rl

where _ is the angle about the center of the system
(see figs. 2-44 and 2-46), and /3 is the angle of the
spiral against the circumferential direction as used

by Busemann.

For small values of _ (flat spirals), the ratio

dz/D 2 was approximated by the equation (see fig.
2-49)

d2 = (r2 - r_,)cos/3 (2-148)

where r2 -r t, is calculated from equation (2-147) for

_2 -- _c = 27v/N, with N being the number of vanes.
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Figure 2-49. - Vane end configuration for flat vanes.

For /3>10 ° , the diameter of thc circle (cylinder)

inscribed in the discharge area of the vane system

(radial-outward-flow system) is obtained graph-

ically from the logarithmic spirals drawn according

to equation (2-147) and the law of constant vane

angle/3. The results of this derivation are shown in

figure 2-50.

The agreement indicated by figure 2-50 between

the simple approximation by Stodola and the exact

theory by Busemann is amazing. Within the

practical range of the vane angle _3 and the number

of vanes z or N, this agreement is within ±6

percent, far better than this writer would have

expected. (These results correct an earlier statement

by the same writer in sec. 53 (fig. 127) of ref. 14.)

The simple Stodola correction may, therefore, be

used under most practical conditions in place of the

Busemann curves within the range that these curves

are straight and horizontal, that is, for vane systems

with solidities significantly larger than 1.

From the comparison with the Stodola correc-

lion, one can draw the conclusion thai, for

frictionless flow, the departures of the flow (at the

discharge of pump rotors) from the one-

dimensional theory at solidities substantially greater

than 1 are primarily due to the vorticity of the

relative flow. This conclusion is now used to

evaluate the correction by Pfleiderer of the one-

dimensional flow through radial-flow vane systems.

Ptleiderer uses the pressure difference between

the two vane sides to derive a departure of the

relative flow at the discharge of pump vane systems

from the one-dimensional flow pattern. However,

§2.6.3.5

Vaneangleagainst
peripheral
direction,

[3. deg

1oi !
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Figure 2-50. -Head ratios at zero flow with Stodola correction
divided by same ratio according to exact solution by

Busemann; ratio h, denotes ideal, two-dimensional head
divided by head given by one-dimensional theory.

the foregoing conclusion indicates that the vane

pressure difference is not the principal cause for

departures of the discharging flow from the one-

dimensional flow pattern in radial-flow vane

systems of high solidity. This argument also agrees

with the conclusions drawn in section 2.5 on axial-

flow pumps, because the Pfleiderer correction

should apply to axial-flow as well as radial-flow

pumps. For axial-flow vane systems, the departure

of the relative flow from the mean direction of the

vane (the zero-lift direction) is negligibly small if the

solidity of the vane system I/t substantially exceeds

1. This writer, therefore, does not recommend the

application of the Pfleiderer correction, or of any

other vane-pressure-based correction, to radial-

flow vane systems with solidifies substantially larger

than 1. This contention is valid only as long as the

one-dimensional theory and velocity diagrams are

not based on the direclion of the vane ends alone

but on the average direction of a substantial part of

the discharge portions of the vanes. A practical

definition of this average vane direction is

mentioned in section 2.6.3.4 and is further

discussed in chapter 4.
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2.6.3.6 l_].fect of./hdd J?iclion on flow leaving

cane s[vftems of high s'olidity. -This section
discusses the effect of fluid friction on tile

pcrfornlance of hydrodynamic rotors over and

above the simple reduction in the net head due to

skin friction or duct losses. Accordingly, Euler's

itlrbomachinery equation is used, and the
discussion is limited to the effects of fluid friction

on the change irt angular momentum in the rotor.

Evidently one is concerned here with the effect of
fluid friction on the circumferential velocity

components of the flow leaving the rotor.

The circumferenlial component of the flow

leaving the rotor is not likely to be affected

significantly by friction-induced variations in the

relative flow if the discharge ends of the vanes form

radial and axial planes as shown, for example, in

the lower part of figure 1-46, so that the discharging
relative lqov¢ is very nearly radial. Therefore this

section is concerned primarily with rotors dis-

charging the fluid with an important cir-

cumferential conlponenl of the relative flov,,. While

this component may have the same direction as the

peripheral velocity of the rotor or the opposite
direction, in turbopumps and related machinery, it

usually has the opposite direction, associated with

backward-bent vanes, as shown in figure 2-44.

Hence this section deals primarily with this

standard configuration of centrifugal pumps, but

the principles described apply also to other

arrangements as long as Ihe discharging relative
flow has a significant circumferential component.

The same considerations also apply in principle

to the flow entering the rotor from a guide-vane

system in front of the inlet to the rotor, which is

particularly important for turbines. However, for

the present, the flow entering the rotor, particularly

its angular momentum under the influence of fluid
friction, is considered as given and knovvn.

The necessity of considering II_c effects of fluid

friction on the performance of a rotor, particularly

on the rotor head H r, stems from the fact that the

ideal flow considerations given ira sections 2.6.3.4
and 2.6.3.5 have one result that is in conflict with

practical experience, namely, that the rotor head
should increase continuously with increasing

number of vanes and approach asymptotically the

head predicted for an infinite number of vanes.

This is known to bc not true for pump rotors with

backward-bent vanes, not even for the rotor head

tt,., which should not be affected by the increasing
skin-friction losses.

It is assumed in the follov, ing that fluid friction
does nol affect tile direction of Ihc relali\e flcm

leaving the rotor. lhis assumption simplifies Ihc

problem of finding the effect or" nonumiformilies in

the distribution of the rehuixc xclocities leaving lhe
rotor. It is reasonable to asst,me thai sttch

nonumiformities in tt_e magnitude of the relati',e
xclocilies znc the primary manilestalion of fluid

friction in the rotof, unless Ihc fluid friction effects

arc %ely llla.ior, LtS ill [llecase of scpaialion.

Under this assumption, any nonuniformities in

the relative velochy w 2 result in the same

nonuniformilies of any component of tills velochy,

in particular its circumferential componellt Wu, 2,

The simplest way of representing the effect of
fluid friction in the rotor passages is by the

displacement thickness of the boundary layers in

these passages. This merely means that, if, for

example, the displacement thicknesses of these

boundary layers would occupy 20 percent of the
rotor passage cross section (at its discharge end),

the relative discharge velocities w2 and wu, 2 would
be 1/0.80= 1.25 times higher than those calculated

without taking fluid friction into account.

On this basis, the practical effect of fluid friction

in a turbomachinery rotor is illustrated by the

following: Consider a standard centrifugal pump
impeller with a discharge velocity diagram like that

shown in figure 2-45. To simplify the example,

assume that Vu. l =0. Then

H:_= H,. = C H V_*,,.U-, _ Vu,2U 2 (2-149)
_lh go go

where the asterisk indicates a velocity determined

according to the one-dimensional theory without
any consideration of fluid friction. The head
coefficient is

CH= VU'_ (2-150)
V'U,2

For standard, well-designed centrifugal pumps

with specific speeds near 0.1 (1700), the head

coefficient C H has been found empirically to be
equal to or slightly less than 0.8, depending

somewhat on the way w_ is related to the vane
shape.

In Ihis example, C H is assumed to be 0.78. From

the velocity diagram shown in figure 2-51, it is
evident lhal
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' ' ]

& -Vu,2 _ -- -- _Wu, 2 -6

Figure 2-51.-Effect of skin friction in rotor passages on
discharge velocity diagram.

w2 __ Wu, 2 __ U 2- VU, 2 _ 1- VU,2/U 2
.;_- -;. - . , .... _.

_2 i_U,2 U 2- VU, 2 I - VU,2I/U,2/Vu,2U2

I I/U,2/U 2 (2-151)
-- 1 Z (]/Ctt)(VU,2/U2)

For standard centrifugal pumps of the type

considered here, VU,2/U 2 is slightly larger than 0.5.
When it is assumed that VU,2/U2=0.55 and

CH--0.78, equation (2-151) yields w2/w._-- 1.525.
If this ratio belween the actual (average) relative

velocities and those delermined from one-

dimensional theory is assumed to be enlirely due Io
fluid friction in the vane channels, the ratio of the

channel discharge cross section reduced by the

displaccmcnl thickness of its boundary layer Af to
lhe actual channel discharge cross section A is

Aj __ 1 --0.656 (2-152)
A 1.525

This figure would imply a very nonuniform relative

velocity distribution. However, the foregoing

assumption that the entire difference between the
one-dimensional and the actual relative velocity is
due to channel friction is somcwha! unreasonable,

since the finite vane spacing should lead to some
reduction in head on the basis of frictionless flow,

as discussed in sections 2.6.3.4 and 2.6.3.5.

Assuming that approximately half of the difference

between Wu. 2 and _+'*u,2is due to fluid friction, one
arrives at the result

_./=0.82 (2-153)
A

which is reasonable as far as the friction-induced

nonuniformities of the relative flow are concerned.

The suggestion that some of the departures from
the one-dimensional, ideal-flow behavior are due to

fluid friction and some are due to the two-

dimensional characteristics of a frictionless flow is

certainly reasonable and is not likely to lead to

conflicts with experience. However, a theoretical

prediction of the effect of channel friction on the
rotor head is not possible on the basis of present

knowledge. All that can be said is that fluid friction

must be expected to have an effect on the rotor

head, an effect over and above its effect on head

!osses by friction in the machine. An exception to
this statement are rotors with axial, radial vanes on

the discharge side, so that the relative flow has no

substantial peripheral component, and its dis-

tribution, therefore, no significant effect on the
rotor head.

The example just given leads to the conclusion
that, with combined ideal-flow and fluid friction

effects, the relative discharge flow has on the

average about a 10-percent-thick displacement

boundary-layer thickness all around the discharge
end of the vane channel (but probably a much

thicker boundary layer on the low-pressure side of

the vanes than on the other channel walls). While

this does not imply only minor effects of fluid

friction, it contradicts any contention implying that

even efficient centrifugal pump impellers might

have very nonuniform relative velocity distri-

butions, perhaps with separation. Again these
conclusions cannot be drawn for rotors with

straight radial (and axial) vanes at their discharge
sides.

Thus, while the present considerations on the
effects of fluid friction do not lead to any

significant quantitative results, they do permit some

fairly dependable qualitative conclusions which

may be of value for the design engineer.
2.6.3.7 Effect of rotation on fluid friction. - The

idea that rotation of a system should have an effect

on real flow effects such as fluid friction and

turbulence is fairly old. The thought of in-

vestigating such flows experimentally originated at

least 50 years ago at Prandtl's institute for flow
research in Goettingen, Germany. This writer is not

aware of any major results of these early attempts

to answer this problem.
The reason for interest in this field presumably

stems from the fact that most real flow effects are

intimately connected with vorticity, which must be

expected to interact with the inherent vorticity or
the relative flow in a rotating system. No doubt the

potential importance of this interaction for the field

of turbomachinery was recognized by early pioneers
in this field. However, this writer is not acquainted

with any publications on this particular subject

prior to his own brief remarks in section 66 of
reference 14, which cover only the intuitively
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obvious aspects of this problem. More recently a

number of investigations have been devoted to this

problem. In reference 31, Johnston presents not

only a review and an extensive bibliography of this

subject, but also the results of his own theoretical

and experimental investigations, which clarify the

matter effectively and correct the earlier, over-

simplified consideration by this writer (ref. 14).
In conformity with the general scheme of this

compendium, the following presentation gives only

those aspects of the problem which this writer has

judged to be of value for the design engineer. The

old concepts based on the relation between
boundary-layer and relative flow vorticities are

briefly reviewed, and then these concepts are

corrected on the basis of Johnston's work (ref. 31).

Some effects of rotation on separated flow and on

secondary motions in radial-flow pump rotors are

outlined. For a more complete study, the reader is
referred to reference 31 and to some of the

publications listed therein.

Figure 2-52, taken from reference 14, compares
the direction of the vorticity in the boundary on the

low-pressure side of the vanes with the vorticity of
the relative flow. These two vorticities have op-

posite directions in the conventional config-

Vorticity due to

boundary friction 7
/ Rotation

/_-+/_of rotor "_

"Fj",- ort,cit of i
#_ relative flow '

v (a) -- 1 (b)

_-Vorticity of
', relative flow

ation

otor

Vorticity due to

boundary friction

Vorticity of _ Vorticity of

relatives,flow _,,, ,I_,,,

__ "_/J'_"" R°tat/_'_¢_"'"of roti°norVo
I

due to ,'.,/},_Tz->Z,_ I_ [ ,i'}" Vorticity

boundary / _ _l_tZ_ due to
friction J Rotation _,._' boundary

Ic) of rotor td) friction

(a) Outward-flow pump rotor. ( b ) Inward-flow turbine rotor.

( c ) Outward-flow turbine rotor. ( d) lnward-flow pump rotor,
Figure 2-52. -Relation between uorticity in boundary layer or

separated region and vorticity of relative flow in radial-flow

rotor.

urations of the outward-flow pump (fig. 2-52(a))

and the inward-flow turbine (fig. 2-52(b)), whereas,

in outward-flow turbines (used in torque converters
and Ljungstroem turbines) (fig. 2-52(c)) and in

inward-flow pumps (fig. 2-52(d)), these two
vorticities have the same direction. From this

comparison, the writer drew the premature

conclusion that, in conventional pump and turbine

rotors, the boundary layer on the low-pressure side
of the vane may be reduced in thickness, with a

corresponding reduction in the danger of

separation, as compared with the boundary layer of

a vane in a straight system of parallel vanes (axial-
flow cascade). The opposite conclusion was drawn

for the unconventional configurations (figs. 2-52(c)

and (d)). In reference 14, it is shown that these

conclusions can be confirmed analytically by

considering the effect of turbulent velocity
fluctuations under the influence of Coriolis forces

in a rotating stream, if cross-stream velocity

gradients in the relative flow are disregarded. This
is, of course, a serious omission in considerations of

boundary-layer flow.

The principal difference between the first

considerations by this writer and those by Johnston

is that the latter considers cross-stream velocity

gradients in a rational stability analysis of the

boundary layers; for normal boundary-layer flow,

this method leads to conclusions opposite to those

quoted from reference 14.

Before the principles of Johnston's analysis are
described, another consideration deserves atten-

tion. In a private communication to this writer,

Johnston pointed out that the vorticity in a reason-

ably orderly, turbulent boundary layer is by at least

one order of magnitude greater than the distributed

vorticity of the relative flow. Therefore the latter

cannot be expected to have a significant influence

on boundary-layer behavior. This correct remark

leads this writer to apply figure 2-52 to the wake

regions formed in connection with separation of the
boundary layers, rather than to normal, thin

boundary layers. The suction-side boundary layers

are shown in figure 2-52 so thick as to suggest this

interpretation. The average vorticity in a wake is, of

course, much lower than in a normal boundary

layer and may indeed be influenced by the vorticity

of the relative flow. This reasoning can be further

illustrated by using the very conventional, though

highly idealized, way of representing the fluid
motions in a separated flow region by a single, flat

vortex, as shown diagrammatically in figures 2-53
and 2-54. The direction of the friction-induced
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Idealized
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flow_' B' J
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Figure 2-53.-Idealized separation in radial-flow rotor with
backward-bent vanes.

Figure 2-54. - Idealized separation in radial-flo w rotor with

straight radial t,anes.

vortex is evidently opposite to that of the vorticity

of the relative flow. Furthermore it is easy to show

that the Coriolis forces tend to oppose the vortex

motion in the separated region. This effect can be

made plausible by referring to figure 2-53, in
particular to the wake flow from point B' toward

point A. This flow evidently has a greater
momentum in the direction of the rotation of the

rotor than the wake flow from A to B or the flow

outside the separated region. Such a momentum

would require the application of a greater force in

the direction of the rotor motion than existing

normally in a separated region. The same argument

could be used if the single vortex in the separated

region were replaced by a row of vortices turning in
the same direction as the single vortex shown in

figure 2-53, and it applies also to a vortex in a rotor

with radial blades, as shown in figure 2-54.

Alternatively one could, of course, consider the

fluid in the separated region to be at rest relative to

the rotor. In this case, the separated region could be

in equilibrium with the adjacent active flow to

approximately the same extent as a separated region
on a stationary body, such as a stalled airfoil in a

wind tunnel. Certainly no real equilibrium exists in

the latter case, and with respect to any induced

turbulent motions in this region of a rotating

system, the Coriolis forces would have the same
effect on individual vortices as described

previously.
It can be concluded that the vorticity of the

relative flow in radial-flow rotors must be expected
to have a direct effect on the flow in separated

regions. In figures 2-52(a) and (b), the relative-flow

vorticity opposes the friction-induced vorticity in

the separated region and probably destabilizes this

region more than it is in connection with a stalled

airfoil in a wind tunnel. The opposite should be true

for figures 2-52(c) and (d). No statement can as yet
be made regarding the resulting actual behavior of
turbomachines.

We now return to the effect of rotation of the

system on the behavior of boundary layers before

separation. Although the following presentation is

based on reference 31, this writer must assume full

responsibility for the form of this presentation,

which is not nearly as detailed as the Johnston

paper because it serves a different purpose.

In a system rotating at a uniform angular velocity

oJ, a mass m moving radially relative to the system

at a velocity w r must exchange with its surroundings
a so-called circumferential Coriolis force

C U = 2meow r (2-154)

Since this force produces the change in absolute
moment of momentum connected with a radial

motion in the rotating system, the force exerted by
the surroundings on the mass m points in the
direction of the circumferential motion of the

system. The reaction to this force exerted by the

mass on its surroundings is, thus, directed opposite

to the circumferential motion of the system and, in

the absence of constraints keeping the mass on a

radial path relative to. the system, causes a
circumferential acceleration of the mass relative to

the system in a direction opposite to the circum-

ferential motion of the system.
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In the same system, the same mass moving

relative to the system at a circumferential velocity

w U exchanges with its surroundings a radial
Coriolis force

Cr= 2m_owu (2-155)

Since this force is due to centrifugal forces, the
body exerts a radial outward force on its

surroundings if w U is directed in the direction of the
circumferential motion of the system and, in the

absence of constraints keeping the mass at constant

distance from the center of rotation, causes a radial

outward acceleration of the mass relative to the

system. If w U is directed oppositely to the motion of

the system, the force and resulting acceleration are
radial and inward.

Equations (2-154) and (2-155) are now applied to

the flow in radial-flow rotors of turbomachinery.
Figure 2-55 shows the relative flow in a radial-flow

pump rotor with straight radial vanes (the case
primarily considered by Johnston). All relative

velocities are radial, except turbulent fluctuations.

All parts of the fluid encounter circumferential
Coriolis forces in accordance with their nonuniform

radial velocity w.

A fluid particle with mass m is displaced (by

turbulence) in relation to its radial path from A to B
(toward the vane) and carries its radial momentum

and velocity wA with it. (The very same conclusions

Rotation of

vane system

Leading side,

_iidgeh-pressure _ Trail in! side,

- i
:) Aw ' :

1:1 wA wA !,::
3/_L I .....

!..1{_a ,,,i

__UB_ A Z_Cu

_I Unstable Stable

Figure 2-55.-Effect of rotation of radial-flow pump

system with radial t_anes on stability qf uane boundary

layers.

would be reached by considering displacements in

the opposite direction, i.e., away from the

boundary.) At B it has a greater radial velocity than

the average of the surrounding fluid by ,Sw

= w A - w B. It, therefore, exerts on its surroundings

a greater Coriolis force than the surrounding fluid
by

ACu= 2mco Aw (2-156)

where the subscript r is dropped because there are
only radial relative velocities. Since this force is not

in equilibrium with the forces (pressure differences)

in its surroundings, the particle is accelerated in the

direction of _C U. Since _w is positive for the

assumed displacement toward the flow boundary

(vane), _Cu and the resulting acceleration of the

particle are directed against the direction of
rotation. Figure 2-55 shows that this tends to return

the particle to its original position at the trailing and
low-pressure side of the vane and to remove it

farther from its original position at the leading and

high-pressure side. This means turbulence is

suppressed, that is, the boundary-layer flow is

stabilized at the trailing and low-pressure side and

destabilized at the leading and high-pressure side.
Since boundary-layer turbulence is essential for

preventing separation, it follows that the danger of
separation is increased by the Coriolis forces

(system rotation), because separation can generally
be expected only on the low-pressure side of the

vane. Recall that this conclusion is just the opposite
from that drawn by this writer from the relation

between boundary-layer and relative-flow vorticity
shown in figure 2-52. It is of interest to observe that

the new conclusion was confirmed by Johnston

experimentally by observing the reduction in

turbulence on the low-pressure side of a rotating,
radial channel.

Figure 2-56 shows that the same conclusion can

be reached with respect to the relative flow in a

radial-flow pump rotor with backward-bent vanes.

As in the previous case, turbulent fluctuations are

assumed to displace the mass m from A to B, that

is, toward the blade surface. The opposite
assumption would lead to the same results.

In considering this figure, observe that the

relative flow is directed against the rotation of the

system. Hence the Coriolis forces resulting from the

peripheral component Aw U of the relative flow are

directed radially inward; specifically these forces
are those connected with the difference in relative

velocity between position A and the perturbed
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fTgure 2-56. -Effect of rotation of radial-ftow pump system
with backward-bent vanes on stability of vane boundao,
laycrs.

position B and are associated with a local increase

in the backward relative velocity Aw. Thus, in

comparison with equation (2-155),

ACr= - 2mw Aw U (2-157)

It should be noted that Aw U is considered positive if

it increases the magnitude of w U in spite of the fact

that w U is here always negative.

The AC U component points in the same direction

as in figure 2-55. The AC vectors are plotted in

figure 2-56 at a much larger scale than in figure

2-55, where no vectorial addition is required. This

does not mean a difference in physical magnitude.

It is now desirable to extend the conclusion

reached previously to other configurations. First

convert the configuration shown in figure 2-55 to

turbine operation simply by reversing the direction

of the radial flow. The direction of rotation is kept
the same, so that leading and trailing vane sides also

remain the same. However, what was the low-

pressure side becomes the high-pressure side and

vice versa, since, as is obvious, in a turbine, the

force acting on the vane (from the high- to the low-

pressure side) must have the same direction as the

motion of the rotor. (The opposite is necessarily

true for pumps.) When the direction of the through

flow alone (of w and _w) is reversed, the direction
of the Coriolis force difference must also be

reversed. Thus increased stability (reduction in

§2.6.3.7

turbulence) remains connected with the (changed)

low-pressure side, and the opposite is true for the
(changed) high-pressure side.

Changing the system of figure 2-56 to turbine

operation (according to fig. 2-52(b)) would require

a reversal in direction of system rotation as well as a
reversal of the relative flow w. Thus the Coriolis

forces AC would retain their directions, and the

stable and unstable sides would remain where they

are; that is, the low-pressure side would continue to
be the stable side with reduced turbulence, and the

high-pressure side the unstable side with increased

turbulence, since the low-pressure and high-

pressure sides would remain the same (because of

the reversal in the direction of rotation).

Next, in connection with figures 2-56 and 2-52(c),

consider operation of an outward-flow turbine. The
directions of relative flow and rotation would

remain the same, and therefore, the stable and

unstable sides also. However, high-pressure and

low-pressure sides would be reversed, so that the

boundary layer on the low-pressure side would be

unstable (turbulence would be increased), a

condition which is favorable for the prevention of

separation, and the boundary layer on the high-

pressure side would be stable (turbulence would be

decreased). (High efficiencies should be obtainable

with this configuration.)

Finally, in connection with figure 2-56, consider
an inward-flow pump of the general arrangement

shown in figure 2-52(d). In this case, the directions
of relative flow and rotation would have to be

reversed from those shown in figure 2-56, and the

stable and unstable boundary layers would be left

on the same sides as shown. However, since this is

still pump operation with reversed direction of

rotation, the high-pressure and low-pressure sides
would be reversed from those shown, so that the

unstable (high-turbulence) boundary layer would be

placed on the low-pressure side (favorable for the

prevention of separation), and the stable (low-
turbulence) boundary layer would be placed on the

high-pressure side (skin friction would be reduced).
This configuration may lead to renewed con-

sideration of the inward-flow pump in spite of its

unfavorable overall stability of operation at
reduced rates of flow.

In summary, then, the conventional outward-

flow pump and inward-flow turbine are less

desirable regarding bot_ndary-layer growth and the

onset of separation (stall) than the unconventional

outward-flow turbine and inward-flow pump.

However, after the onset of separation, conven-
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tionaloutward-flowpumpsandinward-flowtur-
binesmay be betterthan their unconventional
counterparts.For example,if a highlyefficient
inward-flowpumpcouldbedeveloped,thispump
might haveexceedinglyunfavorablestall char-
acteristics.

2.6.3.8 Friction-induced secondary flow.-In

closing the discussion on radial-flow rotors, we now

consider briefly the secondary fluid motions in such

rotors, just as done at the end of the section on

axial-flow rotors (sec. 2.5.7). In agreement with the

principle used there, only secondary motions
produced by boundary layers are considered at this

point, whereas secondary flows induced by vorticity
in the main stream are discussed in section 2.7,

together with the origin of the vorticity in the main
stream.

Mixed- or conical-flow rotors with a strong axial-

flow component have, of course, secondary flows

quite similar to those of axial-flow machines, which
are described in section 2.5.7 and are not further

considered here. The present discussion is limited to

secondary flows, which, because of the differences

in geometric configuration, do not exist in axial-
flow machines.

The secondary flow in the spanwise end

boundary layers from the high-pressure toward the

low-pressure side of the vane channel (shown for

axial-flow systems in fig. 2-39) exists also in radial-

flow rotors and can in principle be explained in the
same manner as for axial-flow systems. For radial-

flow systems, it is easier to explain this secondary

motion by the Coriolis forces. Refer, for example,

to figure 2-55; the circumferential Coriolis force in

the end zone is lower than that in the midsections,
because w is lower in the end zone. Since the

circumferential pressure difference across the

channel is dictated by the Coriolis forces in the
midsections, the reduced Coriolis forces in the end

zones cannot sustain this pressure difference

without the fluid being accelerated from the high-
pressure side toward the low-pressure side of the

channel. This phenomenon may well be called

overturning of the end-layer fluid, as it is for axial-

flow machines. The same argument holds for radial
inward flow in a turbine rotor.

Figure 2-57 shows the same secondary flow for a

pump rotor with backward-bent vanes. The reasons
for this flow are the same as for the flow between

radial vanes except that components of both the
relative flow and the Coriolis forces must be
considered.

The outward motion of the boundary layer near

the rotating end walls can, of course, be understood

i Component ofsystem motion

 I-S, ,,ooar,endwa,,
Section A-A with

semiopen end
walls

,- Approximate flow near stationary wall
/

,F Approximate flow near center of closed channel
_J

I Component of .,i,,_ Approximate flow near rotating side wall
system motion /' ,' _----------T_--_,_-_

;'.,/IIII,_IIIIIII,'L // !

Section A-A with /r _

roa/ j/
Figure 2-57. -Secondary flow in radial-flow pump rotors with backward-bent uanes. (Same type of flow exists also in rotors

with straight radial uanes. )
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here intuitively as centrifuge action on the fluid,

which is dragged along by turbulent friction of the

rotating shrouds. (This consideration is funda-

mentally not different from that viewing the

Coriolis forces as resulting from the friction-

induced boundary layer on the end walls.) The

resulting secondary flow pattern in a closed vane

channel (with both shrouds rotating) is principally
not different from the familiar secondary flow in a

curved duct or elbow relative to the high-pressure

and low-pressure sides of the duct. It is reversed in
direction relative to the concave and convex sides of

the duct, and this change demonstrates the effect of
rotation on the flow in this duct.

2.7 Three-Dimensional Flow

Problems of Turbomachinery, Their

Two-Dimensional Solutions, and

Flow With Distributed Vorticity

2.7.1 Introduction

In sections 2.5 and 2.6, the inlet and discharge

velocity diagrams are assumed to be given for every
meridional stream surface considered. In other

words, both the meridional and the circumferential

velocity distributions at the inlet and discharge of

the vane system considered are assumed to be
known.

The only rational basis for the knowledge of

these velocity distributions is a flow with uniform

energy at the inlet to the first vane system and
uniform changes of the energy (i.e., addition or
subtraction of head which is uniform across the

stream) in every rotating system of the machine.

Under the assumption of frictionless flow for both
the meridional and circumferential velocities, this

reasoning leads to so-called irrotational velocity

distributions. The meridional velocity distribution

is determined by equation (2-4) of section 2.2 and

may be found by the graphical construction shown
in figure 2-3. The circumferential velocity follows

the law of constant angular momentum (rV U

=constant) across the stream and changes in the

rotating systems by constant steps in angular

momentum according to Euler's turbomachinery

equation in the form of equation (2-18). A flow of

constant angular momentum can easily be shown to

satisfy the same differential equation (eq. (2-4)) as
the meridional flow.

Sections 2.2 and 2.3 mention that both flows may

differ from the irrotational velocity distributions

just discussed, but do not mention any general laws

for such departures except that such departures are

expressed for the meridional flow by its vorticity in
the form of equation (2-6). Departures of the

circumferential flow from the law of constant

angular momentum can also be expressed by the

vorticity of this flow, since

0 VU V U 10(Vur)
_z= _ + r - r Or (2-158)

so that

,9( Vur )
r_z = ar

(2-159)

which obviously describes the change in the angular

momentum Vur as a function of the distance r from

the axis of rotation. Appendix 2-A shows that the
vorticity _" is a vector normal to the plane of the
vortex flow. This direction is here the axial

direction and is designated by the coordinate z. The

axial vorticity component _'z is a special case of the
vorticity component _'m in the direction of the

meridional flow, which is used in section 2.7.3.

A nonuniform angular momentum across the

stream can be generated by any suitably designed

vane system, since there is no general law pro-

hibiting such a design. However, a circumferential
flow with nonuniform angular momentum can

easily be shown to have by itself a nonuniform

energy distribution. If the vane system is assumed

to be stationary and to receive an inflow with

uniform energy distribution, it follows (for

frictionless flow) that the discharging meridional

flow cannot have a uniform energy distribution in
connection with a circumferential flow of non-

uniform energy, since the resultant, three-

dimensional discharge flow must have the uniform

energy distribution dictated by the incoming flow.

This reasoning leads for the first time to a necessary
interrelation between the circumferential and the

meridional flow in a turbomachine, in contrast to

the independence of these two flow components

previously assumed. This interrelation constitutes
the principal subject of this section and is shown to
exist also if the flow of nonuniform angular

momentum is generated by a rotating vane system.
There is one additional reason why the

meridional flow may differ from the irrotational

flow pattern: In the area swept by the rotor vanes or

covered in a meridional section by the stator vanes
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(where all points of these vanes are rotated into one

meridional plane), there may very well be a

component of the vane forces parallel to the planes

of the meridional flow. In other words, vanes may
not only exert circumferential forces on the flow

according to their primary intent (Euler's
turbomachinery eqs. (2-10) to (2-18)), but also

forces lying in meridional planes, that is, in

directions having no circumferential components.

These forces exist only if the vanes are inclined

against the radial and axial (meridional) planes and,

for discrete vanes, would appear to be exerted by
radial sections through the vanes (fig. 2-58). When
the fiction of an infinite number of vanes is used for

the meridional flow picture, this blade force on the

meridional flow becomes distributed over the entire

radial and axial planes of the meridional flow. This
section shows that this vane action on the

meridional flow can be evaluated as a distributed

vorticity of this flow.

All considerations of this section are based on the

assumption of frictionless flow with complete axial

symmetry (infinite number of vanes), except where

departures from this rule are explicitly indicated, as

in the introductory part of section 2.7.2 and, of

course, in section 2.7.5, on secondary fluid
motions.

2.7.2 Effects of Spanwise Nonuniform Circulation

The effects of spanwise nonuniform circulation

are demonstrated first on the basis of the particular

_Section A-A
///'

' / \ "" ""J" _ R "/ \ "\ " " l_ adialcomponent
: // \ "_ ]I of vaneforce
' ,/ Axialcompo- ,,_ " _ [1
t/ nent of vaneforce_ _.,J]

Figure 2-58. - Vane.lorces in meridional plane.

problem which, at least 35 years ago, gave rise to a

rational investigation of the problems covered in

this section. In the development of high-

performance axial-flow compressors (for aircraft

engines), it was obviously desirable to use the
highest possible peripheral velocities of the rotor.

At the same time, it was believed to be necessary to
limit the relative inlet velocity to the rotor vane

system to values below the acoustic velocity of the

air under local conditions (a contention later

contradicted by further developments, although it is
still considered desirable to have only a limited

excess of the acoustic velocity). In any event, it was

desirable to minimize the relative velocity at the

rotor inlet (which may also be true for hydro-

dynamic rotors for reasons of cavitation). It was
natural to give the flow entering the rotor an initial
rotation in the direction of the rotor motion and

thus effectively reduce the relative inlet velocity.

(Note that, in the absence of such prerotation, the

peripheral component of the relative inlet velocity is

Wu, l= - Ul, whereas, with prerotation, it is

Wu,] = -(U1- Vu,]), where Vu. l is the peripheral
component of the absolute velocity entering the

rotor.) Usually the peripheral component Wu, 1 is
the dominant component of the relative inlet

velocity wl, so that reductions in the latter are

nearly proportional to reductions in Wu, I.

Assume that, for the purposes of reducing w],

one chooses at the tip section Vu, 1=0.25 U, so that

Wu, 1= -0.75 Ul. Assume further that the inlet hub
diameter is one-half of the maximum inlet diameter

and that the blades of the axial-flow compressor

start from this hub diameter. Thus U], h = U]/2 , and
assuming for the prerotation the law of constant

angular momentum gives

VU,],h=2Vu,]

Therefore

Vu, l, h _ 0.50 Ul
-1

Ul, h 0.50 U_

that is, the flow enters the hub section relative to the

rotor axially, which gives this vane section an

entirely forward turn and reduces static pressure.

This is obviously undesirable for a machine

intended to increase the static pressure of the
medium.

If, instead, the pretotation could have (for

example) the velocity distribution of a solid body
rotation
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VU, I,h _ Ul,h _ rh (2-160)
VU, 1 Uz rl

one would find (according to the previous

assumption regarding VU,1/U]), instead of equa-
tion (2-160),

VU'I"h- Vu'l =0.25
Ul,h U1

which is quite acceptable for the design of the hub

section. There is, therefore, a strong incentive to

depart for the inlet guide vane system from the
irrotational velocity distribution of constant

angular momentum.

If it is assumed that the inlet guide vane system

receives a flow of uniformly distributed energy and

that the angular momentum of the oncoming flow

is zero (very reasonable assumptions), the

previously mentioned problem has to be solved for

finding the meridional discharge velocity

distribution, which, together with the assumed

peripheral discharge velocity distribution (solid

body rotation)

g

VU= Vu, o_ ° (2-161)

satisfies everywhere Bernoulli's equation. Here the

subscript o refers to the outside, discharge diameter

(or radius) of the inlet guide vane system, and the

meridional flow at its discharge is assumed to be
axial.

The problem can be solved on the basis of the so-
called condition of radial equilibrium, which in its

simplest form can be derived as illustrated in figure
2-59. The figure simply relates the radial change in

static pressure to the centrifugal forces per unit area

in a plane, rotating flow. This relation is

p+ _dr (r+dr) de_-p dr dc_-pr dc_

= or clc_ dr V2U
r

which reduces to

0p
- (2-162)

Or P r

When combined with Bernoulli's equation in a

plane rotating flow, this equation simply leads to

the familiar law of radially constant angular

momentum Vur=constant. Generally, for any

prescribed relation between V U and r, it will lead to
a definite relation between the static pressure p and

the distance r from the center (axis) of rotation.
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V u + ¢]Vu dr
8r

V U __.

p +b-P-dr
Or
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Figure 2-59.-Derivation of condition of simple radial

equilibriutn.

For the flow in a strictly axial-flow machine,

where the radial velocity component is zero, the

resulting velocity is V= qr-_2+ V_, where Vz is the

axial velocity component. Hence, when the effects
of differences in elevation are neglected, Bernoulli's

equation appears in the form

p+ _ =p+ _(V_+ V_) =constant (2-163)

If, by a prescribed relation between V U and r,
equation (2-162) gives a relation between p and r, or

p and V U, the static pressure p can be replaced in

equation (2-163) by a function of ror V g. Since Vu
is assumed to be a known function of r, equation

(2-163) yields Vz as a function of r, that is, it gives
the axial velocity distribution, which, together with

the given V U distribution, satisfies Bernoulli's

equation.

In section 3.3.4.2 of chapter 3, this problem is

solved for the case of solid-body rotation where V U

is proportional to r. The only general solution that

can be suggested without a given relation between

V U and r is one based on the vortex laws by

Helmholtz (see sec. 2.6.3.1 and appendix 2-A),
particularly these laws in the form involving the

concept of trailing vorticity, used by Prandtl to

derive his famed wing theory. It becomes evident
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later in this section that this solution also satisfies

Bernoulli's equation.

Figure 2-60 shows one vane of an axial-flow vane

system such as may be used at the inlet to a pump or

compressor. For simplicity, it is assumed that the

flow enters the system in the axial direction with

uniform velocity and leaves the system with radially

increasing circulation, so that I"o>I'>I" i. Accord-

ing to the treatment by Thoma described in section

2.5.2 and figure 2-11 (which applies also to

stationary vane systems), the vane circulation must
also increase radially, since, with axial inlet flow,

F o = NFv, o, F = NF v (at any radius), and I' i = NFv, i.
According to Helmholtz' vortex laws and

Prandtl's wing theory (appendix 2-A), between the

section with circulation Pv, o and the section with
circulation F v, the vane must shed a trailing vortex

with circulation AFo=Fv, o-F v, and this vortex
vector must be parallel to the direction of the flow

leaving the vane system. This means that the fluid

motions or velocities representing the trailing

vorticity (_-in fig. 2-60) must be normal to the
direction of the flow leaving the vane system. It is

this fact on which the solution of this particular

flow problem is based.

Figure 2-60 shows a second trailing vortex with

circulation AFi= r v- rv, i, but in reality the vane

circulation F v and the circulation F in the flow
downstream of the system change continuously

from hub to tip, so that one should approximate

this by a large number of trailing vortices, since

actually each vane sheds a continuous vortex sheet.

Consider again the fiction of two trailing vortices

per vane; the axial view of the entire trailing vortex

system is shown in figure 2-61. Evidently

Fo - F = N AF o

r - F i= N AFi

(2-164)

since, according to section 2.5.2, the circulation

about any contour (such as that formed by the outer

circle with radius ro and the middle circle with
radius r) is equal to the sum of all circulations inside
the contour.

Figures 2-60 and 2-61 imply that there exists a
flow field with circumferential and radial motions

between the trailing vortices. The corresponding

flow field between two trailing vortex sheets is

shown in figure 2-62, which may be regarded as a
section normal to the vortex sheets (a slightly

twisted surface) or as a section normal to the axis of

Flowapproaching
system,assumed
to beaxial

anduniform-k

Flowleavin9 _ _ J rv, o

system_ . J ,-/3j" //_.,..._

Figure 2-60.-Relation between vane circulations and circulation of flow leaving vane
system. ( F, , > Ft.> Ft.d Fo> F > Fd F = NI'_; AF,,= F,.o - F,,' AFi= F_- Ft,,i.)
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Figure 2-61.- Circulations in flow leaving vane system.

(Fo>F>F d N AF. =Fo-F; N AFi= F- Fi.)

• . ? i

\ /

sbee l__::__ sheet

Figure 2-62.-Approximate flow with finite vane spacing

induced by trailing vortex sheets.

rotation as in figure 2-61, or finally (with a slight

distortion) as an axial and radial plane section

showing the effect of the trailing vortex sheets on
the meridional flow. These flow pictures must be

superimposed onto the flow that would exist
without any trailing vorticity, that is, the irrota-

tional flow with radially constant vane circulation.

The flow shown in figure 2-62 is too complex to

be used in the design of turbomachines. For this

reason, one uses the familiar fiction of an infinite
number of frictionless vanes. When this is done, the

right and left parts of the flow field in figure 2-62

(close to the vortex sheets) with their radial velocity

components vanish, the effect of the now con-

tinuously distributed axial vorticity _'z (fig. 2-60) is
confined to the peripheral velocity component, and

the effect of the (continously distributed)

circumferential vorticity component _'u is confined

to the axially symmetric meridional flow.

The distributed axial vorticity _z can easily be
calculated for any radial step, say from r to ro, by

the relation among circulation, vorticity, and area

inside the contour of the circulation (eq. (2-A-26)):

_'z- F o- F (2-165)
7r(r2o - r2)

The vorticity of the meridional flow _'u is

obtained from _'z by the condition that the total

trailing vorticity is parallel to the flow leaving the

vane system, so that

_u _ Vu (2-166)
vz

The meridional velocity V z is first approximated by

its average value according to the condition of

continuity. Then the nonuniform distribution of V z

is determined from _'u by equation (2-6) and the
construction shown in figure 2-4, which is, of

course, particularly simple for axial-flow vane

systems, where the radius of curvature R of the
meridional streamlines is (in first approximation)

infinite. The values of V z so determined may then
be substituted into equation (2-166) and the process

repeated. The integration shown in figure 2-4

should start approximately in the area center of the

duct, where one can assume Vz has its average
value, used for the first approximation. After

completing the Vz curve on this basis, one can
correct it to comply more accurately with the

condition of continuity as described briefly in
section 2.2.

Fortunately there exists a simpler graphical

method for deriving the V z distribution for a given

V U distribution: Starting again approximately from
the area center of the duct, approximate the

discharge velocity diagram at that radius rA by the

average meridional velocity (Vz,av = Q/A m, see see.
2.2) and the prescribed local circumferential

velocity V U. The end point of the resultant velocity
vector V is point A in figure 2-63. Then draw a new

velocity diagram for a nearby radius rB according to
the assumption that the entire flow is irrotationai,

that is, that the circumferential velocity satisfies the

law of constant angular momentum
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Figure 2-63.-Change in uane discharge t,elocity to
account for trailing vorticily of axial-flow vane &vstem

where I_;, = 1,':.

V*

- rA (2-167)
VU, A rB

where the asterisk signifies that this is not the true

value of Vu, B, since a distribution departing from
the law of constant angular momentum is

prescribed. The fictitious meridional velocity at

radius rB is obtained in a similar manner for an

irrotational meridional velocity distribution

according to equation (2-4). For straight meridional

streamlines, V_,B = Vz,A. The end point of the new,
fictitious velocity vector is marked B*

The true peripheral velocity Vu, B at radius rB is

prescribed. Also known is the fact that the velocity
departures from the irrotational velocities (i.e., the

velocities of the trailing vortex flow) are normal to

the discharging flow in order to give the vorticity

vector the same direction as the discharging flow.

This is accomplished (for a small radial step) by

swinging the velocity vector drawn to point B*
about its origin O to a new point B where the

circumferential velocity has the prescribed value

Vu, B. This construction satisfies not only the vortex
law but also Bernoulli's equation to the extent that

the true static-pressure difference between rA and rB
can be approximated by the pressure difference for

irrotational flow, which is known to satisfy

Bernoulli's equation. (Consider that the magnitude

of the velocity is not changed in going from B* to
B.)

Figure 2-64 shows a succession of these steps for

the peripheral as well as the meridional velocity
components. Every step requires, and is based on, a

velocity diagram such as that shown in figure 2-63.

This example solves the inlet vane system problem
described previously.

The same method applies in principle also to

rotating vane systems, except that the trailing
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Figure 2-64. - Stepwise determination of meridional celociu' of axial-flow uane system.
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vorticity is parallel to the relative velocity leaving

the vane system, so that, in place of equation

(2-166), one must use

_u_ Wu (2-168)
_: Wz

The principal reason for considering the

foregoing graphical solution is the clarity with
which it illustrates the effect of vorticity (the effect

of departures from the potential velocity

distribution) on the flow. For the practical solution

of flow problems with vorticity, the graphical
method should be used only for small changes in the

distance from the axis of rotation. For appreciable

changes in this distance, an analytical solution,

presented in the next section, is better than the

graphical solution, particularly if the meridional
streamlines are curved. The practical execution of

such a flow problem is described in chapter 4,

section 4.4.1.

2.7.3 General Solution of Problem of Flow With

Vorticity in Turbomachinery

The effectiveness of the concept of vorticity-in

permitting a relatively simple solution of the flow

problem discussed in the preceding section leads
one to attempt on the same basis a more general

solution of the problem of flow with vorticity in

turbomachinery.

For the present, the assumption of complete axial

symmetry (i.e., of an infinite number of frictionless
vanes) is maintained. However, the assumption of

irrotational (vorticity-free) inlet flow to the vane

system considered is dropped to permit the appli-
cation of the results obtained to vane systems

behind other systems which may put vorticity into

the stream. This vorticity is, according to the

assumption of complete axial symmetry, uniformly
distributed in the circumferential direction.

The following presentation is based on a solution

of this problem by Leroy H. Smith given in
reference 32 and follows his presentation closely in

principle and in some details.

The objective of the following presentation is not
the solution of a specific problem of flow with

vorticity through a vane system, but rather the

derivation of general equations by which such

problems can be solved in various ways. The

following derivation differs from those given in
references 14 (ch. 26) and 33 by the fact that it is

based on kinematic considerations of flow with

vorticity, which are basic to this problem, whereas
the derivations in these references are based

primarily on dynamic considerations of radial

equilibrium.

The present derivation assumes that the inlet flow
to the vane system is completely known, so that the

inlet velocity and vorticity vectors w 1 and _-1 in

figure 2-65 are given. The particular meridional
stream surface to which the vector diagrams in

figure 2-65 apply is chosen in such a manner that
the meridional discharge velocity Win, 2 = Vrn,2 can
be estimated or selected by the condition of

continuity; that is, the chosen flow surface is
located near the average radius of the discharge

cross section. The change in the peripheral velocity

component Awu=AVu is usually given by the

change in angular momentum required from the

vane system considered, although this requirement

is not precise, since, with vorticity, the angular
momentum and its change are not uniform over the

discharge cross section.
It remains to determine the discharge vorticity in

accordance with the vortex laws by Helmholtz (see

appendix 2-A), which may be called the practical

objective of the following considerations.

The velocity and vorticity diagrams shown in

figure 2-65 apply directly to the flow through a

rotating vane system, as is evident from the relative
velocities Wl and w2. The same diagrams apply in

principle also to a stationary vane system when the

relative velocity vectors w 1 and w 2 are replaced by

the absolute velocity vectors V 1 and V 2.
For the derivations, Helmholtz's vortex laws are

used in the following form:

(1) The vorticity vector of the flow entering the

system remains connected with the fluid particles.
(2) The vorticity generated within the system has

vectorially the same direction as the flow leaving the

system (trailing vorticity).

(3) The flow through the system obviously
satisfies the condition of continuity.

For incompressible or compressible flow, the first

condition is satisfied by drawing the vorticity vector

divided by the density of the fluid between two

adjacent streamlines within the meridional stream
surface considered (ref. 34). These vorticity vectors

are shown in figure 2-65 between the point 0 and the

line CIB1 at the inlet to the system and between the

point 0 and the line C2B 2 at the discharge from the
system. The scale of _'/0 and the angular spacing 2_0
are assumed to be so small that the local curvature

of the streamlines considered can be ignored. For
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Figure 2-65. - Velocity and uorticiO, vector diagram for axially symmetric flow through vane system (according to L. H.
Smith, ref. 32).

reasons of axial symmetry, the angular distance AO
between two such adjacent streamlines is constant.

We are now in a position to describe the vorticity

vector diagram shown in figure 2-65. While quite

general in principle, it assumes the existence of a

stationary vane system (such as that discussed in

sec. 2.7.2) in front of the rotating vane system with

the flow characteristics shown in figure 2-65. The

inlet flow to this rotating vane system is, therefore,
approximately that shown in figure 2-64,

specifically that at an intermediate meridional

stream surface, for example, that at radius rA in

figure 2-64.

It would be natural to think of a uniform energy

input by the rotor to all stream surfaces, which

means 2_(Vvr)=constant across the flow, that is,

there is no change of the meridional vorticity

component _'m,l within the rotor. The result
obtained by this assumption is shown in figure 2-65

by the discharge vorticity vector _'02 under the

restriction P2 = Pl. The aforementioned requirement

that the vorticity vector remain between the same

streamlines leads to an increase in the peripheral

vorticity component from _'u,t to _'v,02, which may
not be acceptable, because this increase may lead to

zero or negative meridional discharge velocities at

the maximum discharge radius (see the Vz= Vm, 2
distribution in fig. 2-64). This possibility is avoided

by having the rotor add a vorticity A_-tO the flow.

This addition results at the discharge in a trailing

vorticity A_', which has the direction of w2 and of

the streamline at the discharge of the system. It can

be seen from figure 2-65 that the magnitude of A_"
can be determined from the vorticity vector

diagram, so that ]_u,2I_<t_'u,d, that is, the departure
of the meridional discharge velocity from the

irrotational distribution is not greater than that

shown in figure 2-64 for the rotor inlet. (The same
could be accomplished by an outward curvature of

the meridional discharge flow, but this is not

significant with respect to the present consid-

erations.)

With the vorticity vectors in figure 2-65

determined by the foregoing or other equivalent

considerations, the law of vortex flow through a

rotating vane system can be derived from figure

2-65 as follows: To satisfy the condition of
continuity, one can write

Plrl dnl Wm, l =P2r2 dn2 Wm,2

so that

rlWm, l _ P2 dn2 (2-169)
r2Wm,2 Pl dnl

where r_ and r 2 are the distances from the axis of

rotation at the inlet and discharge of the vane

system.
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It is clear that the ratio on the left side of

equation (2-169) is the ratio of the areas of two

parallelograms in figure 2-65, namely, OAIBIC 1
and OA2BzC 2.

The areas of the same parallelograms are also
equal to the vector products of the velocity vectors

and vorticity vectors w and _'/p. The fact that the

vorticity vector remains within the parallelogram
described by two adjacent streamlines expresses the

fact that the change in vorticity A_"within the vane

system has the direction of the flow leaving the vane

system w2 and, therefore, does not change the

vector product of the velocity and the vorticity.

Thus the ratio of the areas of the two paral-

lelograms OAIBIC j and OAzBzC 2 may be written
in the form

rlwm, l _ I(_'l/,Ol) × Wll

r2Wm,2 1(_'2/P2) X W21

If equation (2-170) is written in the form

(2-170)

IF wll I_- w21

Olrl Wm, 1 02r2Wm,2

it can be broken up into its components:

(2-171)

_m'lwU'l - _U'lWm'l = _m'2Wu'2 - _u'2Wm'2 (2-172)
Plrl Wm, 1 P2r2Wm,2

The subscript m denotes the meridional flow

direction; that is, _'m is the vorticity of the
circumferential flow in a section normal to the

meridional flow. The component _'u is the vorticity
of the meridional flow.

Finally, when the vorticity components are
expressed in terms of velocities and velocity

gradients, equation (2-172) assumes the form

WU'I_ 011 + F/COS_-_ 1

+win'l\ On +R- I olrlWm, 1

: WU'2\ On r/cos _ 2

+ Wm, 2_k_n-- 4- _- 2 P2r2Wm, 2
(2-173)

§2.7.3

where n is a coordinate normal to the meridional

streamlines, increasing with increasing distance r
from the axis of rotation, and _ is the angle between

the meridional streamline and the axial direction, so
that r/cos ¢ is the distance from the axis of rotation

as seen in a conical section normal to the meridional

flow (fig. 2-66). The radius of curvature of the

meridional flow in the radial and axial planes is
designated R. The plus sign in the second term

applies to meridional stream surfaces concave

toward the axis of rotation, so that the centrifugal
forces of the meridional flow are additive to the

centrifugal forces of the circumferential flow (fig.

2-66(a)). Meridional streamlines turning their

convex sides toward the axis of rotation produce
centrifugal forces opposed to those of the

circumferential flow; thus the minus sign applies in
this case (fig. 2-66(b)).

For stationary vane systems, one replaces the
relative velocity w by the absolute velocity V, as

mentioned previously. Thus

I T;v)l v2)
Olrl Vm, l 02r2Vm,2

(2-174)

or, in components,

_m, 1VU, I - _U,I Vm, 1 = _m,2Vu,2 - _u,2Vm,2 (2-175)
Plrl Vm, l Pzr2Vm,2

Vu
[ VU'l(OVU+\On r/_¢) I

(c]V m Vm) ] 1+Vm, l\ an +--R- I VlrlVm, I

V {OVm Vm'_] l (2-176)
+ m,2_-_4-_-/j2 02r2Vm,2

where it should be remembered that wm = V m.
In all equations stated so far in this section, the

subscript l applies to one side, say the inlet side of

the vane system considered, and the subscript 2 to

the other side, say the discharge side of the same

vane system.
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It is well to remember that the fundamental

equations (2-171) and (2-174) and, therefore, all

equations derived from them express primarily the

facts that any vorticity added by a vane system must

have at the discharge the same (or opposite)

direction as the discharging flow and that the

incoming vorticity remains between corresponding

streamlines, as shown in figure 2-65.

The meridional component of the vorticity added

by the vane system A_"m is usually given by a

prescribed change in angular momentum. Some-

times, as in the case of a rotor following an inlet

guide vane system, discussed in section 2.7.2, the

vorticity change of the meridional flow is prescribed
in order to achieve a reasonable meridional dis-

charge velocity distribution. In any event, there are

given restrictions on the vorticity and velocity

distribution at the discharge of the vane system

considered in addition to the restrictions expressed

by equations (2-171) to (2-176) as well as figure
2-65.

Furthermore the inlet velocity and vorticity

distribution (i.e., one side of all eqs. (2-171) to
(2-176)) must be given to establish a definite

problem, so that the inlet velocity and vorticity

vectors in figure 2-65 are prescribed. With respect

to the expanded equations (2-173) and (2-176), not

only is one side given, but also, on the other side,

one component of the velocities, either Vuor V m, is
prescribed. This reduces the solution of the problem

to the determination of the other velocity

component by its vorticity, either

0 V U VU
_'n= On + r/cos_ (2-177)

or

OVm Vm (2-178)
-¢u = _ + _-

A graphical solution of this problem is presented in
section 2.2 in connection with figure 2-4. The

solution starts from some suitably chosen midpoint

M, where the velocity components V U, w U, and

Vm = wm are given or calculated from the condition

of continuity.

Finally, it is also possible to solve many problems

on the basis that the departures from the

irrotational velocity distributions are normal to the

resultant vorticity vector given by figure 2-65 and
equations (2-171) and (2-174). This is the method

described in the preceding section in connection

with a particularly simple problem. Examples for
the practical execution of these solutions are

presented in chapters 3 and 4 in connection with
definite design problems.

2.7.4 Determination of Off-Design

Operating Characteristics

An important application of the principles of
flow with vorticity in turbomachines is the

determination of the off-design operating charac-

teristics. Even for machines designed for vorticity-

free operation at one particular volume flow rate or

one particular flow coefficient Vm/U, the flow
acquires vorticity if the flow coefficient departs

from its design value. This is particularly true for

pumps where the flow leaves the rotor at more than
one diameter, as it does with axial-flow and mixed-

flow rotors. For simplicity of reasoning, the
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following considerations are confined to axial-flow

rotors, but the principles employed apply to mixed-

flow rotors as well.

Figure 2-67 shows the solution suggested. Figure

2-67(a) shows the (ideal) straight-line head-flow

characteristics of three cylindrical sections O, M,

and I through the discharge opening of an axial-

flow rotor with radii r o, rM, and r I. (All that must

be assumed to understand this relation is the fact

that the discharge relative velocity at any one

section has a constant relation to the zero-lift

direction of the vanes (C H in sec. 2.5).)

The design point D is assumed to have

irrotational flow, that is, constant head and angular

momentum and constant V m over the discharge

cross section, and for simplicity the inlet angular

momentum is assumed to be zero (or constant).

Thus the head-flow lines must intersect at the design

point D.

At a reduced flow rate, the three flow sections

produce different head values. Wattendorf in

reference 35 suggests averaging these head values at

a constant value of Vm/U o (where the subscript o

refers to the outermost flow section). O'Brien and

Folsom suggest the same in reference 36. This writer

has suggested (in sec. 48 of ref. 14) drawing a

horizontal line through point A (fig. 2-67(a)) and

integrating the various rates of flow along this line.

A more dependable solution can be obtained in

the following manner: Starting (as in sec. 2.7.2)

from the irrotational solution Hr=constant under

the fictitious assumption that the flow sections O

and I have relative discharge directions different

from their actual discharge directions, one arrives

in figure 2-67(b) at the velocity end points B* and

C* at the same head and meridional velocity as

assumed for the midsection, marked point A. Since

the rotor system does not permit these discharge

directions, it generates a trailing vorticity which

displaces the end points of the relative velocity

vectors in sections O and I from B* to B and C* to

C by the same construction as used in figure 2-63.

The corresponding operating points are marked by

B and C in the head-capacity diagram (fig. 2-67(a)).

The true total rate of flow under the off-design

operating condition must be obtained by a flow

integration over the discharge cross section of the

rotor

Q= 27rt r" Vmr dr (2-179)
,_ r I

The average head is determined by a similar

weighted integration
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27r fro HrVm r dr (2-180)
nr, av= Q rl

The mixing losses between parallel streams with

different head values are not predictable in a

general manner, but should be added to other head
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losses in the machine connected with operation

under off-design conditions.

In the example shown in figure 2-67, the radial

step from rM to r I is a little large for the

approximate step from the irrotational solution to
the true solution. This is apparent from the fairly

large angle between the fictitious relative velocity

vector drawn to point C* and the true vector drawn

to point C. One can avoid angles that large or larger

by using more radial steps. The process is essentially
the same as that described in section 2.7.2 in

connection with figures 2-63 and 2-64 except that

the final end point of the (relative) velocity vector

(B or C) is not determined by one given component
of this vector but by the direction of this vector

given by the velocity diagram under the design
conditions.

By using the process described here for two off-

design conditions, preferably on opposite sides of

the design point D, one can draw an Hr, av, Vm,av

(or Q) curve with sufficient accuracy for most

practical purposes.

2.7.5 Secondary Flow in Turbomachinery

Secondary flow in turbomachinery is discussed

previously in connection with boundary layers and

the vorticity introduced into the flow by them.

Specifically, section 2.5.7 discusses this problem

with respect to axial-flow turbomachines; the

problem is related to the radial motion or

centrifuging of the rotor blade boundary layers (fig.
2-38), to the vane interaction with the casing

boundary layers, leading to overturning, and to a

secondary vortex in the spanwise end zones of axial-

flow vane systems, as described graphically in

figure 2-39.
In addition to (friction-induced) secondary flow,

which exists also in mixed-flow (conical-flow)

turbomachinery, radial-flow turbomachines have

secondary flows due to other causes. These flows
are described in section 2.6.3.8 and depicted for

radial-flow pump rotors with backward-bent vanes

in figure 2-57. The figure shows in the spanwise end
regions of the passage a flow from the high-pressure

to the low-pressure side of the passage, which is a

phenomenon generally existing in axial-flow

machines in the form shown in figure 2-39. An

exception to this rule occurs in open impellers (and

guide vane systems), where one end of the passage
has a wall with a different motion inducing in pump

rotors a flow from the low-pressure to the high-

pressure side of the vane passage (see fig. 2-57).

Another friction-induced secondary flow exists in

open impellers by virtue of the leakage stream

between the vane ends and the adjacent casing wail.
This flow has the same direction as the end wall

motion in open pump rotors, whereas the leakage

stream is opposite to the end wall motion in open
turbine rotors.

This section introduces on the basis of

frictionless-flow considerations an additional

reason for secondary flow. Figures 2-60 to 2-62

depict the secondary flow induced by radial
nonuniformities of the vane circulation into the

main stream, discussed in section 2.7.2. An

approximately radial vortex sheet induces on its two

sides opposite, approximately radial velocities,

which lead to the flow picture shown in figure 2-62.

An experimental investigation by Leroy Smith (ref.

32) showed that, even under very dramatic changes
in vane circulation (i.e., very intense trailing

vorticity), the resulting secondary motions did not

have truly significant effects on the overall

performance of the vane system. The same author
showed in reference 37 that certain aspects of

secondary flow, such as the vortex in the end zones

(fig. 2-39), can be approximated theoretically. It is

of interest to observe that the secondary motion just

mentioned is significant only in the spanwise end

regions, where the vorticity of the flow entering the

vane system is very inte.nse because of the boundary
layers on the casing or shroud walls.

The following is a partial listing of secondary
fluid motions in turbomachinery:

(1) Radial motion of the boundary layer on the
vanes of axial-flow turbomachines. Leads to an

accumulation of fluid with reduced (relative)

velocity in the outer tip region of rotors and in the

hub region of stators (fig. 2-38) and increases the

danger of separation in these regions.
(2) Secondary flow due to vorticity entering a

vane system or generated within the system by skin

friction on the end walls. Appears as a flow near the

end walls from the high-pressure to the low-

pressure side of the vane channel (overturning) and

a more distributed flow of much lower velocity in

the opposite direction in the rest of the channel (end
vortex, see figs. 2-39 and 2-57).

(3) Secondary flow due to the trailing vortex sheet

shed from every vane with spanwise nonuniform
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circulation.Generatesa spanwisevelocitycom-
ponentnear and behindthe trailing edgesin
oppositedirectionson thetwo sidesof thevanes
andtrailingvortexsheets.(Theentiresecondary
flow fieldisshownin fig. 2-62.)

(4)Bladeendleakageflowinopenvanesystems.
Formsatrailingvortexnearthelow-pressuresides
of thevanes(seefig.2-68).

(5) Flowdueto therelativemotionof theend
wall in anopenvanesytem.In pumps,this flow
opposesthesecondaryflow fromthehigh-pressure
towardthelow-pressuresideof thechannel(item
(2)),but increasestheleakagestreamthroughthe
gap.In turbines,it increasesthe secondaryflow
fromthehigh-pressuretowardthelow-pressureside
of thechannel,butopposestheleakagestream.

(6)Thevorticityfrel= - 2t0of therelativeflowin
radial-flowrotorsdoesnotgeneratesecondaryflow
motion,asshowninsection2-A.3of theappendix.

2.7.6Effectof VaneForcesonMeridionalFlow

As mentionedin section 2.7.1, the fluid-

connected vorticity (such as the trailing vorticity)

considered so far is not the only reason for the

departure of the meridional flow from the
irrotationai flow pattern. The vanes may very well

exert on the flow not only circumferential forces

but also forces parallel to the meridional planes.

Under the familiar assumption of complete axial

symmetry (an infinite number of frictionless vanes),

the vanes exert continuously distributed forces on
the meridional flow, which, therefore, cannot

remain irrotational. The purpose of this section is
to describe the action of the vanes on the meridional

flow in a rational, quantitatively tractable manner.

Figure 2-68.- Trailing vortex induced by vane-tip leakage
stream.

The principles of vane action on the meridional

flow were described first by Lorenz in reference 38.

In reference 39, Bauersfeld pointed out how Francis

turbines can be designed in such a manner as to
avoid this effect of the vanes on the meridional

flow. However, this vane action can indeed be

favorable and, under additional restrictions of the

vane design (e.g., by centrifugal stress consid-

erations), may not be avoidable. The following
considerations are based on reference 14. A few

additional publications on this subject are collected
in reference 40.

The vane action is represented by the familiar

concept of bound vorticity, that is, the vorticity that
must be connected with any deflecting vane or
airfoil in order to deal with the circulation about

such a body in a consistent manner. The relation

between the change in angular momentum along the

vanes of turbomachines and the bound vorticity of

the vanes has in principle the same form as equation

(2-159) except for the fact that the direction of the
bound vane vorticity is axial only in strictly radial-

flow vane systems (see fig. 2-40).

Figure 2-69 shows the construction of the lines or

surfaces of constant angular momentum for a

mixed-flow pump impeller. The vane shape of this

rotor is assumed to be given from other

considerations. (This example uses a vane shape

with radial vane elements like that shown in fig.
1-29 of ch. 1.)

The meridional velocity distribution is first

assumed to be irrotational and, thus, determined

according to equation (2-4) and figure 2-3. Then the

vane shape permits the construction of the velocity

diagram for any point in the meridional flow field
(a radial and axial section through the rotor) by

using the one-dimensional assumption that the

relative flow is parallel to the vanes except near the

discharge vane edge, where it can be corrected by

semiempirical rules. Figure 2-69 shows the two of

these velocity diagrams that apply to the points A
and B of a cylindrical section with radius r=0.9.

(The velocity diagrams are shown as appearing in

planes tangential to the meridional stream surfaces

through the points (circles) A and B.)

From a large number of velocity diagrams so

constructed, one can determine the change in

angular momentum along a number of cylindrical

sections and determine the rV U distribution
diagram shown above the meridional rotor section

in figure 2-69. Horizontal lines through this

diagram determine the points of constant angular

momentum, which can be brought back into the
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Figure 2-69,- Construction of lines of constant angular momentum and bound uortex lines for mL_'ed-flow rotor.

rotor layout to determine directly the lines of

constant angular momentum in the meridional
(radial and axial) section and, by means of the vane

layout (not shown), also the same lines in the axial

end view of the rotor. The strong inclination of the

lines mentioned last against the radial direction may
lead one to the conclusion that there must be

correspondingly strong action by the vanes on the
meridional flow.

Figure 2-70 shows a way in which this action can
be evaluated. The lines a and b are two successive

lines of constant angular momentum (rVu). One

can imagine the corresponding bound vortex line to

be halfway between the lines a and b. The bound

vorticity vector of this vortex line has in the

meridional section shown in figure 2-70 a value

1 A(rV U)
_c= r - A_ (2-181)

(according to eq. (2-159)) for a finite step, where n
is measured normal to the direction of the bound

vorticity vector _'o that is, normal to the lines a and

b. The relation of _'c to the axial component, that

is, the z-component, of the same vorticity _-zis

_c = _'z (2-182)
cos 0

where 0 is the local inclination of the lines of

constant angular momentum against the axial
direction. Since An = Ar cos 0, equation (2-181) can

be immediately converted to

1 A(rVu)
_'z- r Ar (2-183)

which is in agreement with the definition of _'z (eq.

(2-159)).
The effect of the vane action on the meridional

flow results from the facts that the vorticity,

representing the vane action at point A completely,
must have the direction of the vane and that this

direction is, in general, inclined against the

meridional plane. This condition can be seen best in

the development of a conical section BB containing

the vorticity vector _'c. If the vane is, in this section,
inclined against the meridional plane by an angle X,

it can be seen (in the development) that _'c is only

one component of the total vane action represented

by the vorticity _'. This vorticity has a component _u
normal to the meridional plane, which, therefore,

represents a vortex motion in the meridional plane

and expresses the desired effect of the vane action
on the meridional flow. Thus

_'u = _'c tan X = _'z tan h' (2-184)
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Figure 2-70. - Construction of corticit), of meridional flow from bound t,ortictty of canes.

(For X' see cylindrical section AD.)

The effect of this vorticity _'u on the meridional

flow can be determined on the basis of equation
(2-6) and figure 2-4 (in sec. 2.2 at the beginning of

this chapter).

The meridional velocity distribution with vortic-

ity _-u is now used to reconstruct the velocity

diagrams, rV U variations, and rVu=constant

curves in figures 2-69 and 2-70 by reiterating the

whole process. Automatic convergence is not
assured. To obtain convergence, the designer may

have to start with an estimated, better approx-

imation of Vm than the irrotational.

The direction of the vorticity can be found on the

basis of the formal rules presented in appendix 2-A.
However, it is desirable to have some simple,

physical reasoning which can be applied at the end

to check the validity of any theoretical results. Two
criteria are presented.

The first one is based on the direction of the vane

vorticity representing the increase in angular

momentum. Assume, in agreement with figure

2-69, that the momentum along lines a and b in

figure 2-70 is directed toward the observer and is

(for a pump rotor) larger at b than at a. This means

the vorticity represented by _'c is counterclockwise

when one is looking in the direction of vector _'c, as
shown. The development of the conical section B-B

is viewed in figure 2-70 against the direction of the
meridional flow, because this is consistent with the

projection used. Since the resultant vane vorticity

vector _" must have the same meaning regarding

direction of rotation as _c, _'denotes a reduction of
the meridional (and relative) velocity at the high-

pressure side of the vane (plus side), in agreement
with the laws of fluid motion discussed in section

2.6.3.3. By the same definition, the vorticity of the

meridional flow reduces the meridional velocity at

the inside of the rotor passage (side closest to the

axis of rotation) for the overall configuration

shown in figures 2-69 and 2-70. This reduction in
meridionai velocity exists over and above that

resulting from an irrotational meridional flow.

(This effect of vorticity happens to be opposite to
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that shown in fig. 2-4, where the meridional velocity

gradient for flow with vorticity is less than that of

the irrotational flow.)

The second physical criterion for the direction of
the effect of vane forces on the meridional flow is

still simpler. The vane forces reduce the meridional

velocity on the side of the meridional flow passage

that faces the high-pressure side of the vanes, as
shown by a conical section coinciding (approx-

imately) with the lines (or surfaces) of constant

angular momentum. Applied to the case shown in

figures 2-69 and 2-70, the result of this criterion

agrees with that obtained on the basis of the
direction of change in angular momentum and of

the corresponding vorticity.

It is generally known that vanes of radial-flow or
mixed-flow rotors with radial blade elements have

an unfavorable effect on the meridional velocity

distribution. The foregoing result is, thus, in

agreement with experience in this field. On the
other hand, if radial blade elements are not

required, which is true for most liquid-handling

machines (except those for liquid hydrogen), it is

possible to design radial-flow rotor vanes in such a
manner as to have a more uniform meridional

velocity than would exist without any vane action.

This could be accomplished by having the high-
pressure side of the vanes face the rotor shroud
whose convex side on a meridional section faces the

flow. Similar considerations apply to double-curve

guide vane passages.

The application of the principles outlined in
sections 2.6 and 2.7 to the design of turbomachines

is described in chapter 4.

2.8 Cavitation in Turbomachinery

2.8.1 Introduction

Cavitation is the local vaporization of a flowing

liquid caused by local pressure reductions due to the

dynamic action of the flow. By this definition, the

subject is introduced in section 1.2.2 of chapter 1.

According to the general subject of that chapter,
cavitation is treated there entirely on the basis of

similarity considerations. This treatment necessi-

tates using the so-called classical assumption about

cavitation: Cavitation takes place instantaneously

whenever and wherever the local static pressure in

the liquid drops to the vapor pressure of the liquid,

P =Pv (2-185)

as given by its vapor tables, for example, the
familiar steam tables for water.

Similarity relations of sufficient simplicity for

design purposes are obtained by assuming that the

vapor pressure in the region of cavitation is known,
which means that the temperature of the liquid is

everywhere equal to its average temperature, called

here bulk temperature. In addition, it is tacitly
assumed that the local pressure drop is due to

inertial forces only; this assumption eliminates the

local effects of viscosity and gravity (i.e., the effects

of Reynolds number and Froude number). These
assumptions are usually included in the classical

assumptions on cavitation.

It is amazing how closely the foregoing assump-
tions are satisfied under most conditions of

practical hydraulic pump and turbine operation,

specifically operation with ordinary water at room

temperatures. Under such conditions, the vapor

pressure is usually so low as to make its local

changes quite negligible, but there are other reasons
why the classical assumption may not be valid.

Furthermore liquids with high vapor pressures,

such as high-temperature liquids or cryogenic

liquids, pose a significant problem with respect to

the local temperature and vapor pressure in the

region of cavitation. This section is, therefore,

primarily devoted to a discussion of departures
from the classical assumption.

A brief remark is necessary regarding ideal-flow

solutions for flow with fully developed cavitation.

Problems involving plane, two-dimensional flow
are amenable to theoretical solutions by the

hodograph method described in reference 9 for

systems of straight and parallel vanes. More general
problems have not yet been solved rigorously. The

nature of this type of turbomachinery flow problem

is briefly indicated in section 2.5.4.1.
Symbol notations in section 2.8 are the same as

those used and defined in section 1.2.2 except for

new variables, whose symbols are explained at the

place of their first introduction.

2.8.2 Flow Effects on Cavitation

2.8.2.1 Effects of local cavitation on
flow.-With fully developed cavitation, there is

obviously a major, overall effect of cavitation on

the flow and the pressure distribution. However,

even local cavitation generally has a local effect on

the flow and usually reduces the local pressure.

Figure 2-71 (a) shows a case where the local pressure

is reduced, and 2-71(b) one where it is not. In the
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(a)

(b)

(a) Void that reduces local pressure.

(b) Void that does not reduce local pressure.

Figure 2-71. - Two possible forms of cavitation voids.

first case, the cavitation void reduces the minimum
radius of curvature of the boundary; in the second

case, it increases that radius. In the first case, the

cavitation void grows until it is swept downstream

and a new void is formed (unsteady cavitation); in

the second case, cavitation may be steady or

unsteady. If the cavitation void blocks a significant

part of a confined flow passage, it further reduces

the pressure, therefore, grows, and leads to

unsteady cavitation, as in the first case.
On the basis of ideal-flow considerations, there is

reason for questioning whether cavitation can ever

be steady. The ideal (frictionless) flow picture of a

void in a liquid involves necessarily a reentering jet

(see fig. 2-72), because there must be a stagnation

point behind the closing end of the void, which
cannot be along the streamline bounding the void,

since it cannot be on a line (or surface) of constant

pressure like the boundary of a void. The reentering

part of the flow eventually fills the void and causes

it to be swept away and subsequently reestablished.

This unsteady behavior of cavitation voids was

experimentally observed by Knapp, although the
actual region of closure seems to differ substantially

from its ideal picture.

Thus it is questionable whether cavitation will

ever be steady. If steady, such behavior of
cavitation voids is an exception rather than a rule.

Cavitation is sometimes steady at very small scales,

where viscosity may have a dampening effect on

Stagnation point _

Figure 2-72. - Ideal closure flow of void and reentering jet.

§2.8.2.1-2.8.2.2

unsteady pulsations. Large cavitation voids behind

a body have also been observed to be steady.
The flow-disturbing effects of cavitation, just

described, are the reason why cavitation has in most

cases a detrimental effect on the performance of the

machine. It is theoretically possible, but practically

still uncertain, that a machine designed for oper-

ation with cavitation can reach the quality of

performance achievable by a different design
without cavitation.

2.8.2.2 Reynolds number effects.- It is natural

to expect some effect of viscosity on cavitation (i.e.,
changes in Reynolds number), at least as much

effect as on any other flow phenomenon and

perhaps more because cavitation usually originates

at the flow boundaries. Figure 2-73 shows the

results of one of the earliest systematic inves-

tigations, carried out jointly by Parkin and Holl in
the water tunnels of the California Institute of

Technology and the Pennsylvania State University

(see appendix A of ref. 41). (Ref. 41 also contains
extensive information on other scale effects

(departures from the classical assumptions) on

incipient and desinent cavitation, particularly on

Reynolds number effects.) Consistent results were

obtained only when the disappearance (desinence)
of cavitation was observed at increasing static

pressures. The test objects were bodies of

revolution (ogives), of different sizes, coaxial with
the direction of the test stream. The material was

polished stainless steel.
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Figure 2-73.-Desinent cavitation number as function of

Reynolds number for ogives. Tunnel diameter, 48 inches,"

data from reference 41.
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Figure 2-73 shows that there is a significant

Reynolds number effect on the desinent cavitation

number op, d. Nearly all cavitation numbers
observed are lower than the calculated pressure

coefficient at the point of minimum surface

pressure Cp, min, for one ogive by as much as a
factor of 2. No corresponding effects of Reynolds

number changes have been reliably observed with

hydraulic pumps or turbines, but it must be

remembered that the scatter of pump test results is

generally far greater than the scatter in a laboratory

experiment with visual observation of cavitation

and that no systematic cavitation tests of pumps as
a function of Reynolds number only are known to

this writer. To eliminate the important effects of

manufacturing inaccuracies, such tests would have

to be conducted with the same pump at different

speeds and perhaps with different viscosities.

Cavitation tests at different speeds have been

conducted, but the range of speed has usually been

fairly small. No consistent scale effects have been
reported. Lately some apparent scale effects have

been observed, but these effects run in the opposite

direction from those shown in figure 2-73, that is,

the cavitation performance was poorer (the

cavitation number Op was higher) at reduced speeds
and Reynolds number. It is difficult to explain this

effect by anything but the influence of undissolved

gas on cavitation. The effect of undissolved gas on
performance under cavitating conditions is det-

rimental, because (1) undissolved gas forms voids in

the stream at pressures higher than the vapor

pressure (gaseous cavitation), (2) gas bubbles are
nuclei of cavitation and, therefore, promote

vaporization and the formation of cavitation voids,

and (3) at reduced velocities, and, therefore,

reduced pressures, at cavitation inception any given

mass of gas occupies an increased volume, so that
the effect of the undissolved gas on the flow is
increased.

2.8.2.3 Froude number effects.-The effect of

gravity on cavitation is mentioned here mainly for

reasons of completeness, since it is of importance

primarily in connection with very large hydro-

dynamic machinery, such as large ship propellers or

hydraulic turbines. Froude's law of similarity needs
to be considered only if the vertical dimensions of

the rotor (primarily its suction side) constitute a

significant part of the suction head above the vapor

pressure Hsv. Besides the aforementioned cases of
machines with large, vertical dimensions, this

condition may exist in connection with propellant

pumps for large liquid rockets at times of very high

acceleration of the whole system, which usually
coincides with a low free-liquid level in the pro-

pellant tank.

This writer is not aware of theoretical or exper-

imental investigations regarding the effect of dif-

ferences in Hsv within the cavitation region of a

hydrodynamic machine. The most severe differ-

ences in Hsv are probably those that occur across
the rotor in so-called horizontal shaft units, that is,

units where the shaft is located at approximately

right angles to the general acceleration of the entire
system. This acceleration may be gravitational

acceleration or any other acceleration of the entire

system, such as the acceleration of a rocket or other
vehicle. In this case, the rotor blades are subject to

unsteady conditions with respect to cavitation.

Considering the complexity of the cavitation

phenomenon, there is but little hope for a
theoretical solution of this problem. J. W. Holl, at

the Pennsylvania State University, has observed

and investigated a hysteresis effect of incipient

cavitation, that is, on the onset of cavitation at

timewise decreasing Hsv. His results would lead one
to believe that incipient cavitation on a rotor blade

is determined by the time average of Hsv (i.e., the

Hsv value calculated for the elevation of the center
of rotation of the blade).

While pressure differences in the entire suction

pipe or reservoir system due to a general

acceleration of the whole system (such as gravity)
are easy to calculate by hydrostatic considerations,

the effect of such pressure differences within the

region of cavitation is not yet predictable. It is not

likely to be major. In the absence of better

knowledge, the Hsv of the unit should be calculated

for the elevation of the center of the expected region
of cavitation.

2.8.2.4 Compressibility effects. - Since cavit at ion
starts from the liquid state, it may be surprising to

find a section on compressibility effects on

cavitation. There is indeed no significant effect of

compressibility in essentially cavitation-free opera-
tion,including incipient (or desinent) cavitation.

Water-hammer phenomena in the suction pipeline

are an exception to this statement. This is a separate

problem of the entire flow system, not of the

turbomachine as such, and is not treated in this

compendium.

As soon as there are significant cavitation voids,
compressibility may become important. This

possibility results from the fact that significant

changes in pressure have been observed along so-

called cavitation voids (see refs. 42 and 43); these
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changesindicatethat the voidsmaycontaina
mixtureof theliquidandvaporphasesof thefluid
oramixtureof liquidandgaswhichmayhavecome
outof thesolution.

Mixturesof liquidsandgases(or vapors)have
exceedinglylow acousticvelocitiesif themixture
behavesapproximatelylike a homogeneousfluid,
becausethe mixturemayhavea compressibility
(volumeelasticity)comparablewiththatof thegas
or vaporphaseandadensitycomparablewiththat
of theliquidphase.If theliquid-gasorliquid-vapor
mixturebecomespart of the activeflow in the
machine,this flowmaywell reachhigh(possibly
supersonic)Machnumbersin termsof the low

acoustic velocity of the mixture. These Mach
numbers might lead to significant changes in the

flow pattern as a function of the flow velocity.

However, the actual flow pattern and density

distribution in the region of cavitation are far too

complex to permit any prediction of them that

could be of direct value to the design engineer. All

that can be done is to call attention to the possibility

of compressibility effects on flow with cavitation in

order to create a better understanding of the
observed, extreme complexity of such flow.

2.8.2.5 Effects of small surface irregularities on
incipient and desinent cavitation. - A good surface

finish is important, since the effect of small surface

irregularities on incipient and desinent cavitation

can be quite substantial. Figure 2-74 represents a

highly condensed and simplified summary of the

most important results of an extensive investigation

by Holl (ref. 41) on this subject. A sharp-edged
roughness would, of course, have a very high

cavitation number if exposed to the free-stream

velocity. Small roughnesses are buried in the

• 4: : i i ', _ _

.02 .04 .06.08.1 .2 .4 .6 .81
Relativeheightof roughness,h/6

Figure 2-74. - Approximate cavitation numbers of sharp-edged

surface irregularities. ( Data from ref. 41. )

boundary layer and are, therefore, exposed to

velocities lower than free-stream• Figure 2-74 shows

the cavitation number o I of the roughness alone

(i.e., when placed on a flat plate parallel to the
stream), referred to the free-stream velocity (see eq.

(1-37)), as a function of the height of the roughness

h divided by the local thickness 6 of the boundary

layer. This cavitation number drops from its nearly

free-stream value of about 2 to 0.3 as the height of

the roughness is reduced to about one-thirtieth of

the boundary-layer thickness, in practice a very

small roughness. Yet even this relatively low

cavitation number of the roughness is quite sig-
nificant.

To be investigated is the effect of a single

roughness on a point of an otherwise smooth body

where the pressure-reduction coefficient without

the roughness is

Cp, o- poo-Po (2-186)
p V2_/ 2

The subscript o denotes conditions at that par-

ticular point of the parent body without the effect
of the roughness.

Ignoring effects of the boundary layer at this

point gives

_v 2
poo + _ =Po + -- (2-187)

2 2

so that

I/2
Cp, o = Poo-Po _ o

pV2/2 _1

or

112
o (2-188)Cp, o + l - V2

The cavitation number of the roughness alone,

referred to the local flow conditions (subscript o), is

Po-Pv _ Po-Pv V2
a I - _ (2-189)

pV2o/2 p y2_/ 2

Hence the resultant cavitation number aR of the

roughness at the point on the parent body

designated by the subscript o, referred to the free-
stream velocity, is

P=-Pv _P=-Po Po-Pv
oR : 0 V2J 2 0 V2J 2 + 0 VZJ----2

Po-Pv V2_
= Cp, o +

PV2o/2 V2
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substitution from equations (2-188) and (2-189)

yields

a R = Cp, o + ol(Cp, o + 1) (2-190)

If it is assumed, for example, that Cp, o=0.3 and
o1=0.3, then aR=0.3+(1.3×0.3)=0.69; that is,
the resultant cavitation number of the body with

roughness is more than twice that for a smooth
body.

It is doubtful that the very local cavitation

connected with a small roughness has a measurable

effect on performance, but it may lead to premature

cavitation damage and thereby increase the local

roughness.

2.8.3 Microscopic Effects on Cavitation

2.8.3.1 Effects of tensile strength and surface
tension of liquids on incipient and desinent

cavitation. - The physicists tell us that a clean liquid

should be capable of sustaining very high tensile
stresses, that is, pressures considerably below the

equilibrium vapor pressure, including negative

pressures. (See ref. 44, particularly the Conclu-

sions, which are very instructive.) In order to

explain why vaporization or cavitation usually sets

in promptly at the vapor pressure, one must assume

weak spots in the liquid called nuclei of vapor-
ization or cavitation.

If one assumes that cavitation starts from very

small vapor or gas bubbles, one finds an additional

problem connected with cavitation inception due to

the substantial pressure difference between the
inside and the outside of a small bubble resulting

from its surface tension. Figure 2-75 gives this

pressure difference for water as a function of the
bubble radius. For a 10-3-inch radius, the difference

is about 1 pound per square inch; for a 10-4-inch

radius, the difference is 10 times higher. If the

pressure inside such a bubble is the vapor pressure,

the pressure in the liquid outside the bubble must be

less than the vapor pressure by the amounts given in

figure 2-75. While considerable tensions have been
observed in water, for example, after subjecting the

water to high pressures, tensions of several pounds
per square inch are not regularly observed under

ordinary conditions. One must, therefore, conclude

that cavitation under ordinary conditions starts

with bubbles larger than 10-3 inch.

How can small bubbles exist in a liquid? If they

are vapor bubbles and the pressure inside the
bubble is larger than the vapor pressure, the vapor

t°e i

!
101

i0-i ,

10-5 i0-4 10-3 10-2 10-1

Bubble radius, in.

Figure 2-75.-Pressure difference between inside and

outside of bubble in water.

condenses and the bubble disappears. If they are

gas bubbles, the excess pressure inside the bubble
(due to surface tension) forces the gas to dissolve

into the liquid, and the bubble disappears.

If cavitation can start only from a gas or vapor

bubble of finite size, one must assume what is

usually referred to as the Harvey nucleus (fig. 2-76).

Its important characteristic is a crack in a hydro-
phobic material, either in the solid flow boundaries

or in small solid particles suspended in the liquid.
Under such conditions, the liquid surface bounding

the gas trapped in the crack is curved in such a

manner that, under the influence of surface tension,

Figure 2-76.-Diagram of Harvey nucleus.
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the pressure in the gas is lower than the pressure in

the liquid.

The hypothesis of the Harvey nucleus is con-
firmed by the fact that ordinary tap water sustains

tension (i.e., pressure below its vapor pressure)

after it has been subjected to very high pressures.

This can perhaps be explained by assuming that,

under high pressure, most of the gas in the nucleus

crack is absorbed, and so little is left that even

under greatly reduced pressures (or tensions) the

remaining gas does not flow out of the crack (i.e.,

does not reach the broken line in fig. 2-76), so that
it does not become effective as a cavitation nucleus.

In a paper delivered in September 1970 at the

Pennsylvania State University (ref. 45), Plesset

stated that it is not necessary to assume the presence

of undissolved gas to explain the onset of

cavitation. The same is stated by Knapp, Daily, and

Hammitt in their book on cavitation (ref. 46). A

hydrophobic solid alone can serve as a nucleus of

cavitation. This constitutes an appreciable broad-
ening of the concept of cavitation nuclei, to include

both hydrophobic particles without gas and hydro-

phobic particles with cracks harboring undissolved

gas.

If one considers only cavitation nuclei suspended

in the liquid, one is still confronted with the

necessity of assuming that these particles are
sufficiently large to keep the effects of surface

tension below easily observable limits (see fig. 2-75)

after the gas or vapor covers a significant part of

the particle. However, particles of such size are

easily removed by filtration or settle out under the
influence of gravity or any other general accel-

eration of the system. In reference 44, Plesset draws
the conclusion that particles kept in suspension in a

streaming fluid reduce the tensile strength of the

liquid to the order of tens of atmospheres. Even if
he underestimates the size of the paricles suspended

in a turbulent stream, a tensile strength of, say, 1

atmosphere (33 ft. of water) could never escape

detection by the usual cavitation experiments and

field observations with hydraulic pumps and

turbines that have been carried out under varying

conditions for over half a century. Such obser-
vations, which have been the basis of the classical

assumptions on cavitation, usually involve tap

water at about room temperature, with ordinary gas

content, ordinary concentration of suspended

solids, and mean pressures ranging from about 0.5

to 2 or 3 atmospheres on the low-pressure side of

the machine. Apparently there is no evidence of

tensions of 1 (or several) atmospheres under such
conditions.

In response to the last statement, Holl, referring

to work by Ripken (ref. 47), pointed out to this
writer in a private conversation that, under such

ordinary conditions, water probably contains,

besides solid nuclei, gas bubbles, which may take a

fairly long time to rise to the free surface or upper
wall of the container.

In a private communication with this writer,

Piesset pointed out that, under ordinary conditions,

suspended solid particles may be substantially

larger than he assumed in reference 44, and thus
tensile strength of the liquid may be as low as a

small fraction of an atmosphere.

These possibilities should be carefully explored,

since they would make cavitation test results

significantly dependent on the gas content of the

test liquid, as well as on the time before the test

during which the liquid was either quiescent or
disturbed. To the best knowledge of this writer, no

such dependencies have been reliably observed.

Nevertheless the potential differences between

cavitation under practical conditions of application

and under laboratory test conditions demand

careful attention, especially because there is a

tendency, and sometimes a necessity, to keep the

test liquid in the laboratory very free from
undissolved gas and solid particles. The significance
of such differences are further examined in the next

section.

The foregoing comments on suspended particles
focus attention on cavitation nuclei connected with

the solid boundaries of the flow. If the boundary

nuclei (cracks) were of major importance, these

boundaries should have observable properties (such

as crystallized rather than amorphous structures,

hydrophobic rather than hydrophilic reactions, and
various types of surface treatment). No obser-

vations of this type have become known to this

writer, although Holl at the Pennsylvania State

University has started investigations of this

problem.

2.8.3.2 Effect of number of nuclei on incipient
and desinent cavitation.-In 1950, Gilmore and

Plesset (ref. 48) called attention to the fact that the

finite number of nuclei in a liquid might produce a

significant scale effect on incipient or desinent

cavitation. The following brief outline of their

thoughts is written from memory. This writer is,
therefore, responsible for any incorrectness in this

presentation.
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Gilmore and Plesset distinguished between two

hypothetical cases:

(1) That there is an abundance of nuclei, so that

only a small fraction of the nuclei are actually

involved in the inception of cavitation. If there are

plenty of nuclei, even in connection with the

smallest scale of cavitation experiment ever

conducted, one cannot expect any effect of the
number of nuclei on incipient cavitation. This case

is, therefore, not considered any further.

(2) That there is a significantly limited number of

nuclei in the liquid and that nearly all available

nuclei are involved in the inception of cavitation. In

this case, a change in the size (scale) of the flow
should have an observable effect on cavitation

inception. Only this case is considered in the
following.

Let N be the number of cavitation nuclei per unit
volume of the liquid. The average, linear spacing
between nuclei is, therefore,

1
AI= -- (2-191)

If At is the average interval of time between
arrivals of nuclei at a small region of critical

pressure (pressure sufficiently low to cause cav-
itation),

AI = V At (2- ! 92)

where V is the average flow velocity.
Let L be representative linear dimension of the

flow system considered. Then the simplest con-

dition of similarity with respect to cavitation is

A/ V At
- = constant

L L

or, according to equation (2-191 ), (2-193)

1
---- = constant

For liquids with a constant, limited number N of

nuclei per unit volume, the condition of similarity
for incipient cavitation would be

L -- constant (2-194)

that is, a constant size (scale) would be required to
maintain similarity of incipient cavitation with a

limited number of nuclei in the liquid, if, of course,

the surface of the cavitation body does not
contribute to the nucleation of cavitation.

Since condition (2-194) is generally not a

requirement for meaningful cavitation experiments

(reduced-scale experiments are commonly used in

the turbomachinery field), it must be concluded

that either or both of the following are true:

(1) The number of nuclei in the liquid is usually

larger than that required to sustain a certain degree
or form of cavitation.

(2) The surface of the cavitating body contributes

substantially to the nucleation of incipient cav-
itation.

It is also possible in the first case just mentioned
that there is a lower limit of size where the number

of nuclei is just sufficient to sustain a certain degree
or form of cavitation and that further reduction in

size destroys the similarity with respect to incipient
cavitation. This lower limit in size of cavitation

experiments is increased (according to eq. (2-193))

when the test fluid is filtered or otherwise kept very

clean, since this reduces the number N of nuclei per

unit volume (and increases their average spacing
A/).

The foregoing considerations may be of
considerable practical importance. It is common

practice to keep the test fluid rather clean for

cavitation experiments where optical observations

are desired. In some fields (particularly the field of

nuclear power), high purity of the liquid is a

necessity for other reasons. Cryogenic liquids,
particularly liquid hydrogen used for propulsion,

may have a low number of suspended cavitation

nuclei. Thus it is entirely possible that in several

important fields the number of cavitation nuclei in

the liquid may have to be considered as an
important test variable and that means have to be

developed to measure and control this variable.

Simply having the liquid as clean as possible may

not be sufficient and may, in fact, be misleading,
because very low numbers of nuclei increase the

criticality of this problem. Whether a very low
number of cavitation nuclei can be used to minimize

cavitation in a practically dependable fashion is as
yet quite uncertain, since a state of tension in the

liquid may be unstable and could involve major
problems of reliability.

2.8.4 Thermodynamic Effects on Cavitation

2.8.4.1 Introduction. - One of the classical

assumptions on cavitation is that the vapor pressure
in the region of cavitation is known. What is

actually meant is that the combination of vapor and

gas pressure within the cavitation void is known,
considering that gas comes out of solution under

the influence of the cavitation prncess.
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If thepartialpressureof thegasin theliquidis
pg, similarity with respect to gaseous cavitation is
obviously

Pg = constant
P

or (2-195)

Pg = constant

where p is any representative pressure, and V is any

representative velocity of the flow process involved.

Analogously the similarity condition with respect

to the vapor pressure Pv is

Pv-- = constant
P

or (2-196)

Pv-- = constant
pV2

If, as in the case of cold water, Pv is negligibly small
compared with p and p V2, the similarity relation

(2-196) becomes insignificant. (The same is true for

negligibly small partial gas pressures pg with respect
to eq. (2-195).)

No general relations are available for the case

where the partial gas pressure pg is not negligibly
small compared with the liquid pressure p.
However, if the vapor pressure is not negligibly

small, as at high temperatures and pressures and for

cryogenic liquids, a rational approach to the

resulting problem of cavitation is possible on

thermodynamic grounds. This approach was first

pointed out by Stahl and Stepanoff in reference 49.

The following presentation uses the data provided
by Ruggeri and his associates given in references 42

and 43 and other NASA reports. A significant

extension of the work was offered by Billet in

reference 50. The form of the following presen-
tation is similar to that of an older publication by

Holl and this writer (ref. 51).

The simple principle of these publications and the

following considerations is that the process of

cavitation necessarily involves vaporization, which

demands a heat flux from the liquid into the
cavitating region. This heat flux is associated with a

temperature drop in the liquid close to the surfaces

of cavitation and vaporization in the liquid stream.

The temperature drop, in turn, reduces the local

vapor pressure below the vapor pressure corre-

sponding to the bulk temperature of the liquid. It is

this local drop in vapor pressure which constitutes

the thermodynamic effect on cavitation; it is
discussed in the next section.

2.8.4.2 Equations of thermal effects and their

application.-Following the procedure used by

Ruggeri (refs. 42 and 43), we start with a simple

equation of heat balance: the mass of vapor times

the latent heat of vaporization X equals the mass of

liquid involved times the specific heat of the liquid

Cpj times the change in temperature AT of that
mass of liquid; that is,

Pv VvX = Pl VICp, IA T (2-197)

where V v is the volume of the vapor, and Vt is the
volume of the liquid.

In accordance with Hollander (ref. 52), Ruggeri

as well as Holl and Billet interpret equation (2-197)

as a static equation, describing equilibrium between

vapor and liquid in a heat-insulated cylinder and
piston, the piston having been slowly withdrawn to

generate the vapor volume.

In the opinion of this writer, this static inter-

pretation does not do justice to the value of equa-

tion (2-197) in a flow system. When both sides of

this equation are divided by the unit of time, the

equation can be written in the form

p vQv X = oIQICp, I,5 T (2-198)

where Qv is the volume of vapor carried away per

unit of time from the cavitation void by en-
trainment at its downstream end, which has been

observed and measured by Billet (ref. 50). The rate

of liquid volume flow cooled (by vaporization) by

ATis QI (see fig. 2-77).
The temperature reduction is

AT 1 = pvQv_ (2-199)
PIQICp, l

where the subscript 1 is introduced to distinguish

the temperature drop from one calculated by
different means, described later.

Evidently the ratio Qv/QI is equivalent to the
ratio of vapor to liquid volume B introduced by

Stahl and Stepanoff in reference 49.

It should be understood that, in contrast to the

usual interpretation of the basic equation (2-197),
equations (2-198) and (2-199) can describe a

completely convective mechanism of heat transfer

from the liquid to the vapor phase: A liquid stream

QI being cooled provides the heat required to

generate a vapor stream Q_,.
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Instead of assuming this purely convective
mechanism, one can assume that the heat is

supplied from the liquid to the vaporizing fluid by

conduction. The flow of vapor from the cavitation

void is described in the same manner as previously,
so that

aT

pvQvh = X _-_ A w (2-200)

where K is the heat-transfer coefficient, and A w is

the heat-transfer area, presumably the wall area of

the cavitation void. The coordinate y is measured
normal to the wall of the cavitation void.

The temperature gradient is approximated by

aT AT 2
Oy- Ay (2-201)

where Ay is the (small) thickness of the thermal

boundary layer adjacent to the cavitation void.
Since the flow near this void is not a usual

boundary-layer flow of known characteristics (the
shear stress at the surface of the void is practically

zero), there is no simple way to approximate Ay

except by assuming that it is proportional to a

representative, linear dimension L of the flow

mechanism involved, say the length of the
cavitation void. Under this crude assumption, the

temperature drop AT 2 connected with the heat-

transfer mechanism expressed by equation (2-200) is

PvQvLL
A T2 = - constant x -- (2-202)

KAw

A comparison with equation (2-199) yields

AT2 PlQICp'IL (2-203)
= constant x KA w

The liquid flow is

QI = VnA w (2-204)

where Vn is an average turbulent convection

velocity of the liquid normal to cavity wall Aw,

which, for completely turbulent flow, may be
assumed to be proportional to the free-stream

velocity V (i.e., Vn = constant x I0. Thus equation
(2-203) can be written in the form

AT2 = constant x atCp, t VL = constant × Pe (2-205)
AT 1 K

where we introduce the Peclet number

Pe = _ VL (2-206)
K

which describes the ratio of convective to con-

ductive heat transfer.

The foregoing statement should be obvious
because equation (2-199) can describe, according to

equation (2-198), a purely convective heat-transfer

process (in contrast with the usual interpretation of

eq. (2-197)), whereas equation (2-202) uses a purely

conductive process (according to eq. (2-200)) at the

surface of the cavity while maintaining a purely

convective process for the removal of the vapor at

the downstream end of the cavity (see fig. 2-77).

Both equations (2-199) and (2-202) can be

brought into the same form by using AT 2

= constant x ATIPe, so that with

QI = constant x A wV

and

Qv = constant × A v V

(defining Av)

AT= -constant x Pv A v __X
at Aw Cp, IPen

(2-207)

where the unknown exponent n varies from n =0

for pure convection to n = 1 for pure conduction on

the liquid side. It is reasonable to assume that the

heat transfer on the liquid side is partly convective

and partly conductive, so that the exponent n may

be expected to lie between 0 and 1.

The temperature depression AT causes a local

reduction in vapor pressure. For small temperature

changes AT this reduction in vapor pressure can be
approximated by

APv = _ AT (2-208)

Ruggeri as well as Billet and Holl use the Clausius-

Clapeyron equation to approximate apv/OT.

Voo

I - Q[I V I

I ...... -::'" ::::,-_:_'_2_'__._ _-- _:_:_ -.'::'_.

Figure 2-77. -Typical cavitation void.
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However, if Pv is empirically known as a function
of T (by the standard vapor tables), no approx-

imation is necessary, and the physical meaning of

the resulting equation remains quite clear. This
equation is

OPv Pv Av k
APv = I constant x

aT m Aw Cp, i Pen
(2-209)

This equation was first presented in reference 51 as

equation (12).

It would, of course, be desirable to give the

reduction in vapor pressure in dimensionless form.

In references 14 and 51, this is achieved by dividing

Ap v either by a representative system pressure p

(e.g., by ptgoHsv) or by a representative velocity

pressure pll/2. The latter leads to clear similarity
relations in terms of the linear dimensions L and the

liquid velocities V of the system.

At present, this writer believes that division of

Ap v by the bulk vapor pressure Pv may lead to
interesting and useful results. Applying this idea to

the Freon test results by Ruggeri and by Billet leads

to the conclusion that Apv/Pv for developed
cavitation in Freon lies between 0.1 and 0.2. Results

by Billet with water indicate ratios between 0.04 and

0.1, but many other data would have to be

evaluated before more general conclusions can be
drawn.

The most significant departures from the classical

cavitation behavior have been observed with liquid

hydrogen. With this medium, pumps have been

operated experimentally with practically zero

NPSH (Hsv) referred to the vapor pressure cor-

responding to the bulk temperature of the liquid.
The only known explanation of this behavior is the

thermodynamic reduction in temperature AT and in

vapor pressure Apv=plgoAh v discussed in this

section. Figure 2-78 shows this reduction in vapor
pressure in liquid hydrogen in dimensionless form:

Apv/Pv=Ahv/h v, where hv is the vapor pressure

expressed in feet of liquid hydrogen. The data

presented in figure 2-78 are taken from figure 1 of

reference 43. The same reference gives in its figure 8

minimum cavity pressures corresponding to &pv/Pv
=0.440 to 0.533 at liquid-hydrogen velocities of
about 150 feet per second. It is possible that such

high values of the dimensionless reduction in vapor

pressure are responsible for the strong departures

from the classical behavior observed experimentally

with pumps handling liquid hydrogen.

....a

Vapor-liquid
1003 .45_ ! ! volumerat o, /i ]

I

 .35p ./.z /i

._

.25( • J , / . ,
"_ / 8 '

.lO_ /d II •

300 ._ i I
200 _ .05 :/

100 i •
30 32 34 36 38 40 42

Temperature, °R

Figure 2-78,-Dimensionless vapor pressure reduction for

liquid hydrogen and vapor pressure as a head.

The investigations by Ruggeri and his associates

as well as by Billet and Holi cover additional aspects

of developed cavitation, such as the pressure and

temperature distribution along a cavitation void.
Figure 2-79, from references 42 and 43, shows the

pressure reduction distribution (in terms of head)

along a cavitation void on the wall of a venturi-

shaped test section of a research cavitation tunnel

using Freon-ll4 as the test medium. The values of

&pv/pv=(hv-hx)/hv are added at the minimum-

pressure points located at the leading edge of the
cavitation void. These tests were carried out at a

nearly constant liquid velocity of about 32 feet per
second.

Other tests of the same series indicate that the

pressure reduction Apv=plg o (hv-hx) increases

with the velocity of flow, a change in velocity by a

factor of about 1.4 giving a change in Ap v by a
factor of about 1.3. An increase in the length of the

cavitation void produces a relatively smaller

increase in Apr.

Equations (2-199), (2-202), (2-207), and (2-209),

can be evaluated only by comparisons, because of
the unknown constants of proportionality, other

unknown ratios, and an unknown exponent n in

these equations. Thus, only if the results ATor Ap v
are known experimentally for at least one case

171



§2.8.4.2-2.8.5

i
E

g

;(
.c

> 4
.c

c I._o

6L

8

>

_J

10

_P2v,
Pv

hv - hx

Temperature

depression,

hv OF
-- /-"_/ " _ <O.l

J."6 / !

r0.163 _ -/ /

/ / temperature, velocity,

- G""6 / oR Vo,
t,,sec

CI 2 / o 538. 31.,
.142 / [] 519.1 31,8

-- / _ 467.5 31. 7

_.z 07.6 Open symbols denote measured

.... pressure depression

)_9. Solid symbols denote vapor pres-2
sure depression at measured

L. 163 temperature depression

I I i I i
1 2 3 4 5

Axial distance from minimum pressure location, x, in.

Figure 2-79.-Effect of Jree-stream liquid temperature on
cavio' pressure end temperuture depressions. Freon-ll4;

l.O-scale venturi; nominal cavity length, 2¾ inches (from

ref. 43 ).

under given geometric and flow conditions can one

draw conclusions regarding the behavior (_T and

Ap v) of other geometrically and hydrodynamically
similar systems operating at different temperatures,

velocities, or linear dimensions with different

fluids. Knowing ATand &Pv permits the application

of model experiments with more convenient fluids
than the fluid used under the actual operating

condition, as long as the model fluid maintains

approximately certain characteristics of the

operating fluid. In particular, the ratio of the bulk

vapor pressure to a representative, hydrodynamic

pressure should be of the same order of magnitude
in both cases. For example, cold water is not usually

an acceptable test fluid for studying thermo-

dynamic effects on cavitation in cryogenic fluids

because Pv of cold water is negligibly small com-

pared with the hydrodynamic pressures under most

practical test conditions.

Ruggeri and his associates have demonstrated the

feasibility of this type of similarity consideration by

numerous experiments reported in references 42,
43, and 53.

It has also been established by Ruggeri (refs. 42

and 43) that the usual cavitation number is (under

hydrodynamically similar conditions) constant if it
is referred not to the bulk vapor pressure of the

liquid but to the minimum static pressure (min-
imum local vapor pressure) in the cavitation void;

that is,

P _ - Pc, min
°c, min= P i/2/2 = constant (2-210)

where the minimum pressure in the cavitation void

Pc, min = Pv, bulk- @v (2-211)

is obviously determined by the same considerations

as presented previously.

2.8.5 Review

The most important results of section 2.8 are
summarized in table 2-11I. This table is the same as

the table on pages 596 and 597 of reference 14

except for some minor changes in notations and for

the introduction of the ratio Apv/Pv under item 7.

The table was first presented in reference 51.
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Appendix 2-A

Laws of Incompressible, Frictionless Flow

2-A.1 Laws of Plane, Two-Dimensional Flow of

Incompressible, Frictionless Fluids

The local condition of continuity of plane,
incompressible flow states that the same volume of

fluid enters and leaves an infinitesimal region
ABCD shown in figure 2-80. The rate of flow

through side AD is u dy, through side AB is v dx,

through side BC is -[u+(Ou/Ox) dx]dy, and
through side CD is - [v + (Ov/Oy) dy]dx, where u is

the velocity component in the x-direction, and v is

the velocity component in the y-direction.
Therefore

+ Ov
udy+vdx-(u+ _xxdX)dy-(v _fdy)dx=O

Canceling oppositely equal terms and dividing by

the area dx dy of the region ABCD simplifies the
condition of continuity to the form

Ou Ov

0_ + _ =0 (2-A-1)

A relation between velocities and forces in the

fluid (i.e., pressure differences) is readily obtained

from Newton's law: force equals mass times
acceleration. It must first be understood that the

pressure differences considered here do not include

those due to gravitational forces; differences in

elevation are either negligible or may be considered

to be eliminated by measuring all pressures at one
elevation.

Consider a fluid particle such as that shown in

figure 2-81. Its volume is dxdy times 1; con-

C

I u + 6.._u_udx

6x

B

Figure 2-80. -Flow in and out of fluid region.

p+_A
Oy

dy

dx TTITT
P

p-------lb

[igure 2-81.-Pressure forces acting on
fluid particle.

sequently its mass is p dx dy. The x-component of

the local fluid velocity is again represented by u,

and the y-component by v. The change in pressure,
for a small step (Ix, in the x-direction only, is

represented by (Op/Ox)dx; for a corresponding step
dy, the change is (Op/Oy)dy. Pressure differences in

the x-direction act on the area dy times 1, and those
in the y-direction act on the area dx times 1. Then

the equilibrium of forces in the x-direction is

expressed by

p dxdY =p dy - dy +

that is,

mass times acceleration = forces due to pressure
differences

Canceling p dy and dividing by dx dy, we obtain
the relation

p du Op

dt dx

du 10p

dt p Ox

(2-A-2)

By precisely the same reasoning, one finds, for the

equilibrium of forces in the y-direction,

dv 10p

dt p Oy (2-A-3)
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The total increase du of the x-component of the

fluid velocity may be divided into three parts:

(1) The velocity increase due to the acceleration

of the fluid as a whole, that is, a velocity increase at

any fixed point in the field of fluid motion (no

change of x and y) as a function of time only. This

part is (Ou/Ot)dt.

(2) The velocity increase due to the fact that the

fluid passes in the x-direction into a region of

increased velocity. This is (Ou/Ox)dx.

(3) The velocity increase due to the fact that the

fluid passes in the y-direction into a region of

increased velocity. This is (Ou/Oy)dy.
When these three parts of the change in u are

added and divided by dt, the following equation is
obtained:

du _ Ou Ou dx Ou dy (2-A-4)
d t Ot + _ --_ + O-y dZ

For a fluid particle participating in the general

motion of the fluid,

dx
--z u

dt

dy
dt

Hence

(2-A-5)

du Ou Ou Ou

dt - Ot + u _ + v _-_ (2-A-6)

Analogously, for the total increase of the

y-component of the fluid velocities,

dv Ov Ov Ov

dt - Ot + u _ + v _ (2-A-7)

By substituting equations (2-A-6) and (2-A-7) into

equations (2-A-2) and (2-A-3), we find that

Ou Ou Ou 10p

0--7+u-_ +V ay o ax
(2-A-8)

and

Ov Ov Ov_ 10p (2-A-9)
O_ +ub_ +Vay oay

These are Euler's equations for two-dimensional

fluid motions; they express the equilibrium between
inertial forces and pressure forces on a small fluid

particle. Tangential, or friction (shear), forces are
not included, and the gravitational forces and

pressure differences have been eliminated, as stated

previously.

§2-A.1

Equations (2-A-8) and (2-A-9) may be simplified

by limiting the present considerations to steady
fluid motions, that is, fluid motions that do not

change with time. Steady fluid motions are
characterized by the condition

Ou Ov
- = 0 (2-A- 10)

Ot Ot

Under this assumption, equations (2-A-8) and

(2-A-9) are reduced to

Ou Ou _ 10p (2-A- 11)
u_ +V ay p ax

and

Ov Ov 10p (2-A-12)
u_ +v-_- o ay

It is important to note that the fluid motions in

hydrodynamic machines are not steady, since the
rotor continuously changes its position relative to

the stationary parts of the machine. The departure

from steady-state flow, however, can be assumed to
be small under normal flow conditions and must

generally be neglected in order to permit a simple,
theoretical attack on the flow problems involved.

Using equation (2-A-I l) in the x-direction only

and assuming that the flow is in the same direction,

so that v = 0, lead to

du 1 dp (2-A-13)
u_= p dx

The integration of this equation yields

f u du= - - dp
1 p 1

and, therefore,

U2--U2- -1(p2-Pl) (2-A-14)
2 p

which is obviously Bernoulli's equation.

Thus equations (2-A-II) and (2-A-12) are

equivalent to Bernoulli's equation for steady flow,

and Bernoulli's equation holds true along the

streamlines of any flow obeying equations (2-A-11)

and (2-A-12), if the x-direction is locally adjusted to
the direction of the streamlines.

One variable, conveniently the pressure p, can be

eliminated from equations (2-A-11) and (2-A-12) by

differentiating these equations with respect to y (eq.

(2-A-11)) and with respect to x (eq. (2-A-12)). The

resulting relations are
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Ou au O2u av Ou a2u 1 o2p

oy ox + " a-UY;+ _ _ + v oy--_ = o OxOy

and

Ou av 02v av av a2v 1 a2p

ax ax +u_ + Uxb_ +roy ax ; Oxoy

Subtracting the second equation from the first gives

Ou Ou Ou av Ov Ou Ov Ov O2u O2v

Ox ay ax Ox + Oy ay ax ay + u-_-u ax_

a2u a2v

+v_ -vo-_ =o

+(+ ++)v0(+0+)-_ _ _ ay _ _ =0

According to the condition of continuity (2-A-I),

Ou av

Ox+_ =0

Consequently

°(+ ++)+(+ ++)u _ Ox ay + v ay ax ay = 0 (2-A- 15)

Equation (2-A-15) is certainly satisfied if

av Ou
- 0 (2-A- 16)

ax Oy

It follows that any solution of the latter equation,

together with equation (2-A-I), is also a solution of
the Euler equations (2-A-11) and (2-A-12) for

steady flow; that is to say, any velocity distribution

or flow picture that satisfies equations (2-A-16) and

(2-A-l) also satisfies equations (2-A-11) and

(2-A-12). It should be noted that the elimination of

the pressure is an important step that reduces the

flow problem to a purely kinematic one. In other

words, the dynamic conditions are automatically
satisfied if the kinematic equations (2-A-l) and

(2-A-16) are fulfilled.
Equation (2-A-16), however, is not the only way

in which equation (2-A-15) can be satisfied. If we

introduce a new function of x and y by the
definition

Ov Ou

_(x,y) - Ox Oy (2-A-17)

equation (2-A-15) appears in the form

of of
+v_ =0 (2-A-18)u_

Since _"is a function of x and y, and only of x and

y, the total differential of f may be written in the
form

OCdy

When this is compared with equation (2-A-18),

df Of dx OF dy OF Of
dt-Ox dt + Oy dt -_u+-_v=O

where the substitutions dx/dt=u and dy/dt=v

indicate, as previously, that we are following in the

field of fluid motion the paths of the fluid particles.

Equation (2-A-18) and, consequently, equation

(2-A-15) then express the fact that

d_x,y) _ 0 (2-A- 19)
dt

that is, the newly introduced function _"does not

change with time along the paths of the fluid

particles. This statement means that

_-= constant (2-A-20)

along the streamlines.

Before we proceed with the general derivations,

we should consider the physical meanings of the

derivatives appearing in the equations derived so

far. The physical meaning of au/Ox and av/Oy (i.e.,

the derivative, or rate of change of each velocity

component in its own direction) is illustrated by

figure 2-82, which shows the flow in a converging
conduit. Here au/Ox is positive, since u increases in

the x-direction. On the other hand, Ov/Oy is

.5 %

A ly
__/

X

Figure 2-82. - Deformation of fluid particle demonstrating

that Ou/&x-= - &_/Oy.
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negative, since the flow at the upper edge of the

fluid particle shown has a greater downward

component (greater negative v-component) than

that at the lower edge of the fluid particle. The

deformation of each fluid particle is shown by the

successive positions A and B of a particle of the

same volume. The fluid particle contracts laterally

(in the y-direction) in the same ratio as it is

elongated, and it is exactly this law of deformation

which is expressed by the condition of continuity
(2-A-l).

The meaning of Ou/Oy (the rate of change of the

x-component of the velocity with respect to the

y-direction) is shown in figure 2-83. The flow is
assumed to proceed in the x-direction with a

velocity gradient, or change in velocity in the

y-direction. This situation exists, for instance, in

the vicinity of a fixed boundary under the influence

of fluid friction. The velocity gradient Ou/Oy is

represented as the tangent of the angle /3 in this

figure, and the deformation of the fluid under these

conditions is shown by a fluid particle in two

successive positions A and B. This deformation is a

shear deformation and is simply due to the fact that

the velocity at the upper streamline b is greater than
that at the lower streamline a.

The simultaneous existence of a velocity gradient

c)u/Oy and gradient Ov/Ox is illustrated in figure

2-84. The vertical velocity component at B is greater

than that at A by (Ov/Ox)dx; after a time element dt,

the point B has, therefore, moved, relative to A, by

a vertical distance BB'=(Ov/Ox)dxdt. Corre-

spondingly the point D moves during the same time,

relative to A, by a horizontal distance DD'

= (Ou/Oy)dy dt. The deformation of the fluid may
be characterized by a rotation of the line AB by an

angle d[3x and of the line AD by a negative angle

d(3y. For small angles, where the tangent is equal to
the arc,

__ .U

-- A B
b

a

I-)gure 2-83. - Vie w of shear flow illustrating Ou/Oy.
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Figure 2-84. - Shear deformation of fluid particle.
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d& dx= dx dt
Ou

- dy = dy dt

The angular velocities of the lines AB and AD are,
therefore,

dBx_ Ov
Wx= dt Ox

Wy= d_y _ Ou
tit Oy

(2-A-21)

Figure 2-84 further demonstrates the kinematic

significance of equation (2-A-16). If this equation is

satisfied, the direction of each diagonal of the fluid

particle remains unchanged, since, in this case,

Wx= - wy (2-A-22)

The arithmetic mean of Wx and wy, representing
the average angular velocity of the fluid particle, is

w=_ l(0v Ou ) 12 =_ _ _ =_(x,y)
(2-A-23)

This equation shows that the function _x,y), as

introduced by equation (2-A-17), is the average

angular velocity of the fluid at the point x,y

multiplied by 2. This function is called the vorticity
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of the fluid. With this terminology, equations
(2-A-19) and (2-A-20) can be expressed as the so-

called second Helmholtz law: The vorticity

_= Ov/ax- Ou/Oy of a particle of a frictionless fluid

does not change with time. Consequently the

vorticity is constant along the stream lines of such a
fluid in steady motion.

The law leads to important conclusions when

considered in connection with the previously

derived fact that the total energy of a frictionless

and steady flow is constant along the streamlines.

Figure 2-85 shows a flow starting from a large body
of fluid that is practically at rest. The total energy is

constant in such a stationary body of fluid, and the

vorticity is obviously zero. Every streamline of the
flow, however, originates at A or B in this sta-

tionary body of fluid. With all streamlines coming

from a region of constant energy and with the

energy constant along the streamlines, it follows

that the energy must be constant throughout the
whole field of fluid motions. Thus Bernoulli's

equation holds not only along each streamline, but

also between any two points in the system. Inversely

any flow with uniformly distributed energy can be

assumed to come from a stationary body of fluid.

Furthermore if all streamlines originate in a
region of zero velocity and, therefore, zero

vorticity, it follows from the second Helmholtz law

that the vorticity is zero throughout the field of

fluid motions. In this connection, note that it has

already been established that the condition (2-A-16)

satisfies the Euler equations (2-A-11) and (2-A-12).

Considering any flow of constant energy as coming
from a stationary body of fluid, one can draw the

important conclusion that the vorticity is zero for

any steady fluid motion of constant energy. Such a
fluid motion is called irrotational.

A\

\\\

\

Figure 2-85. - Flow from infinitely extended region.

Or Ou )dF= _ Oy dx dy (2-A-24)

and, with the definition of the vorticity g'(x,y) in a

two-dimensional field given by equation (2-A-17),

dI" = _(x,y)dx dy (2-A-25)

that is, the circulation is equal to the vorticity in an

elementary region times the area of the region.

Furthermore, if several regions like that shown in
figure 2-86 are placed next to each other in

chessboard fashion, it is easy to show that the

circulation along a finite, singly connected, closed

contour (c) is equal to the (alegbraic) sum of all
circulations inside the contour:

I'around C = EI'within C (2-A-26)

As a consequence, the circulation about a finite

contour can be written in the form

The circulation 1-' has been defined as the line

integral around any closed contour of the velocity
component parallel to the contour times the linear

elements of the contour. Applying this definition to

the infinitesimal region ABCD shown in figure 2-86
leads to

av dx'_dF=udx+ V+ Ox ]dy

au

When oppositely equal terms are canceled, this
reduces to

i

u +aUdy
_Y

i1

U

v + Ov dx
_x

Figure 2-86. - Circulation about fluid element.
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F= f f _(x,y)dx dy (2-A-27)

where the double integration covers the area inside
the contour.

The transformation of vorticity from Cartesian

to polar coordinates is illustrated by figure 2-87.

Point A is the center of the Cartesian system (x,y),

and 0 is the center of the polar system (r,_0). The

peripheral velocity component in the polar system is

V U, which is equal to -u at point A.
Furthermore figure 2-87 shows that

- dx = r d_¢

dy = dr

- dv = V u d,p

so that

Ov V Ud¢ V U

3x rd(p r

Ou OV u

Oy Or

By substituting the last two equations into equation

(2-A-17), one obtains the polar expression for the

vorticity:

+y¢+v

+Vr

Figure 2-87. - Transformation of vorticity from Cartesian to

polar coordinates. Positive directions of ,p and Vc. are
counterclockwise.

§2-A.1-2-A.2

_(r,¢) = Vu + 0 V U (2-A-28)
r Or

The vorticity can readily be seen to be proportional

to the radial gradient in angular momentum, since

equation (2-A-28) can be written in the form

1 O(rVg)
_(r,,p) = r Or (2-A-29)

Therefore a curved, irrotational flow (_(r,_o)= 0) is

a flow of radially constant angular momentum,

because O(rVu)/Or=O means that rVu=constant
with respect to r.

2-A.2 Laws of Three-Dimensional Motions of

Incompressible, Frictionless Fluids

The condition of continuity is derived for three-

dimension flow in exactly the same manner as

equation (2-A-I) for plane, two-dimensional flow.

The corresponding three-dimensional expression of

continuity is

Ou Ov Ow

O-x + _yy + Oz = 0 (2-A-30)

where u, v, and w are the orthogonal velocity

components in the direction of the Cartesian

coordinates x, y, and z.

The vorticity is in three-dimensional flow a vector

normal to the plane of the vortex motion. Its three

components are

Ow Ov

_x- Oy Oz (in the y,z-plane)

Ou Ow

_Y= Oz Ox (in the z,x-plane) (2-A-31)

Ov Ou

_z = ax Oy (in the x,y-plane)

The first vortex law by Helmholtz expresses the

condition of continuity for the vorticity vector
field:

O_x oo_ Ofz-_- + + _ = 0 (2-A-32)

This law is proven by substituting the definitions of

the vorticity components, _-x, _'y, and _'z from
equations (2-A-31) into equation (2-A-32). This

substitution leads to the following identity:
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02W 02V 02U 02w
+

Ox Oy Ox Oz Oy Oz Oy Ox

OZv 02U

+ Oz Ox Oz Oy -0 (2-A-33)

which means that the vortex law of Helmholtz (eq.

(2-A-32)) follows directly from the definition of

vorticity given by equation (2-A-31).

If vortex lines are defined to have everywhere the

direction of the local vorticity vector, then the first
vortex law by Helmholtz (eq. (2-A-32)) can also be

stated in the following form: vortex lines cannot
end in a frictionless fluid.

The second vortex law by Helmholtz must be

stated for three-dimensional flow differently from

the previous statement for two-dimensional, plane
flow. It is still true that vorticity remains connected

with the fluid. However, in three-dimensional flow,

the area of a fluid particle (of unchanging volume)
normal to the vorticity vector does not remain

constant if the particle is stretched (or shortened) in
the direction of the vorticity vector. It is the

circulation about the particle which remains

constant, so that the vorticity changes according to
equations (2-A-25) and (2-A-27) in inverse

proportion to the area of the particle normal to the

vorticity vector, or the vorticity vector changes its
length in proportion to the length of the fluid

particle in the same direction, that is,

_'lA I = _'2A2 (2-A-34)

This changes the second vortex law by Helmholtz to

the following statement: vortex lines and vorticity
vectors remain connected to the fluid and move and

are stretched (or shortened) with the fluid.

(The vorticity vectors must be drawn at a

sufficiently small scale that the (changing)

curvature of the vortex lines is negligible regarding

the form of vorticity vectors.)

2-A.3 Circulation of Relative Flow

The circulation of the relative flow can be

expressed, by using the parameters shown in figure
2-88, as

- F w = Wu, o ro _ - Wu, i ri

= (U o - Vu, o)r ° _ - (U i- Vu, i)r i _o

VU, 0

WU,O,_= roOJ :: /_

ri /

Figure 2-88.-Parameters for
obtaining circulation of relative

flow.

Assume Vu, o ro= Vu, i ri, that is, potential absolute
flow; then

( rg) r,-Fw=(ro_O- VU, o)ro¢- riw- Vu, o . ro'P_o

Fw:ro.(ro.  ,or  +V,o)ro

ro /

-Fw:r2¢w( 1- r_-o,]r/2_

The circulation due to the vorticity _'= -2c0 of the
relative flow is

faF¢= f da ffada

since _"= constant. The elemental area da is given by

da = _or dr

from which the total area is given by

rc'r ,,:,Jr,
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Therefore

F _= - 2o: 2 (r2 - r2) = - w_°r2 (1 - r_o,,]r/2'_

F_-=F w

This means that there is no flow along the radial
boundaries of the area a considered, that is, no

secondary flow due to the vorticity _'= - 2_0 of the
relative flow.
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Chapter 3

Hydrodynamic and Gas-Dynamic Design of Axial-

Flow Turbomachinery

3.1 Introduction

As stated in the preface, this compendium is

intended to present in the simplest way possible

principles and methods of the design of

turbomachinery which are applicable to the

preliminary phases of design, that is, to those

phases where the basic form of the machine is yet to
be determined. This intent is particularly important

in the field of axial-flow turbomachinery, where the

leading manufacturing companies have developed

highly advanced methods of design (extensively

computerized) which rapidly produce detailed

answers to a large variety of design problems in a

well-established, specific field. The most prominent

example of this fact is obviously the field of aircraft
turbine engines. This compendium cannot be

expected to make significant contributions to this

highly developed discipline. Instead this

compendium presents principles and methods of
design in a form applicable by the individual design

engineer in the formative stages of a new design; it

presents a rational approach to the selection or

development of design forms prior to the

establishment of computerized or otherwise highly

developed design procedures.

According to the broad approach developed in

chapter 1, the first step in the present procedure is

to express the given operating conditions, including
certain characteristics of the fluid and the structural

materials, in the form of a number of specific

speeds (i.e., a number of dimensionless expres-

sions). Together with certain design choices, the

specific speeds determine a number of design

I: ECEDIHG pAGE BLANK NOT FII. EO

parameters, such as flow coefficients, head coeffi-
cients, and stress coefficients, as well as certain

ratios of dimensions which, in turn, determine some

general proportions of the machine to be designed.

Figure 1-27 presents an example of the type of
information obtained in this manner.

For chapter 3, one design choice is already made,
the choice of axial-flow machines rather than

radial-flow machines, both shown in figure 1-39.

The number of stages is determined to a large extent

by the basic specific speed of the entire unit

compared with the specific speed per stage, whereas

the design difference between the first stage and the

higher stages, which obviously have very different
inlet pressures, is prescribed by the suction specific

speed (by eqs. (1-44), (1-46), and (1-48) as well as

fig. 1-18). For single-stage units, the relation

between the basic specific speed and the general

design form of the rotor is shown in figure 1-9 for
liquid-handling machines, and the corresponding

analytical relations to various design parameters are

expressed by equations (1-25) and (1-26) and others

presented in chapter 1.

This chapter describes the process by which the

actual design of the machine is developed on the

basis of the aforementioned similarity relations and

design choices. Involved are the relations between
elementary design forms and design parameters

presented in section 1.3 of chapter 1.

In this chapter, the flow is considered subsonic

and incompressible except where the effects of

compressibility are explicitly mentioned in the title
of the section.
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§3.2.1-3.2.2

3.2 Design of Cylindrical Flow

Sections Through Axial-Flow Vane

Systems (Cascade Design)

3.2.1 Construction of Inlet and Discharge Velocity

Diagrams and Some Principles of Cascade Design

The flow coefficient ,#= Vm,i/U i (appearing in
all specific speed equations listed in table 1-I), the

head coefficient _i=2goH/U2i (appearing in the
basic specific speed equation (1-25)), and the ratio

of prerotation Vu, i/U i (prescribed by the upstream
vane or duct system) determine the inlet and

discharge velocity diagrams of the outermost,

cylindrical flow section with diameter D O =D i.
For any other cylindrical flow section with a

diameter D, evidently U= UiD/D i. Furthermore,

for irrotational flow, Vu,1 =Vu, iDi/D and
Vm, 1 = Vm, i =constant. For flow with vorticity, the
fluid velocity relations for flow between various

cylindrical flow sections are given as outlined in

section 2.7 of chapter 2. In such cases, the vorticity

or velocity distribution of the oncoming flow as
well as the radial distribution of the vane circulation

(i.e., the radial gradient of the change z_V U in
peripheral velocity across the vane system) must be

given in order to have a completely determined

design problem.

Thus the inlet and discharge velocities of the
outermost flow section determine the corre-

sponding velocities for all other coaxial, cylindrical

flow sections through the vane system to the extent

of the general determination of the flow problem.

The inlet and discharge velocity vector diagrams,

in turn, determine the vane shape within that

particular flow section to the extent of the available

knowledge of axial-flow vane system design. This

relation is outlined in section 1.3.2.1, particularly

by figure 1-23. A more detailed description of the

process of vane section (cascade) design is given in
sections 3.2.2 to 3.2.6. Section 3.2.7 extends these

methods to compressible fluids.

Design methods for straight cascades of parallel,

staggered vanes (cylindrical sections through axial-

flow vane systems) developed by the NACA and
NASA are well documented in references 6 and 16

to 18. An excellent summary of this field of design

consideration is given in reference 54. No attempt is
made to cover the contents of these references in the

present compendium, so the reader must study

these references to obtain a reasonably complete

picture of the entire field of cascade design.

Most existing methods of cascade design use so-

called series of systematically varied vane section

shapes arranged in cascades of different stagger

angles and solidities. Reference 16 presents the

characteristics of such a series useful in hydro-
dynamic design. In contrast, the following sections

present the design of entire cascades as a function

of the inlet and discharge velocity diagrams. The

vane shape, stagger angle, and solidity are deter-

mined together, and one design characteristic of the

cascade is not varied independently of the others.

3.2.2 First Approximation of Cylindrical Flow

Section Design by One-Dimensional

Considerations, Zero-Lift Direction, and
Elementary Stress Considerations

The primary relation between the inlet and

discharge velocities and the form of a straight

cascade of parallel, staggered vanes is illustrated in

figure 3-1 for an axial-flow pump or compressor
vane system. This illustration applies to any

coaxial, cylindrical flow section through the system

where the inlet and discharge (relative) velocities are
established as outlined in section 3.2.1. The

procedure applies only with some reservations to

turbine vane systems, because there might be a
conflict between the zero-lift direction and the

vane-distance consideration.

The leading part of the vane (lower part in fig.

3-1) is essentially parallel to the velocity vector w 1
of the incoming flow, but often has a very small,

negative angle of attack. This alignment is

important in avoiding major pressure reductions

and velocity increases at the low-pressure side of the

vanes near the leading edge, which are significant in

• ,- Zero lift direclion

AV I "I 2 ,,'_" ,.U-', ' b

A;' _ e.
...., w 1

Figure 3-1.-First approximation of cylindrical vane section

(cascade) design for axial-rio w pump or compressor.
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liquids with respect to cavitation, in gases with

respect to locally supersonic flow, and in all fluids

with respect to the static-pressure rise from inlet to

discharge along the low-pressure side of the vanes

(danger of stall, see section 2.5.4.3).

For vane systems with solidities l/t substantially

larger than unity, the normal distance d I between
the vanes at their inlet end must be sufficient to

admit the flow without increase in average relative
velocity. Thus the minimum distance between the

vanes should satisfy the relation

dl __t cos _1 (3-1)

This requires that the low-pressure side of the vane

be slightly curved (convex) between point B and the

leading edge A.

Vane systems for exceedingly high suction

specific speeds usually have a somewhat different

inlet configuration than that described here; it is
discussed in section 3.4.

The discharge portion of the vane section can be
designed effectively by means of the zero-lift

direction, a procedure which is introduced in
section 2.5.2. The relation between the relative

discharge velocity vector and the zero-lift direction

is given by figure 2-19 and by the results of the

theoretical work by Weinig expressed by figure

2-18. A straight line drawn through the trailing

edge parallel to the zero-lift direction intersects the
mean camber line of the vane at a distance x from

the leading edge (fig. 3-1). The ratio of x to the

vane length is given by figure 2-28 on the basis of
NACA cascade test results.

The design of a pump vane section by means of

the information just outlined and presented in
section 2.5 is approximately that given by the

following 12 steps:

(1) From the inlet and discharge velocity vector

diagrams (such as shown, e.g., in fig. 1-21),

determine the retardation ratio w 2/W l .

If this ratio is smaller than (approximately) 0.6,

the considerations that determined the velocity

diagrams (sec. 3.2.1) must be changed by reducing
the head coefficient 6=2goH/U 2, increasing the

flow coefficient _O=Vm, 1/U, or changing the

prerotation ratio VU, I/U or by a combination of
these measures.

If the retardation ratio w2/wl is larger than 0.6,

select a lift coefficient CL,oo from the information
presented in figure 2-26. Base this selection on

certain values of the diffusion factor D (say

§3.2.2

0.5<D<0.6) or of the coefficient Koo (say

1.5<Koo <2.0) and maintain certain limits of the

lift coefficient CL, oo (say 0.9<CL, oo<l.6). For
rotor tip sections, the choice should be more
conservative than for rotor root sections because of

the radial motion of the blade boundary layer.
There is another limitation on the blade lift

coefficient which in many important cases overrides
the limits set by flow separation or stall. This

additional limit results from (lower) limitations of

pressure or (upper) limitations of velocity at the

vane surface set by cavitation or by compressibility

effects. Since reductions in pressure and increases in

local velocity are closely related by Bernoulli's

equation it is sufficient to demonstrate this

limitation with respect to the cavitation limits of

liquid-handling machines. This demonstration is
given in section 2.5.4.1. It points out in particular

that the lift coefficient referred to the inlet (relative)

velocity cannot be much higher than the minimum

pressure coefficient Cp, min referred to the same
velocity. Physically this means that the average

pressure difference across the vane cannot be much

larger than the pressure reduction on the low-

pressure side of the vanes. Thus, if the minimum

pressure coefficient Cp, min =ap is given by the
required suction specific speed (eq. (1-48) and fig.

1-18), the blade lift coefficient referred to the

relative inlet velocity CL, l may be limited by its
relation to

Cp, min •

With

the minimum pressure coefficient

w2 (2-60)
CL, oo =CL,I W 2

the lift coefficient CL, oo of turbomachinery vanes is
also limited by the pressure reductions or velocity

increases at the vane, set by cavitation or Mach

number considerations, rather than by consid-
erations of stall.

(2) From the lift coefficient

CL, oo =2 AVU t
woo 1 (3-2)

and the velocity vector diagrams (which determine

A V U and woo), establish the solidity I/t.

(3) Line up the inlet portion of the vane with the

incoming flow wl. A slightly negative angle of
attack relative to the local vane centerline, with only

slight curvature of the centerline, is desirable at the
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leading edge to minimize pressure and velocity

differences near that edge, as shown in figure 3-1.

The thickness near the leading edge should be small,

usually less than one-fifth of dl (fig. 3-1), which is
the minimum vane distance normal to the direction

of the incoming, relative velocity w 1 .

(4) For vane systems with a solidity l/t> 1, the

normal distance dl between vanes at their inlet edge

must be sufficient to pass the flow without increase

in average relative velocity. The resulting geometric

requirements are stated previously and are apparent

from figure 3-1. Estimate the blade thickness at B

to be between 0.05 1and 0.101, and approximate the

curvature of the mean camber line from the leading
edge to the vicinity of point B accordingly. Dis-

regard this step if the solidity l/t< 1.

(5) Establish in connection with item (4), or

independently, a length representing the cir-

cumferential vane spacing t, and draw around the

leading edge of the vane a circular arc with radius 1

determined by equation (3-2) and items (1) and (2)
in terms of the solidity l/t. This arc is one locus for

the trailing (discharge) edge of the vane.
(6) Establish the zero-lift direction in accordance

with figures 2-18 and 2-19 as outlined previously.

(7) Shift a line having the zero-lift direction until
it intersects an estimated mean camber line at a

point approximately meeting the ratio of this

intersection length x (measured from the leading
edge) to the vane length I given by figure 2-28. As a

first approximation, use x/l= 1/2 in figure 3-1, and

make further approximations by means of figure
2-28. With the position of the zero-lift line so

determined, its intersection with the arc about

leading edge A with radius l determines the trailing
edge D.

(8) The process just outlined determines the

mean camber line by at least three points:

(a) The leading edge, point A (fig. 3-1)

(b) The trailing edge, point D (fig. 3-1),
determined by the graphical procedure outlined in

item (7)

(c) The point of intersection C between the

zero-lift line (drawn through the trailing edge D)
and the mean camber line, estimated from the inlet

portion of the blade developed according to items

(3) and (4) and figure 2-28

(d) For vane systems of high solidity (l/t> 1),
a fourth point adjacent to point B in figure 3-1,

based on an estimated blade thickness at this place
One draws the mean camber line as a smooth

curve through the points so determined. One or two

circular arcs may be sufficient. Consider that, for

good cavitation or Mach number characteristics,
the curvature along the leading portion of the blade

must be small, and the angle of attack at the leading
edge must be zero or small and negative (except for

pumps operating with developed cavitation, e.g.,
inducers; see sec. 3.4).

(9) Around the mean camber line so determined,
place a certain thickness distribution. To achieve

good cavitation performance or high Mach number

characteristics, place maximum thickness around or

behind the midpoint of the vane section, and use a

small leading-edge thickness, as indicated under
item (3).

(10) The vane section derived according to items
(1) to (9), and shown in figure 3-1, is dimensionless,

since it is given by the solidity ratio l/t and the

angles _j of the incoming flow,/3_ of the zero-lift

line, and 3v of the resulting chord line of the

blades. Since the circumferential vane spacing is

a-D
t = -- (3-3)

N

where N is the number of vanes (the same at all

diameters), the geometry of the entire vane system

is not determined because N is yet to be chosen.
This choice is to be based on mechanical con-

siderations briefly outlined in the following items
and further described in section 3.3.1.

(11) For vane systems handling gases or liquid
hydrogen, where centrifugal stresses dominate or

are of the same order as bending stresses, the cross-
sectional area of the vane must be determined for

the root section and the tip section. Section 1.3.3.1,

particularly figure 1-32, relates the cross-sectional

area ratio a/a o to the diameter or radius ratio r/r o
of the tip and root section and to the centrifugal

stress coefficient Ps U2/2_c, the latter being given in
connection with the centrifugal stress specific speed

(eq. (1-64)). The curves in figure 1-32 also give
cross sections between the root and tip sections for

radially constant tensile stress (except for the

cylindrical outer portion of the blade, where

a/a o = 1).
The relation between the cross-sectional

dimensions of various cylindrical sections at

different diameters is given by equation (3-3) with
N=constant. However, the absolute dimensions of

the blade are not determined by centrifugal tensile

stress considerations alone. For example, while a
large number of blades with small cross sections

may satisfy the centrifugal tensile stresses, bending
stresses in, or deflections of, such blades could be
intolerable.
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A lower limit for the cross-sectional dimensions

of the blades is usually set by the bending stresses or

bending stiffness of the blades; this limit is briefly

discussed in item (12) and further investigated in

section 3.3.1. A theoretical lower limit is also given

by a lower limit of the Reynolds number of the flow

referred to the chord length I of the blade section.

However, this limit is usually not reached before

relative surface roughness and manufacturing
accuracy have set the lower limit for the absolute
dimensions of the blade cross sections.

(12) For liquids with densities of the order of

that of water (e.g., liquid oxygen), blade bending

stresses dominate over centrifugal tensile stresses,

whereas for liquid hydrogen, bending stresses have
about the same value as tensile stresses. The same

may be true for gases if the cross section of the
blade is minimized (the number of blades is

maximized) in order to minimize the weight of the

machine, as in the case of aircraft fan engines.

Blade bending stresses are related to the blade form

and to the operating conditions (the stress specific

speed) in section 1.3.3.2 and are further related to

the overall blade design in section 3.3.1.

In section 1.3.3.2, the equation (1-108) is

established for blade bending stress generated by
fluid-dynamic forces; this equation can be written

Apavb21

of = 2ms

where Apav=CL,IPW2/2=CL, oopW2/2 is the
average pressure difference between the two sides of

the blade, b is the blade span, I is the blade chord,

and m s is the section modulus of the root section of
the blade with respect to an axis normal to the blade

force. In most practical cases, m s is close to the
minimum section modulus of the root section. This

section modulus can be expressed as follows:

Cmlt 2 _ Cral 3 t2
ms - 6 6 ! 2 (3-4)

where t m is an average thickness of the blade, and

Cm is a coefficient expressing the effect of blade

curvature on the section modulus; C m increases

with curvature and approaches its minimum value

of approximately unity for zero curvature. Hence

equation (1-108) assumes the form

Apa v b 2 12

af=3 -_m 12 t2 (3-5)

§3.2.2-3.2.3

For a given shape of the blade cross section, Cm

and the thickness-chord ratio tm/1 are constants, so

that the bending stress is proportional to the

pressure difference z_qaav and to the square of the

aspect ratio b/l. Thus, for a given blade pressure

difference Apa o, the allowable bending stress af sets
an upper limit for the aspect ratio b/l and thereby a

lower limit of the chord length l for a given blade

span b=(Do-Droot)/2. This limit, of course,

depends on the form of the blade section in terms of

its form coefficient Crn (eq: (3-4)).
As mentioned previously, the effective section

modulus m s of the root section may be assumed to
be the minimum section modulus of that section,

approximated in most cases by determining the

section moment of inertia with respect to a neutral

axis parallel to the baseline (or chord line) AD of
the root section (see fig. 3-1). If the resultant blade

bending force is not approximately normal to this

direction, one may use the component of the blade

bending force which is normal to the baseline of the

root section. The maximum tensile bending stress

usually occurs at the leading and trailing edges of
the root section.

The total steady-state tensile stress is obtained by

adding the maximum tensile bending stress of to the
centrifugal stress a c. However, the most critical
stresses are usually not the steady-state stresses but

the alternating (vibratory) stresses. Because of the

difficulty of determining the latter in a reliable

manner, reference 55 suggests assuming that the
vibratory stress is equal to the steady-state bending

stress of, as defined by equation (1-108). Thus the
vibratory stress is assumed to be equal to the fluid-

dynamic bending stress without any compensating

centrifugal bending stress obtained by tilting the
blade so that the centrifugal bending moment

opposes the fluid-dynamic bending moment.

The vibratory and steady-state stresses are

combined in a modified Goodman diagram as

shown in figures 16 and 31 of reference 55. In-

versely, the allowable steady-state stress is derived
from the same diagram and thus furnishes the basis

for the determination of the required area and

section modulus of the root section according to

equations (1-94), (1-108), (3-4), and (3-5).

3.2.3 Cascade Design by Consideration of

Curvature of Relative Flow and Design of So-

Called Impulse Vane Systems

The relation between the fluid-dynamic vane

forces and the change in the relative velocity of flow
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is derived in section 2.5.2. The change in the relative

velocity is connected with a change in the direction

of the relative flow except when changes in the

width normal to the plane of the flow, or effects of

compressibility near the critical velocity of a gas,
cause variations in the peripheral and meridional

(axial) velocity of flow which are proportional to

each other so that no changes in the direction of the
relative flow are involved. Nevertheless the cur-

vature of the relative flow, whenever it exists, can

be used for the analysis of the flow in axial-flow

vane systems, particularly for systems with strong
curvature. This process is illustrated in connection

with a so-called impulse vane system, that is, a vane

system which changes only the direction, not the

magnitude, of the relative velocity. For vane

systems between parallel end walls, this requires
that the circumferential component of the relative

flow changes from a certain inlet value to an equal

but opposite value on the discharge side of the

system.
Figure 3-2 shows what may be called the classical

design of an axial-flow impulse vane system. The

curved part of the vane channel is formed by two

concentric circular arcs (circular cylindrical

surfaces). The perpendicular distance between the
surfaces of two successive vanes is constant, so that

the mean velocity of flow is constant on the basis of

a strictly one-dimensional consideration.
The two-dimensional velocity distribution of a

frictionless fluid is easy to determine for the flow

along and between two concentric, circular
boundaries. It satisfies the law of constant angular

momentum:

ro wo = rw = r i w i = constant (3 -6)

where r is the distance from the common center of

curvature of the outer and inner flow boundaries,

and the streamlines are approximated by circular
arcs concentric with the outer and inner flow

boundaries. This approximation obviously breaks

down where the curved flow joins the straight

approach and discharge flow, but should be fairly

good at the midturn section Co C i. The velocity

distribution at section Co C i is derived from
equation (3-6) and is shown in figure 3-2. Its

relation to the average velocity Way =w I = w 2 is
given by

Wav(r o --ri)= I r° wdr (3-7)
ri

Assumed \
uniform \
velocity
distribution

Velocity _

distribution t52

at midturn _,

'_ _l,,_'--/,Lh._.A /-

A A

Figure 3-2.-Classical design of impulse axial-flow vane

system.

and

ri
w = w i - (3-8)

r

which lead to

iro dr wiriln r o
Way(r° -ri) = wirivrl r -Qi

and hence

Way -- ri In r° (3-9)
wi ro -- r i ri

In the case shown in figure 3-2, the radius-of-

curvature ratio r o/r i -- 1.764 can be obtained from

the geometry of the configuration, where

l = _2 = 60" and l/t = 2, which yield, together with

AVu/wI=2 sin 60"=1.733, a lift coefficient
CL =2X 1.733 × 1/2 = 1.733. (According to figure

2-26, this value is reasonable for w2/w I = 1.) In

this case, the velocity ratio Wav/W i is

(1/0.764)1nl .764 = 0.741. This ratio is also the ratio

of retardation from C i to D along the convex (low-

pressure) side of the blade when, by one-

dimensional reasoning, a uniform velocity
distribution is assumed between D and E (as shown

in fig. 3-2). When this assumption is dropped,

retardation takes place between points C i and E

along the low-pressure side of the blade.
There is also a retardation of the flow along the

high-pressure side of the blade between the leading
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edge A and the outer midturn point C o from w 1 to

w o. For the case shown in figure 3-2, this
retardation is

W o Wo _ Wo Wi _ ri wi

wl Way wi Way ro Way

1.77 × 0.741
= 0.763 (3-10)

that is, the retardation along the concave (high-

pressure) side is only slightly less severe than that

along the convex (low-pressure) side, where

Wau/W i =0.741. Intuitively one expects the danger

of separation to be much less on the concave than
on the convex side of the vane. This intuitive

expectation can be confirmed by a simple stability
consideration similar to that used by Johnston for

rotating channels, which is outlined in section
2.6.3.7.

Figure 3-3 shows the principles of turbulent flow

in the presence of a concave and a convex, curved
flow boundary. The essential fact to be observed is

that, adjacent to the concave boundary, the angular

momentum of the flow decreases with increasing
distance from the center of curvature. According to

a stability criterion by Prandtl, the boundary layer

adjacent to the concave wall is unstable, and the

boundary layer adjacent to the convex wall is
stable.

This statement can be proven qualitatively as

follows: Assume a fluid particle is displaced by

r Boundary-layer

,/ velocity distributions -,

it ," _', Parlicle

Part,c,e " ve,oci,y,
velocity _ #.] ,(/_ _uiK velocity oi [mlu - I "_,-_i,'"

,,_ #/'t T.stantangu_urn-'i'l [_"
Bu,r, _bl I". 7._/I I _
velocity _;1[_ "- Velocityof / J I T_ ,_

offluid "'___:_ displacedparlicle_ _! !

Position- B A C C A B-- -

,_ Concave wall Convex wall _"

Unstable Stable _\

Figure 3-3.-Stability of boundary-layer flow along curved
walls.

turbulent velocity fluctuations from its normal

position A along its mean flow path to a position B
closer to the solid boundary. One assumes (with

Prandtl) that this fluid particle follows the law of

constant angular momentum, although a slightly

different assumption (such as displacement with

unchanged velocity) would lead to the same

conclusion. The particle has in its displaced position

a higher velocity than the bulk velocity in the
surrounding fluid. This higher velocity causes an

acceleration of the displaced particle away from the
center of curvature of the flow. Near the concave

wall, this is an acceleration away from the original

position A of the particle, and the flow is unstable.
Near the convex wall, the same acceleration tends to

return the particle to its original position, and the
flow becomes stable. It is easy to show by

analogous reasoning that a displacement to a

position C farther away from the wall causes
acceleration toward the center of curvature, that is,

away from the original position A of the particle
near the concave wall and toward the original

position near the convex wall. Thus the result is the
same as when displacement toward the wall is

considered; that is, the flow near the concave wall is

unstable, and that near the convex wall is stable.
Unstable flow means increased turbulence, tending

to prevent separation at the concave wall; stable
flow means reduced turbulence, tending to promote

separation at the convex wall.
The foregoing qualitative result has been

confirmed experimentally by Wattendorf (ref. 56)

and Eskinazi and Yeh (ref. 57), so that this

reasoning can be considered well established. In

particular, it is an experimental fact that the

boundary layer along a stationary, convex wall is,
under the same conditions, considerably thicker

than the boundary layer along a concave wall.

Unfortunately this writer is not aware of any

quantitative conclusions regarding the difference

among separation limits of concave, convex, and

straight walls. Thus the design engineer can only use
the fact that he can allow much less of an adverse

pressure gradient along the convex side of a vane
than along the concave side.

This qualitative result is now applied to the

improvement of the impulse blade design shown in

figure 3-2. Included in the revision of this design is

a slight correction of the leading- and trailing-edge
shape from a mechanical as well as a fluid dynamic

point of view. The latter demands a slight dif-
ference between the direction of the leading and

trailing edges and the direction of the mean flow
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approaching and leaving the system, as shown in

figure 2-8.

If all retardation along the convex (low-pressure)
side of the blade were to be eliminated, the mean

velocity, and thereby the local distance between the

vanes, would have to be changed by the ratio

Wav/Wi=0.741, quoted in the text following

equation (3-9). According to figure 3-2, an increase

of the midturn distance by 1/0.741 (accomplished

by an increase in r i and perhaps a slight decrease in

ro) would not lead to any obvious inconsistencies.
Thus it might be possible to design the convex (low-

pressure) side of the vane so as to eliminate any
retardation of this side of the vane.

However, the retardation along the concave

(high-pressure) side of the vane would be more
severe than before. If the same radius-of-curvature

ratio were assumed as in figure 3-2, the high-

pressure-side retardation from the leading edge A to

the outer midturn point Co would be w o/w I (from

eq. (3-10)) times the suggested mean velocity
reduction, that is,

w° =0.763 x 0.741 = 0.565 (3-11)
wi

The question of whether this severe retardation

would be acceptable is difficult to answer not only

because the limit of retardation along a concave

flow boundary is not known, but also because

separation between A and C O (fig. 3-2) may not be
of major detrimental consequence because of the

expected reattachment of the accelerating flow

from C O to the trailing edge E.
Under this situation, the design engineer is likely

to accept a very slight retardation along the convex

(low-pressure) side of the vane in order to reduce

the likelihood of separation along the concave

(high-pressure) side of the vane. Figure 3-4 shows

the resulting vane layout under the assumption that

the mean velocity at midturn is reduced to 0.77 w i
(on the basis of some preliminary geometric con-

siderations), instead of 0.741 w i as previously

estimated for no retardation along the convex side

of the blade. Furthermore the intended design

preserves the circular-arc contour of the classical

layout (fig. 3-2) on the concave (high-pressure) side

in the hope that thereby the radii of curvature along
the convex (low-pressure) side are increased over

those of the classical layout.

Important is the transition from the approach

and discharge portion of the blade to the midturn

section. The straight-line and single-circular-arc
low-pressure contour of the classical design is being

replaced by five circular arcs over the entire extent

from the leading edge A to the trailing edge E. A

continuous change in curvature would at least be
equally acceptable. Distinct radii of curvature are

chosen in this case to illustrate the change in
curvature along the convex side and to ease the

construction of the ideal velocity distributions in

the intermediate sections BiB o, CiC o (midturn),

and DiD O by the tangents to the velocity curve as

described by equation (2-4) and figure 2-3 of

section 2.2. Of course, this method is here applied
to plane, two-dimensional flow instead of the

meridional flow in a space of revolution considered
in section 2.2.

The construction of the velocity distribution

curves is illustrated in figure 3-4 for the midturn
section CiC o. The velocity distribution curve OI is

constructed by the slopes of this curve at O and I,

where according to equation (2-4),

dV V
- (3-12)dn r

n being the normal coordinate across the stream

from vane to vane. Equation (3-12) is satisfied by

the equality of the angles o_i = c_i and o_o = ct o at the
velocity points I and O in figure 3-4. The relation

between w i at I and w o at O must be estimated from
the tangents to the w(n) curves at I and O. The

curvature of the flow at a point between Ci and Co
would supply additional information, as explained
further in section 3.2.5. In addition, the area under

the velocity curve OI must satisfy the condition of

continuity; that is, the area under this curve must be

the same as that under the inlet and discharge

velocity curves wld I if the width normal to the

plane shown in figure 3-4 is constant and if the flow
is incompressible.

It should be realized that the method described is

primarily a method for finding the flow in a given

vane passage. As a method of design, it requires a
process of trial and error.

A gradual transition of flow from the uniform

approach velocity w 1 to the midturn section and

back to the discharge velocity w 2 = w I is obtained

by making the sections B i Bo and D iD O larger than
the approach and discharge flow cross sections, but

not as large as the midturn section CiC o. The

radius of curvature at Bi and D i is larger than at the
midturn point C i, so that the ideal velocity

distribution in sections BiB o and DiD o is

somewhat flatter than in the midturn section Ci Co.
By some geometric process of trial and error, a
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Figure 3-4. - Improved design of impulse axial-flow vane system. (Classical design shown in dashed lines. )

rather favorable velocity distribution along the

convex blade side can be obtained. According to the

graphical method employed, the velocity at B i and

D i is wi= 1.1 w I and at C i is wi = 1.11 wl; that is,

the ideal velocity along the convex contour from B i

to D i is nearly uniform. The retardation from C i to
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the trailing edge E is w 2/W i = 0.90 and from D i to E
is 0.91; that is, most of the retardation takes place

along the only slightly curved contour from Di to
E. Furthermore the retardation is much less than

that with the classic design, where W2/W i is 0.741.
The improved design (fig. 3-4) may, therefore, be

considered safe with respect to separation from the

low-pressure side, provided the inlet velocity wi has

the direction assumed for this design.

The retardation along the concave (high-

pressure) side of the vane from the leading edge A

to Bo is Wo/W 1=0.65 and from A to Co is
Wo/W 1 =0.544; that is, the retardation along the

concave side is even slightly more severe than

estimated earlier for no retardation along the

convex wall. As mentioned previously, the
information available does not permit assessment

of the severity of this situation. It is reasonable to

accept this situation because the stagnation point

near the leading edge is likely to be located on the

high-pressure side of the vane (see fig. 2-8), so that
there may be little or no retardation of the flow

between A and B o . (A more dependable answer can

be obtained by a detailed theoretical analysis of the
velocity and pressure distributions over this vane,

particularly near its leading edge.)

Design considerations based on the curvature of
the vane contour and the channel width between

successive vanes are, of course, not limited to

impulse vane systems. For example, the design

method of sections BiB o and DiDo of the impulse

vane system shown in figure 3-4 is readily

applicable to any inlet or discharge flow cross
section of any vane system of high solidity, such as

section AB in figure 3-1. If one desires to avoid at B

velocities in excess of the approach velocity w I (the

discharge velocity in an accelerating (turbine) vane

system), one makes the distance dl between the
vanes larger than t cos j31 and determines the

velocity distribution between A and B (particularly

near B) from the radius of curvature of the vane
contour at B. This radius of curvature contributes

significantly to the definition of the entire vane

shape, which has to be developed, as mentioned
previously, by a method of trial and error. The

principles of design illustrated in connection with

the impulse blading shown in figure 3-4 are indeed

applicable to any vane system with sufficient
solidity to form a well-defined vane channel,

provided the vane contours are sufficiently curved

to have a well-established relation to their radii of

curvature. Further applications of the design

principles illustrated in this section are presented in
section 3.2.5. It can be seen that considerations of

the curvature of the vane contours are particularly

helpful for the analysis and improvement of vane

systems developed initially by some other
considerations.

3.2.4 Design of Cylindrical Flow Section of Axial-
Flow Vane Systems by Mean Streamline Method

Applied to Incompressible Fluids

As already mentioned, the mean streamline
method described in section 2.5.5 is reversible; that

is, the method not only can be applied to the
analysis of existing cascade test results (as done in

sec. 2.5.5) but also, on the basis of such test results,

can be used for the development of new cascade

configurations with flow characteristics which may
be superior to those of the tested configurations.
When the mean streamline method is introduced in

section 2.5.5, it is pointed out that most standard

cascade configurations (e.g., the NACA 65 series)

have minimum pressure coefficients Cp, rn

=(Pl-Pmin)/(P w2/2) which are well in excess of
those permitted for satisfactory cavitation

performance of pumps. For the same reason, the
Mach number characteristics of the standard

cascade configurations are not acceptable for
modern axial-flow compressors and fans used for

aircraft propulsion and similarly demanding

applications.

The application of the mean streamline method

to the design of axial-flow vane sections is

illustrated by the example given in chapter 29 of
reference 14. This section concentrates on the

design of the cylindrical tip and root sections of the
rotor. The three-dimensional overall design of this

example is presented in section 3.3.

The example chosen here demonstrates the mean
streamline method of design under rather

demanding conditions, a combination of severe

cavitation requirements with a rather high head
coefficient for an axial-flow rotor with a 0.50 hub-

tip ratio on its discharge side.

Specifically the suction specific speed is 0.70

(12 000) referred to zero hub diameter, Vm, i/U o

=0.25, U o =U i, 2gH/U 2 =0.357, and the basic
specific speed is ns =0.498 (8560). The profile of, or

radial section through, the rotor is shown in figure

3-5; since the surfaces of revolution swept out by

the leading and trailing vane edges are not yet
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Figure 3-5. -Preliminary layout of impeller profile.

known, the dashed lines are a crude estimate of
their location.

The layout of the blade tip section by the mean

streamline method begins with an estimate of the

vane pressure distribution. For a vane system with
severe cavitation requirements, the minimum vane

pressure coefficient or blade cavitation number Op
defined by the equation

Hsv=Cl V_ +Op w_
2go 2go

(1-42)

is of decisive importance. From equation (1-49) or

figure 1-18, one can find for the specified suction

specific speed and flow coefficient that op =0.16

and that the flow coefficient Vm,]/Uo=0.25 is

indeed the optimum for this S. The cavitation

number op =0.16 is probably too low to permit
completely cavitation-free operation because this

value requires a very thin leading edge, which

renders the blade very sensitive to minor changes in

angle of attack. However, if one designs the blade
for a somewhat lower minimum pressure coef-

ficient, cavitation can be expected to be sufficiently

localized to permit hydrodynamically satisfactory

operation, that is, the actual pressure distribution,

which must be expected to be more irregular than

that assumed for the design, is likely to cause Op to
exceed a value of 0.16 only over small portions of

the blade length.
The minimum pressure coefficient assumed for

this design was Cp, min=O. 125, which was the
lowest value considered achievable in connection

with a lift coefficient of reasonable magnitude in

order to avoid the need for excessive solidity of the

vane system. Figure 3-6 shows on the right end of

the drawing a vane pressure distribution considered

achievable with Cp, min=O.125 (except for local
departures). In accordance with the mean

streamline method presented in section 2.5.5, this

pressure distribution is plotted against the axial
extent of the vane, and the minimum pressure
coefficient of 0.125 is assumed to be constant over

one-half of this extent. The discharge static pressure

is given by the discharge relative velocity and, in the
dimensionless scale used here, has the value
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(P2-Pl)/(pw21/2)=l-w2/w 2. The velocities at

the tip section are shown in figure 3-6. The inlet
velocity diagram is given (for zero prerotation) by

Vm, l/Uo=0.25. The discharge diagram is
determined by the change in circumferential

velocity Awu/Uo=goH/(U2_lh)=0.2075 (with

_Th=0.86), by the meridional discharge velocity

ratio Vm,2/U o =0.295 at the tip (see fig. 3-5), and
by two additions to the meridional discharge

velocity, aVm,_ (due to the displacement thick-

nesses of the boundary layers) and AVm,2 (due to
the trailing-edge thickness of the vane). From these

velocity diagrams, shown in figure 3-6, one finds

w I = 1.03 Uo and w_ =0.856 U o, which include the
effect of the boundary-layer displacement thickness

A Vm, _ and of the leading-and trailing-edge

thicknesses A Vm, a and A Vm, 2.
The meridional discharge curve shown in figure

3-5 is determined by its tangent near the hub, which

is given by the radius of curvature R R in equation

(2-4) plus the condition of continuity.

The design pressure distribution diagram may
now be completed by first estimating the mean

p

static-pressure Pm curve between the inlet and
discharge static pressures, shown by a dash-dot line

in figure 3-6. The pressure along the low-pressure

side pip is approximated by a smooth curve between
the end of the minimum pressure line (191 --Pmin)

/_w2/2) = 0.125 and the discharge static pressure.
The pressure along the high-pressure side of the

vane P'hp is approximated by the rule

t' ' ' -PipPhp--Pro =ap(Pm (3-13)

where the subscript hp denotes high pressure, and

the subscript Ip denotes low pressure. The factor ap
varies between about 0.6 in the central portion of

the blade and about 0.75 in the end portions. This is
a conservative estimate because

p(w- Aw) 2 , p(w+ AW) 2
P'hp + 2 =P/P+ 2

pw 2
P

=Pro + 2 (3-14)

which leads to

P'hp --P'm 2 -- AW/W (3-15), , -- ap --
Pm --P/p 2 + Aw/w

where Aw is the departure of relative velocity at the

vane surface from the mean relative velocity w. For

an infinitely thin vane in a uniform stream

(w = constant) with uniform pressure differences
l l i I

Php --Pro = constant and Pm -Pip = constant and
with Aw=constant, one finds on the basis of the

t t

left side of equation (3-14) and from Php--Plp
: C L p w 2/2

AW _ C L

w 4
(3-16)

For the case shown in figure 3-6, one finds from

equation (3-2) that CL,_=0.323 and from

equation (3-15) that ap =0.922. Because of the
finite blade thickness and the resulting blockage, ap

must be expected to be substantially lower, as can
also be concluded from the cascade data presented

in section 2.5.5. Such a reduced value of ap is
assumed in constructing the vane pressure diagram

shown in figure 3-6. For a prescribed minimum
! t

pressure (i.e., a prescribed Pm -Pip) this value of

ap leads to a reduced p__ -Pro (see eq. (3-13)) and
thereby to a reduced p'Fhp-P'tp and a reduced lift
coefficient.

The next step is to divide the axial extent of the
blade section into a number of equal parts, five in

figure 3-6. The dimensionless, average vane

pressure difference of each part

r

Ap' - Php--Plp (3-17)
pw2 /2

is estimated and recorded in the pressure diagram.

Evidently the arithmetic mean of these

dimensionless pressure differences, that is, the area
inside the dimensionless pressure curve (with pw 2/2

and the axial extent of the vane section being unity),

is the lift coefficient referred to the inlet relative

velocity (eq. (2-60)):

ZAp' _ ,5_nav _ 0.269 (3-18)
CL'I - N 0w2/2

where N is the number of axial steps used (here

five).
The lift coefficient referred to the vectorial mean

between w I and w 2 (i.e., to woo) is from equation

(2-59)

- '21PAY =CL, I _ =0.324 (3-19)
CL,°° pW2 /2 Wo,

where woo =0.939 Uo is (arbitrarily) defined and
determined without taking the meridional velocity
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increases A Vm, 6 and A Vm, 2 into account. (It should
be noted that there is no theoretical definition of

w_ unless Vm, 1 = V m = Vm, 2 throughout the
system.

The lift coefficient is evidently in this case very

much lower than it could be according to any

reasonable stall limit (see fig. 2-26). Thus the lift

coefficient and solidity of the system are here
completely determined by limitations of the

pressure reduction Cp, min along the blade. (Since
this pressure reduction accompanies a local velocity

increase, the same limitation exists in gases with

respect to effects of compressibility. See sec. 3.2.7.)

The next step is obviously to relate the changes in

the peripheral velocity component - AV U = Aw U
to the circumferential blade force. The total change

in the circumferential velocity component Awu.to t
is obviously proportional to the total blade force.
Hence

awv,__ ap;_b_y ,apex
(3-20)

AWU, tot E(ApjcbxAY) E(Apfrbx)

which is similar to equation (2-79). The axial step
Ay is here equal to 1/N, which is a constant equal to

one-fifth of the axial extent of the vane (unity), and

the index x denotes any one of the N steps taken (in

this example, five). These steps are designated

consecutively b (i.e., a to b) to f (i.e., e to J). The

total (radial) width b is here used in place of the

radial distance Ab between meridional streamlines,
since the approximation that Ab is proportional to b

is sufficiently accurate in view of the approximate

character of the entire process (see fig. 3-5).

The values of Apxbx/bav are given in parentheses

under the values of Ap x, and the values of
APxbx/(E@[Obav are given to the left of the

pressure distribution diagram.

The steps AWu, x = - A Vu, x are now determined
by equation (3-20). The meridional velocities

associated with the intermediate velocity diagrams
between the inlet and discharge must be estimated.

If V m is the total meridional velocity including vane

blockage,

(t-r)V m =t(V m-AV m)

or

1 _ -=r 1 AVm
t Vm

Hence

_zx_
t

(3-21)

The notations are given by figures 2-29 to 2-31 and
by figure 3-6.

The circumferential vane thickness r and vane

spacing t can be estimated as follows: The solidity

of the vane system l/t is determined by CLoo,
equations (3-19) and (2-54), and the inlet and

discharge velocity diagrams, including w_.

The vane length I can be calculated from the axial

extent y of the vane, which is unity, and an estimate

of the vane chord angle t3v, which is slightly larger

than the discharge flow angle fi2 (see fig. 3-6):

1= P Ay (3-22)
COS flv

The vane length and solidity l/t determine the

circumferential vane spacing t.
The circumferential vane thickness r is deter-

mined in the center of the vane from the normal

vane thickness r n by the approximate relation

Tr/

r = o-- (3-23)
cosvP

where r n is given by an estimate of the thickness-

length ratio rn/l, which is assumed to be between 5

and 6 percent for the blade layout of figure 3-6.

The mean velocity curve (fig. 3-6) is drawn from

(1) The maximum value of A V m / V m = r/t (at the

center of the vane) in the form AVm/(V m --AVm)

=(AVm/Vm)/(1-AVm/Vm), where V,n-AVm is

the height of the flat zero-thickness curve (slightly
convex from the top) between A and B'. The

distance of the zero-thickness curve from the zero-

blockage line AB represents an estimate of the

blockage by the blade boundary layers alone. This
boundary layer blockage is about two to three times

as large as that shown in figures 2-27 (a) to (o),
because the spanwise end boundary layers were

removed in the NACA tests represented by figure

2-27. This blockage effect may also be assumed to

be proportional to the solidity I/t.

(2) Its starting point a, which lies /XVm, a above
point A, with A Vm, a determined by equation (3-21)
from a r/t value very close to the leading edge.
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(3) Its end point f, located A Vm, 2 above point B',
with A Vm, 2 determined by r/t near the trailing edge

in the same manner as A Vm, a.
(4) The condition that the mean velocity curve

should stay below a circular arc about O, drawn

through the starting point a of the curve, with the
relative velocity vector drawn to point a as the

radius. Thus the mean relative velocity is nowhere

higher than it is just after the flow has entered the
system, and unnecessary acceleration and subse-

quent retardation of the mean flow are avoided.

Of course, the points and conditions stated in

items (1) to (4) cannot determine the mean velocity

curve uniquely. However, they permit drawing an
estimated mean velocity curve satisfying all

conditions known at this stage of the design

process. It is entirely possible that the mean velocity
curve so derived will later have to be corrected to

obtain an acceptable vane shape.

The velocity vectors of the flow at stations b, c,
d, and e between the inlet and the discharge may

now be drawn to points b, c, d, and e along the

mean velocity curve determined by the respective

values of AWu, x computed according to equation
(3-20). Next one draws a sequence of tangents to

the mean streamline, with every tangent parallel to

the corresponding velocity vector as described in

section 2.5.5 with the aid of figure 2-31. Note that

the joining points of successive tangents must be

about halfway between stations a, b, c, d, e, and f,

which mark the points of tangency between the
mean streamline and the sequence of tangents. For

a flat vane like that shown in figure 3-6, the

sequence of tangents and the mean streamline are

practically indistinguishable.
The construction of the mean camber line of the

blade from the mean streamline is now described

under the assumption that the dimensionless form
of the deviation between these two curves is the

same for the vane to be designed as for the NACA

vane systems described and analyzed in section

2.5.5 and represented by figures 2-33 and 2-34. It is

also assumed that the magnitude of this deviation

divided by the vane length is proportional to the lift

coefficient CL,_. Under these assumptions, the
magnitude of the maximum deviation An of the
mean camber line from the mean streamline can be

determined from figure 2-33 and from CL, _
= 0.324. Furthermore the distribution of An along

the blade is given approximately by figure 2-34.
The pressure distribution shown in figure 3-6

clearly characterizes the new blade as trailing-edge
loaded. Therefore the deviation curve used for this

design must average the data points in figure 2-34.

The solid curves in figure 3-7 do this. It should be
remembered that the actual dimensions represented

by the vertical coordinates in figures 2-34 and 3-7

are fairly small. For example, unity of the vertical

scale in these figures corresponds to a value of An
which, according to the solid curve in figure 2-33, is

0.05 CL,,_I=O.05 x0.324 l, or 1.62 percent of the

length of the blade section. The maximum deviation
of the camber line from the mean streamline is,

according to the assumption represented by figure

3-7, 1.54 x 0.0162 = 0.0248 , or about 2.5 percent

of the chord length. In other cases, such as the root

section, the maximum deviation might be greater,
but rarely more than 5 to 8 percent of the chord

length. Thus 10 percent of the deviations shown in

figures 2-34 and 3-7 are of the order of 1/2 percent

of the blade length and are, therefore, close to the

practical limits of drafting and manufacturing

accuracy. This reasoning agrees with the fact that
one is concerned here only with the departures from

the one-dimensional approximation represented by
the mean streamline (including the effect of blade

thickness).

The leading portion of the solid departure curve

in figure 3-7 is represented by three different lines.

This is justified because the NACA cascade tests

showed that variations in the leading portion of the
vane do not substantially affect the overall

performance of the system. Thus the designer is free

to vary the leading portion slightly to meet the inlet
flow conditions in the most favorable fashion. The

condition to be met particularly is the normal vane

distance dj across from the leading edge (see fig.

3-1), which should not be smaller than the normal

distance between two stagnation streamlines of the

oncoming flow before it is influenced by the system.

TraiD ng-edcJe-loaded
NACA cascades

Standard NACA 65-series
cascades

2.0

.5

1.0 ,9 .8 .7 .6 .5 . .3 ,2 .L 0

Distance from leadin 9 edge divided by chord length

Figure 3-7. -Distribution of normal deviation of camber

line from mean streamline. Unity deviation is average

maximum deviation of standard NACA 65 series.
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For the tip section, the lowest of the three leading

branches of the departure curves in figure 3-7 meets
the condition of vane distance and is, therefore,
selected.

The last step in the design of the vane section

according to the mean streamline method is placing
an appropriate thickness distribution around the
mean camber line derived from the mean

streamline. This thickness distribution is, of course,

already given by the mean velocity curve, that is, by

A V m, whereby this curve determines departure

from the mean velocity distribution for zero blade

thickness. The velocity ratio A V m /V m is related to
r/t by equation (3-21), so r can be determined at

the scale of the drawing expressed by t. The normal

blade thickness r n is related to r by equation (3-23),

where the local vane angle/3 v is given at any point
(station) by the direction of the mean camber line.

By drawing a circle with the radius r n/2 (where r n is
a local value different for every station) around any

station point b to e along the mean camber line, one

can construct low-pressure and high-pressure sides

of the blade tangent to these circles and to some
reasonable, streamlined contours around the

leading and trailing edges. Note that the small

thickness around both ends of the blade is given by

tx Vm, a and A Vm, 2 of the velocity vector diagram,
and these velocities, according to equation (3-21),

give a • value and thereby a normal blade thickness

Tn near the leading and trailing edges.

It is important to note that the blade contours are

determined only approximately by the conditions

just outlined. Rather than drawing these contours

exactly tangent to the circles with radii _'n/2 about

the station points b to e, one must draw these curves

at the minimum local curvature, that is, everywhere
with a maximum radius of curvature, which varies

continuously along the blade and satisfies the
overall shape of the blade with fair, not exact,
adherence to the thickness circles and end

conditions mentioned previously.

The art of drawing good blade sections requires

skill and experience. However, this experience

cannot be derived from conventional airfoil shapes.

The mean velocity curve is determined to a large
extent by fluid-mechanics considerations and

dictates, by the distribution of/x V m / Vm, the major
features of the thickness distribution. Usually it

places the point of maximum blade thickness (for

pump or compressor systems) behind the midpoint

of the blade section, which is contrary to standard

airfoil design practice. Furthermore a trailing-edge-

loaded vane pressure distribution that is advan-

tageous for good cavitation or Mach number

characteristics of pump and compressor blades

usually places the maximum curvature of the mean
camber line behind the midpoint of the blade,

which is also not in agreement with standard airfoil

practice. Thus the design engineer has to develop a

new sense of a good blade shape, particularly in the

field of pumps and compressors.

The completed velocity vector diagram enables

one to check the original assumption about the

mean pressure variation from inlet to discharge

represented by the dash-dot curve in the vane

pressure diagram (fig. 3-6). The mean static
pressure at any station from a to f is related to the

corresponding relative velocities by Bernoulli's

equation, which may be written in the form

p w 2 p w_
Pm,x +-_- =Pl + 2

or

2
Px-Pl _ I Wx
pw21/2 w21

(3 -24)

The resulting Px points at stations a to e are shown

as circles in the vane pressure diagram (fig. 3-6).

The agreement with the originally assumed dash-
dot curve is quite acceptable, particularly since the

actual mean static pressures are a little higher than

assumed, so that the high pressure curve would be

shifted slightly toward higher pressures. It must be
remembered that the entire design process described

here gives only a practical approximation to the real
flow conditions, so that insistence on high accuracy

in detail is not justified. Nevertheless careful
execution of all steps described is a requirement.

Other cylindrical sections through the vane

system can be developed in the same manner as

described for the tip section, provided the flow

proceeds through the rest of the system along
straight, cylindrical flow surfaces. In this case, the

inlet and discharge velocity diagrams are prescribed
by the operating conditions in the form of the

specific speeds, as indicated in section 3.2.1.
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In the present design example, the meridional

stream surfaces are intentionally assumed to depart

from the strictly cylindrical shape in order to treat

the general case, which must be treated in order to
achieve satisfactory suction specific speeds as well

as other advantages.

The great theoretical and empirical advantages of

axial flow are retained by dividing the meridional

flow through a rotor of this shape (see figs. 3-5 and

3-32) into a strictly axial and a (circumferentially

uniform) radial component. The radial flow

component does not need to be considered explicitly
in this section. The effect it can have on the

peripheral component of the absolute flow is
derived in section 3.3.3.

The axial-flow component is first determined for
the total inlet and discharge cross sections by the

condition of continuity and by an estimated

curvature of the meridional streamlines as indicated

diagrammatically in figure 3-5. Between the inlet

and discharge of every cylindrical section, the axial
velocity component is assumed to vary in some

simple fashion, for example, along the straight line

between the points A and B in figure 3-6; this ap-

proximate assumption is used because a more
accurate solution would complicate the design

process in an undesirable manner. This approx-

imate procedure has been used in the field of marine

propulsion pumps for many years with good success

and may, therefore, be considered empirically

justified.
Because of the very slight curvature of the

meridional streamlines in the inlet region of the

impeller shown in figure 3-5, the meridional inlet

velocity Vm, l is here assumed to be radially
uniform, so that the inlet flow coefficient Vm, 1/U

changes in inverse proportion to the diameter of the
cylindrical section considered. The small difference

in magnitude between the axial and the meridional

velocity components is neglected.

The axial discharge velocity Vm, 2 is not assumed
to be uniform and is approximated according to the
curvature of the meridional flow near the hub

shown in figure 3-5. With zero prerotation

(Vu, 1 =0), the total step in peripheral velocity
AWu=EZ_Wu, x changes radially in inverse
proportion to the diameter of the cylindrical section
under consideration.

Figure 3-8 shows the cylindrical vane section at

half the tip radius. The tip velocity of the rotor is

still considered unity for the velocity scale, so that

for this section U=0.500 U o. With Vm, 1 =0.25 U o,

the flow coefficient is Vm, i/U=0.50, and Aw U

=EAwu, x=Awu, tip/0.5=0.415 (see fig. 3-6 for
zaw U of the tip section). The axial discharge velocity

is (according to fig. 3-5) Vm, 2 =0.395 U o without
the additions due to trailing-edge thickness and

boundary-layer displacement thickness. When these

/XWu, b

AWu, e _, AWu,c 7 r

&W U f_ '_ AWu=0"4ISUo / _ 9

,-'- .,,_Z_Wu._-
Mean i _. _ _ Mean i

ve ocit'/curve-[-. _:,_iZcl _" camber 'A
,f.._'_- _":_'_ line J $ /

2 : Wf _/ _ W _ _ i Chord /

:o._ Uo_ ,L_;_ ma_,,I!]% line,./
V.j:O. SI4U.-,,,w_, .... _-__"--_ _'/ I _z'r_\\ / /

V "."/ r _ w2 f _'- - "_/.t _ 1 \._ /V /',' " , _z , mvo 0395Uo-,, / / ?/
.... " ?,_ ",d '/'_, / I/ I --_ _a /,,,'4........//A,  er-'W ax"

w_,/ ,/O_n_' .'"-;::/ 1/4/
_r "_, '%F/-2_, wl:°.56°Uo /

w2-;> //'/ /

Z/// " vo,
L;':/'_./" °J /// ",: o25uo

j_'j.4"'- Mean _"...--_ll -,.-, _.,, _ -" -_ -u

L., t

Figure 3-8.-Design of cylindrical root uane section by mean streamline method. CL,z=2_pa_,=0.537; CL,==CLjw_Jw2_.=0.90.

(p' =p/(p_/2). )
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corrections are included, the relative discharge

velocity w 2 is 0.442, and the ratio of retardation

w2/w j is 0.442/0.560 =0.79, which is conservative
mainly because of increase in meridional velocity

from inlet to discharge.
It is of interest to check the same ratio for an

axial vane diffuser following this rotor. If the

diffuser is placed between cylindical outer and inner

boundaries, it has the same axial inlet and discharge

velocities; that is, the vane diffuser should return

the absolute discharge velocity of the rotor,

I/2 =0.574, to the axial velocity, Vm,2 =0.395, so
that the diffuser retardation ratio is 0.395/0.574

=0.688. This is acceptable, but indicates that a

further increase in A V U in the half-diameter section

(fig. 3-8) would be limited by the retardation in the
stator rather than by that in the rotor vane system.

The pressure distribution again contains the

coefficient of minimum pressure Cp, min as an
essential element. When the absolute minimum

pressure is assumed to be the same at the half-
diameter section and at the tip section,

w 2

Cp, min, O.5 = Cp, min,ti p _-_
w 2

1,0.5

=0.125 1"032 =0.422
0.562

(3 -25)

A coefficient of minimum pressure of 0.35 is chosen

in order to give the strongly deflecting half-

diameter section an extra margin of safety against

extensive cavitation. With this minimum pressure
condition and the discharge static pressure

determined by w 2, the vane pressure distribution is
estimated by the principles explained in connection

with figure 3-6. The circumferential velocity steps

AWU,x are determined by the same subdivision of
the pressure diagram as used previously.

In this case, the required estimate of the vane

blockage effect AVm, x is somewhat more difficult
to achieve than for the tip section. It requires a
preliminary vane section layout like that described

in section 3.2.2 (fig. 3-1). Mechanical requirements

of strength, cross-sectional area, and section

modulus must be considered at this point (see sec.

1.3.3). The mean velocity curve is then derived in
the same manner as described in connection with

figure 3-6. The velocity vectors drawn to the

stations b to e along this curve determine the mean
streamline by the method of tangents.

The area within the dimensionless vane pressure
curve determines the lift coefficient referred to the

inlet relative velocity Wl :

AVav r_zXp'
- -- =0.537 (3-26)

CL'j pw2 /2 N

where N is the number of subdivisions (here five).

From equation (3-26) and the vectorial mean w_o of

the inlet and discharge velocities w I and w E
(obtained by scaling from the vector diagrams), one
finds

w2 =0.537 0.5602 =0.90 (3-27)
CL, oo= CL, 1 _ 0.433_

Woo

This value is quite reasonable, perhaps con-

servative, for the retardation ratio w2/w 1

=0.79 determined previously (see fig. 2-26) and
indicates that even for the half-diameter section the

lift coefficient and the resulting solidity I/t are given

primarily by limits in the dimensionless vane

pressure distribution, dictated to a large extent by

the coefficient of minimum pressure (Pl-Pmin)

/(pw2/2) = Cp,mi. =0.35.
The lift coefficient permits the determination of

the departure of the mean camber line from the

mean streamline by using figures 2-33 and 2-34.

Since the vane pressure distribution characterizes

this vane section as trailing-edge-loaded (like the tip

section), the solid departure curves in figure 3-7

apply also to this vane section. In this case, the

middle branch of the leading portion of the

departure curves meets the inlet vane distance dl

requirement most advantageously (for dl see
fig. 3-8).

The thickness distribution in terms of z/t and r n

is again derived from A Vm under the mean velocity
curve by using equations (3-21) and (3-23).

Minimizing local curvature and ensuring continuity
of local curvature of the vane contours again took

precedence over exact adherence to the thickness

distribution derived from A Vm. In this case, it

becomes particularly apparent that the resulting
vane shape does not conform to standard so-called

good looking airfoil shapes.

The departure curves in figures 2-33, 2-34, and
3-7 were derived from NACA cascade data
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obtained with standard cascade forms like those

shown in figures 2-27(a) to (n). The application of

these departure curves to cascade shapes that differ

from standard forms as much as shown in figure

3-8 raises the question of validity of this degree of
extrapolation.

At the Ordnance Research Laboratory of the

Pennsylvania State University, some theoretical and

experimental work is in progress to examine the

validity of cascade shapes designed by the mean
streamline method as described in connection with

figures 3-6 and 3-8. With respect to cavitation
characteristics, the validity of this method seems to

be well confirmed by accurate observations of

cavitation inception and desinence (the disappear-
ance of cavitation at rising pressures). Overall

performance of units designed in this manner

generally agrees with expectations. However,
results for the vane pressure distribution and the

thickness of the vane boundary layers near the

trailing edges can not yet be used to either confirm

or correct the mean streamline method of cascade

design.

For strongly curved vanes like that shown in
figure 3-8, the stream-curvature method of

analyzing the flow through cascades (sec. 3.2.3)
offers a simple way of checking the validity of the

cascade shapes obtained by the mean streamline

method or any other method of design. This fact is
demonstrated in the next section.

§3.2.4-3.2.5

3.2.5 Further Applications and Refinements of
Stream-Curvature Method

As mentioned previously, for vane systems
departing from standard NACA cascades as

strongly as that depicted by figure 3-8, it is prudent
to check the validity of the mean streamline method

by some other method of design or analysis.

Theoretical methods available may be quite suitable

for achieving this goal, particularly with the aid of

computers. However, for the initial design phases,

it is desirable to have a simpler method that can be

carried out with hand calculator and drawing
board. The stream-curvature technique, outlined in

section 3.2.3, is such a method. Its application to

the cascade form shown in figure 3-8 is illustrated
in figures 3-9 and 3-10 and is described in this
section.

The first step is to redraw the vane contour

(except the leading and trailing edges) by means of

circular arcs as shown in figure 3-9. The

approximation achieved in this manner can be

within drafting accuracy.
Furthermore one selects a number of cross-

section lines, sections AB, CD, and EF, drawn
without inflection and normal to the vane contours

simply by making the curved section line at both

ends tangential to radial lines intersecting the vane

contours at the points A, B, C, D, E, and F. The
centers of the circular arc contours are marked with

Figure 3-9.-Curvature analysis of pump blade section for strong deflection (vane system shown in fig. 3-8).
(p" =p/ (ow_t/2). )
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Figure 3-10. - Velocity distributions in three flow cross sections of vane system shown in figure 3-9.

the same letters as the section lines and with primes.
The cross-section lines should be located well within

the closed, curved passage between the blades,
because at the ends of this passage the velocity

distribution cannot be assumed to be determined by

the curvature of the vanes and the passage.

One is now in a position to determine the velocity
distribution in the sections AB, CD, and EF

according to the method described in section 2.2 by

means of equation (2-4) and figure 2-3. However,

the sections AB, CD, and EF are here approximated

as plane sections, so that the area under the velocity

curve is equal to the rate of volume flow, and the
dashed V,r curve used in figure 2-3(b) is eliminated.

The plane flow in curved passages is described in

section 3.2.3 in connection with equation (3-6) and

figures 3-2 and 3-4. The resulting construction of

the velocity curves for section AB, CD, and EF is

given in figure 3-10, which shows these curves

plotted over straight-line developments of the flow
sections AB, CD, and EF.

It is stated in section 2.2 that the starting point

for each velocity distribution can be chosen

arbitrarily, since, for irrotational flow (eq. (2-4)),
all velocities of one curve can be multiplied by a

constant factor to meet the condition of continuity.

This is also true here. However, in the present case

one has for any one end point of each velocity curve

a first approximation by the assumed vane pressure

distribution curve shown in figure 3-8 and

reproduced in figure 3-9. This assumed pressure p*

gives in relation to the pressure difference Po -P]
(stagnation minus inlet static pressure) the assumed

blade surface velocity w ° by the relation

w* __ / po-p*
(3-28)

Wl '_ Po -Pl
The end points on the convex surface, A, C, and

E, in the construction shown in figure 3-10, were

(arbitrarily) chosen as starting points for the

construction of the velocity curves. Thus

%/,o0 -p._

=w,4

Po -P*ew'e=wl _o-pl

(3-29)

The rest of the construction follows equation

(2-4) and figure 2-3. For example, for point A, the

tangent to the velocity curve is drawn from the end

point of w._ to point A' in figure 3-10, the distance

from A' to A being the radius of curvature RA at
A.
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The construction of the velocity curves is aided
by assuming the radius of streamline curvature in

the middle of each section to be the mean between

the radii of curvature at the end points of the
section. This mean value c for section CD is

approximated graphically by the distance from the

midpoint c of the section to the midpoint c'
between the centers of curvature C' and D' of the

contours at the ends of this section. The tangents to
the velocity curves at the starting point C, the

midpoint c, and the end point D are drawn
successively and brought to intersect each other at

the two halfway stations between these three points

(see the vertical short dashed lines in fig. 3-10). The
velocity distribution curve is then drawn to touch

these three tangents. Of course, this is not an

accurate construction of the velocity distribution

curves, but it serves practical requirements quite

adequately. The method is capable of improvement

by reiteration and other considerations, as outlined
later in this section.

As mentioned previously, the areas under the

velocity curves in figure 3-10, multiplied by a
representative width normal to the flow cross-

section lines AB, CD, and EF, should give the

volume flow rate through each cross section in the

(dimensionless) scale chosen. For incompressible
fluids, the volume flow should be the same for

successive sections of the same system. For a more

or less arbitrary choice of the starting velocities w._,
w_, and w_, this equality is, of course, not to be

expected with the first approximation.

For unit width, the inlet volume flow is

Vm, lt=0.25 Uot. Because of the actual change in

Point Po - P_

or Po - Pl
section

A

B

AB

C

D

CD

E

F

EF

- P_

w1 I Po --P_
(a)

1.35 0.56×1.161

O. 65

1.29 0.56×1.135

0. 636

1.045 0.56×1.022

O. 571

TABLE 3-I. - EVALUATIONS
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(radial) width through the system (see fig. 3-5), V m

changes from 0.25 U o at the inlet to 0.395 U o at the
discharge of the system. In the design of this system

by the mean streamline method, it was assumed,
without any consideration of fluid friction and vane

blockage, that this variation in V m takes place

along a straight line in the velocity diagram in figure

3-8. (Some assumption of this type is necessary,
since, at this stage of design, the axial extent of the

vane in relation to a (tentatively assumed) rotor
profile is not known.) In order to obtain a fair

comparison between the results of the mean

streamline and the curvature methods, one must use

the same V m variation for both methods. The

straight line between the end point I of the relative

inlet velocity vector w I and the end point V of the

ideal discharge velocity vector is also shown in

figure 3-9. The dimensionless values corresponding
to the centers of the sections AB, CD, and EF are

given below the points II, III, and IV along the
straight line from I to V in figure 3-9, and they

involve, of course, an approximate relation between

axial location in the vane system and the change in

w U as given by the velocity diagram in figure 3-8.

Table 3-I gives the pertinent evaluations of the

velocity curves in figure 3-10. The following
explanations apply to the evaluations in the table:

(1) Symbols having the superscript * apply to
solid curves in figure 3-10 derived by starting from

the low-pressure points p._, p_, and P'E on the

assumed pressure distribution curve in figure 3-9.
(2) The subscript x refers to points A, C, and E

on the convex (low-pressure) side of the vanes, the

subscript y to points B, D, and F on the concave

OF VFLOCITY CURVES IN FIGURE 3-10

w* from w* by _ w*
y av xy av, x_

w* curves integration tl V °

in fig. 3-10 of w* m,xy

curves

O. 50

0.5655 0.535 1.905

0.502 0.644 1.521

aw I = 0.560 U o.

0.4484 0.847 1.190

0.42

0. 351

Q_y :

Q

tlVx°y

1.018

0.98

1.007

Wlw"'_x= Po-Px (Wx_2

Po - pl \Wl/

Q_(y/Q

1.142 1. 305

1.159 1. 344

1.015 1.03

w 1

Q_y/Q

0.88

0.766

0.6225

Po - pl \w1/

0. 775

O. 586

0. 388
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(high-pressure)sideof thevane,andthesubscript
xy to the flow cross sections AB, CD, and EF.

(3) Sxy is the length of the flow cross sections
AB, CD, and EF from vane to vane, as shown in

figure 3-9; b is the cross-sectional dimension

normal to S and to the plane of figure 3-9; V m is
the meridional fluid velocity derived from the

meridional inlet velocity Vm, 1 ; l_m is the meridional
fluid velocity derived from the area under the w*

curves; t is the circumferential vane spacing without

blockage. The superscript o refers to zero blockage;

hence V°m is the meridional velocity described by the
(assumed) straight line from I to V in figures 3-8
and 3-9.

(4) By the condition of continuity for incom-

pressible fluids, the rate of volume flow from the

inlet (defining bxy) is

Q= Vm, 1t l bl = V°m,xytxybxy = constant

Hence

because txy=t I for r=0.5 r o =constant. The rate
of volume flow from the solid w* curves in figure
3-10 is

Q*= w_v,xy Sxy bxy

Q* _ Wav,xySxybxy

Q Vm,ltlbl

_ W*av,x,vSxy Vm,1 _ Wav,x,vSx, v

Vm,ltl V°m,xy V°m,xytl

o
(5) The velocity Vm,xy is used only to

approximate the normal (radial) passage width bxy
in the same manner as for the mean streamline

method.

The velocity curves obtained after upward and

downward adjustments to satisfy a constant volume

flow rate are shown as long dashed lines. The

departures of these velocity curves from the curves
based on the minimum vane pressure curve

originally assumed (solid curves) are quite small.

However, in figure 3-9, the departure of the points

PB, PD, and PF from the assumed pressure curve

along the high-pressure side of the vanes is

substantial. To understand this, one must
remember that the mean streamline method does

take fluid friction effects into account, partly by

assuming a greater increase in V m through the

system than would be obtained by using the
frictionless, straight-line connection between the

points I and V in the velocity vector diagram in

figures 3-8 and 3-9 and partly by basing the

departure between the mean streamline and the
mean camber line used in the mean streamline

method of design on test results with real fluids and

thus taking fluid friction fully into account. On the

other hand, the velocity curves shown in figure 3-10
are derived from a frictionless flow consideration of

the curvature of the flow boundaries. This is

particularly significant at the high-velocity end

points A, C, and E, because there is a steep local

gradient of the frictionless velocity curves at these

points, so that even a thin boundary layer produces

a significant velocity change. Since A, C, and E are
the starting points for the construction of the

velocity curves, this change causes a downward

shift of the entire velocity curve derived from flow

curvature and thereby of the end points B, D, and
F. It is, therefore, quite reasonable that the vane

pressure differences as well as the high pressures

derived by frictionless considerations of the vane

curvature effects are larger than those connected
with the mean streamline method. Since the mean

pressure points derived from the mean velocities

shown in the velocity vector diagram in figure 3-8
are higher than the mean pressures originally

assumed (dash-dot line) and since the ratios of the

vane surface pressure drop and rise below and

above the mean pressure are somewhat arbitrarily

assumed, the agreement between the pressure points

PB, PD, and PF (derived from vane curvature) and
the pressure distribution curve which led to this

vane shape (by the mean streamline method) is

somewhat better than expected by this writer. It
constitutes a confirmation of both methods em-

ployed, since both methods involve a considerable

number of approximations.

As previously mentioned, the simple method of
determining the velocity distribution from the

passage wall curvature used in figures 3-10 and 3-4

could be improved. Two methods of making

improvements are briefly outlined here.
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First, it is possible to derive by simple theoretical

means the velocity distributions for various

prescribed changes of the radius of streamline

curvature across a curved passage.

The simplest of these cases is, of course, an
increase in the radius of streamline curvature r from

its minimum value r i at the convex boundary to its

maximum value ro at the concave boundary

proportional to distances n across (and normal to)

the flow (r=r i +n). For irrotational flow,

OV V
- (3-30)

On r

This leads to the familiar velocity distribution of

constant angular momentum:

Vr = constant (3-31)

It is shown in figure 3-11 as the central curve for the
case that the radius of curvature on the convex

boundary is r i = d, where d is the distance across the
passage normal to the flow. This distribution is, of

course, easily determined for any other ratio of

passage width to radius of curvature. It applies

approximately whenever ro =-r i + d, where d is any
total distance across the passage (d=nmax of the

cross section considered).

Equally easy to solve is the case where r o _r i,

which can be approximated by assuming
r=constant across the stream. According to

equation (3-30), this leads to

In V= - n + constant (3-32)
/-

The lower curve in figure 3-11 represents this
relation.

Finally consider the case where r o = _, that is,
where the outer flow boundary is a straight line.

This flow can be approximated by half the flow

between two vortices with opposite directions of
circulation. The velocity as well as the radius of
streamline curvature distribution of this flow field

are shown in figure 3-12, and its velocity

distribution is also represented by the top curve in

figure 3-11.
From the curves in figures 3-11 and 3-12, one

can approximate velocity distributions for a wide

variety of curved channel configurations charac-

terized by the radius ratio ro/r i and the radius-

width ratio ri/d. For ro >r i +d, one can obtain an

approximation by selecting along the r/d curve in
figure 3-12 a portion of the horizontal width d such

§3.2.5

ta..

1.0

I
i

.9 ----+ +

i

I
I ]

r increasing
from d to

T¸-
i

i i

l
rV = constant; ri: d i

! 1
r : constant - d i :

Figure 3-11. - Curved flow velocity distributions.

that this portion satisfies simultaneously the values

of r o/r i and of d/r i or d/r o of the given curved
passage. These conditions can be satisfied by a

process of trial and error without using the

analytical relations involved.
Second, it should be considered that all

previously described methods of deriving the

velocity distribution from the curvatures of the flow

boundaries can be expected to yield reasonably

good results only if the curvature of the passage

does not change too rapidly in the direction of the
flow. Whenever this condition is not satisfied, it is

necessary to derive from the first approximations of

the velocity distributions for a number of cross

sections a (small) number of streamlines by dividing

(for incompressible, plane flow) the areas under the

velocity distribution curves into a corresponding
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Figure 3-12.- Velocity and flow curvature distribution
between two vortices.

number of equal areas. The places where the
subareas meet each other mark the intersections of
the streamlines and the cross-section lines. It is of

practical importance to note that this process can be
carried out (for irrotational, incompressible flow)

before the velocity distribution curves of the

various cross sections have been adjusted to

represent the same volume flow rate.

For flow with major effects of compressibility, it
is necessary to determine first a mean flow velocity

by one-dimensional continuity considerations as
outlined in section 2.4. This mean velocity is used as

a starting point for the dimensionless velocity

distribution curve V/V o by beginning the first

approximation of this distribution near the center
of the channel and using the radii of wall curvature
and of an estimated streamline curvature at the

starting point. This approximate velocity distri-
bution is converted into a curve of mass flow per

unit area by plotting specific volume against V� Vo,

as shown in figure 2-7. The area under the mass

flow curve is divided into equal parts, and the
division lines between these parts determine the first

approximation of the intersections between the
streamlines and the cross section considered.

Several cross sections so divided determine the

streamlines. Their radii of curvature are determined

preferably by graphical procedures like those

indicated previously for the vane contour lines.

These radii permit the construction of the velocity

distribution curves from their tangents according to

equation (3-30) for irrotational flow (or eq. (2-6)

for flow with vorticity). This method avoids the
more or less arbitrary estimates of the intermediate

radii of curvature previously employed when

considering the flow in any one cross section

independently from that in other cross sections.
Figures 3-13 and 3-14 show the execution of this

method of flow determination for a passage with

rapidly changing curvature, which may be the

passage between two turbine vanes changing the

(relative) flow rapidly from the approximately axial

direction to one which has a strong circumferential

component.
The flow cross sections ab, cd, pq, ef, gh, and ij

are assumed more or less arbitrarily and are normal

to the flow boundaries. The first approximations of
the velocity distributions over these sections are

obtained largely as described previously. For

section ab (fig. 3-14(a)), the flow between two

vortices (fig. 3-12) is, of course, considered. Since

this section meets the boundaries close to a rapid

change in radius of curvature, an average value is
used for this radius.

For sections cd and pq, figures 3-14 (b) and (c)

give the results of three successive approximations.

In section cd (fig. 3-14(b)), the changes in the
division lines between the constant-area subdivi-

sions of the area below the velocity curves are

considerable; they are indicated in figure 3-13 also.

The resulting changes in the streamline config-

uration caused a change in the flow cross section
from cd to c'd and c"d, since all cross-section lines
should be normal to the streamlines. The

streamlines shown in figure 3-13 as solid lines are

derived from the second approximation of the

velocity distribution curves and lead by their

curvature to the third approximations of the

velocities. The velocity distribution in section lk is
assumed to be uniform.

3.2.6 Design of Vane Sections for Multistage Axial-
Flow Pumps

Multistage axial-flow turbomachines were intro-

duced by Parsons into the field of steam turbines

before the turn of the century. Apparently Parsons

also considered the use of this type of turbomachine

as a compressor.
Multistage axial-flow compressors were devel-

oped first by Brown Boveri in Switzerland around
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rw,d to h

r w
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k

Figure 3-13. - Curved flow passage. The symbol rwdenotes radius of wall curvature and additional subscripts indicate places
where curvature has this radius; r,.tdenotes radius of centerline curvature.

1930. However, the decisive developments in this

field took place in the forties and led to the almost

exclusive use of axial-flow compressors in aircraft

turbine engines (see ref. 6).
Multistage axial-flow pumps have been devel-

oped in a significant manner only recently as rocket

propellant pumps for liquid hydrogen (ref. 55).

However, there is no reason why multistage axial-

flow pumps should not be used for any liquid as

long as the flow rate does not have to vary over a
wide range at constant speed of rotation, in other

words, as long as the dimensionless flow rate

Q/nD 3 is not varied widely for pumps of any one

fixed design form.
Figure 1-39 shows a typical multistage axial-flow

pump in comparison with a single-stage radial-flow

pump of the same overall basic specific speed. For

liquid hydrogen, the basic specific speed is usually

very low (because of the high pump head compared
with the inlet head); the low speed leads to

inefficient single-stage radial-flow pumps (see fig.

1-12), whereas the resulting increase in the number

of stages of a multistage axial-flow pump does not

necessarily lead to a reduced efficiency. It is quite

possible that this reasoning has led to the use of
multistage axial-flow pumps for liquid hydrogen;

this practice is sound as long as it is not interpreted
as a limitation of the use of axial-flow pumps.

Figure 1-39 shows an inducer-type first-stage

impeller, which is necessary to achieve generally
acceptable suction (cavitation) performance. This

type of impeller is discussed in section 3.4, except

for considerations, presented here, which are
necessary to determine the design characteristics of

the higher stages with a large hub-tip diameter

ratio. These higher stages, the principal subject of

the present section, are axial stages between

essentially cylindrical outer and inner walls leading

to an approximately constant flow coefficient

Vm/U.

To determine the flow coefficient of the higher
stages, one derives first the inlet flow coefficient of

the inducer stage from its prescribed suction

specific speed (see fig. 1-18). From the condition of
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continuity (with the slight compressibility of the

liquid neglected for the present), one finds

Vm,2(D2-D2,2)= Vm, 1(D2-D2,1) (3-33)

(see fig. 1-20 for notations). Hence

Vm, 2 _ Vm, I I-D 2 1/D2

Vi Ui 1-D22/D 2
(3-34)

This equation applies to the tip sections of all

stages, which are here assumed to have a constant

diameter D i.
Generally one is more interested in the flow

condition of the hub section, because the
retardation of the flow and the lift coefficient there

are usually more critical than at the tip section.

From equation 3-34, one obtains

Vm'2= Vm'l Di I-D_'I/D_ (3-35)

Uh,2 Ui Dh,2 I-D2,2/D 2

Assuming Vm, l/Ui--O, lO (for higher suction

specific speeds of the inducer) and Dh, ]/D i = 0.20,
one finds

Vm'2-0.096 Di/Dh'2 (3-36)
Uh,2 1- D2h,2/D 2

which gives the following values: for Dh,2/Di

=0.80, 0.85, and 0.90, Vm,2/Uh, 2 =0.333, 0.407,
and 0.562, respectively.

On this basis, the following flow section
considerations of the higher stages are carried out
for three constant flow coefficients:

Vm =0.333, 0.40, and 0.50
U

(3-37)

The subscript denoting the section diameter can

now be dropped, since the following considerations
do not apply only to the root sections of the higher

stages. They are usually used for a section between

the root section and the midspan section

It is obviously of practical interest to develop as

much head per stage for a given peripheral rotor

velocity U as possible. After some preliminary

investigations pertaining mainly to the retardation
of the relative flow, it was found that the change in

§3.2.6

peripheral velocity A V U should not be greater than
0.50 U at the flow section considered. Hence the

ratio A Vu/U= 0.50 and the flow coefficients given

by equation (3-37) are the basis for the following

investigations of flow sections for multistage axial-

flow pumps.

Figure 3-15 shows some typical velocity vector

diagrams with AVu/U=0.5 and Vm/U=0.5. One

may regard the vectors shown by solid lines as
relative velocity vectors and those shown by dashed

lines as absolute velocity vectors; this arrangement

leads to more or less conventional flow config-

urations. Under this assumption the rotor velocity

vector U points from right to left. However, the

diagrams are equally valid if the solid lines denote
absolute velocities and the dashed lines relative

velocities. Then the rotor velocity vector U points

from left to right. The vectors shown by dash-dot

AV,_ , bV U

f -, / \_ \
/ /_-.. .j\ \

/ , \ \
/ ,/ ._ "\ \, \\

/ ./ \ \ \(a) /" / "_ '-- "\
, / \\,'\ \

Z_VU AV U

..... /.-< _- /

/- - \ I /
// / . \

\ /
\ J /

)/
U

AV U ! AV u

\ .'?',>zT--
/ \ < ' t

...... \ j
/ " \ i

/ / ,\
/ jJ

..../ /" -..... " \ L
\ i

(c) / --'f \ \ i

U

(a) Symmetrical diagram.
( b ) Strongly nonsymmetrical diagram.

( c ) Intermediate diagram.

Figure 3-15. - Typical velocity diagrams for multistage axial

flow pumps.
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lines are the vectorial mean values of the inlet and

discharge velocities, Voo and woo, respectively.

The velocity configurations presented in figure

3-15 apply to pumps as long as the change in

peripheral velocity h V U is in the same direction as
the velocity U of the system. If 2tV U and U are in

opposite directions, the diagrams apply to turbine
operation. In this section, only pump operation is
considered.

Figure 3-15(a) shows the so-called symmetrical

velocity arrangement, described in reference 55 as
the one used in the past with multistage pumps for

liquid hydrogen. The relative and absolute vector

diagrams are equal to each other. Both end points

of the velocity change AV U can be shifted in the
circumferential direction to arrive at different

possibilities. Figure 3-15(b) shows an extreme of

nonsymmetrical arrangement. The flow depicted by

one diagram is retarded, while the flow depicted by
the other changes its peripheral component from

positive to negative (or vice versa), but the

magnitude of the velocity through the system is not

changed (impulse system). It is of interest to
observe that the velocity reduction ratio in the

retarding vane system is in this case not worse (is, in

fact, better) than that in the symmetrical system,
where both the rotor and the stator have retarded

flow.

Figure 3-15(c) shows an intermediate arrange-
ment, which may be the most commonly used

configuration with commercial (usually single-

stage) axial-flow pumps, provided the dashed-line

arrows are interpreted to designate the absolute
flow which enters the rotor system axially. The

rotor gives the absolute flow a circumferential

component. The stator vanes return this flow to the

axial direction. Although not customary, it is quite

possible to use the rotor to turn the flow to the axial
direction (relative to itself).

The most important limiting variables to be

considered with the diagrams depicted in figure

3-15 are the ratios of flow retardation V2/V 1 and

w2/w I . Figure 3-16 shows the variations of these

ratios for the complete spectrum of velocity

diagrams with zaVu/U=0.5 and Vm/U=0.333,
0.40, and 0.50 from pure impulse in the stator

system (V z = V t), to the symmetrical stage, to pure

impulse in the rotor system (w 2 = wl). The ratios

V2/V 1 and w2/w 1 are plotted against the cir-
cumferential location of the center of A V U (or

AWu) in order to show the symmetry regarding
relative and absolute flows. The results are

interesting.

The symmetrical arrangement gives very nearly

the minimum for Vv/V 1 and w2/wl; it is in this

respect close to the least favorable arrangement. On
the other hand, the extremes of pure impulse in the

stator (right in fig. 3-16) or rotor (left) are optimum

regarding retardation, except for accelerating vane

systems which would lie outside these extremes.

Accelerating systems are rarely used in pumps or

compressors, although accelerating stator systems

discharging into the rotor against the direction of
rotation were used successfully by Brown Boveri in

early multistage compressors.

Besides indicating the existence of a lower limit
for the ratio of retardation, figure 2-26 relates the

value of this ratio in a somewhat indefinite,

empirical fashion to the lift coefficient CL,oo. From
figure 2-26, the writer has, for design purposes,

drawn a single curve relating CL, oo tO V2/V 1 or
W2/W 1 . This curve is shown in figure 3-17. Figure

2-26 shows clearly the highly approximate
character of this curve. Nevertheless the curve

permits a systematic approach to the design of vane

systems corresponding to various velocity vector

diagrams and their ratios of flow retardation as

shown, for example, in figure 3-16.

Figure 3-18 shows a vane layout of a symmetrical

vane system for &Vu/U=0.5 and Vm/U=0.5.

From figure 3-16, one finds V2/V 1 or w2/w 1
=0.62, and from figure 3-17, one can select a

corresponding lift coefficient CLoo=0.95. The
velocity vector diagram gives A Vu/woo , and with it

equation (2-54) gives the solidity of the system:

l 2 AV U

t -- CL, oo woo (3-38)

In this case, there is probably no severe cavitation

requirement because of the head produced by the

inducer stage. Assuming the inducer produces as
much head as the higher stage to be designed, one

can merely estimate that the maximum vane

pressure reduction should not be greater than the

stage pressure rise, a requirement easily met by this

design. It is, therefore, not necessary to start with
an assumed vane pressure distribution. Rather one

can begin with dividing the total change in
peripheral velocity Aw U into a suitable number of

steps (here five) by starting near the leading edge

with steps somewhat larger than the average step

and tapering the size of the steps down toward the
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Figure 3-16. - Variations of axial-flow velocity diagrams.

trailing edge. Estimating the mean velocity curve to
account for vane thickness, one is ready to draw the

intermediate mean velocity vectors and from them

the mean streamline by its tangents. The deviation
of the mean camber line from the mean streamline

is taken from the deviation curve in figure 3-7 by

using its middle branch near the leading edge, which

is satisfactory regarding the normal vane spacing d 1

near the leading edge. The thickness distribution is

derived from the mean velocity curve according to
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equation (3-21). In this case, some correction of the

mean velocity curve is necessary before a satis-

factory thickness distribution is obtained. An

uncorrected part of this curve is shown as a dashed

line between points c and f in figure 3-18.

As a check on various assumptions made, the

vane pressure distribution is derived from the

velocity vector diagram. First the mean pressure is

derived from the mean (relative) velocities

according to equation (3-24), where the index x

may run from a through f in figure 3-18. The vane

pressure difference is calculated from the average

vane pressure difference of the entire vane

Apa t CL,IPWf
-- 2 (3-39)

where

CL, 1 = CL, oow2 (3 -40)

and CL, oo =0.95 according to figure 3-17. Then,

according to equation (3-20), and with Aw U

= AWu, b + Awu, c + AwU, d + AWU, e + AWu, f,

Apb _ _Pb _ AwU, b

EAp N Apa v AW U

Figure 3-18. - Vanes for symmetrical stage with Vm I U= 0.5 and AwuI U= O.5,"Ps = O. (p" =p/ (pw_ll2 ). )
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or

Ap b N Awu b

APav ,_Wu

APc_ N AWU, c

APav AWu

where N is the number of equal, axial steps through

the system, five in figure 3-18. The pressure

differences Ap b, Ap o Ap d, Ap e, and Apf are

placed in the pressure diagram according to some

reasonable rule, for example, that the pressure drop

below the mean pressure shall be twice the pressure
rise above the mean pressure. The pressure

distribution curves can be drawn through the local,

mean surface pressures of the steps ab, bc, cd, de,
and ef as shown in figure 3-18.

It should be evident that the stator vanes of the

symmetrical stage have exactly the same shape and
characteristics as the rotor blades for the diameter

considered. For other diameters, the stage is usually

not symmetrical.

A somewhat unusual vane system for multistage

axial-flow pumps is the impulse system, to be used

with the right and left extremes of the spectrum of
velocity diagrams shown in figure 3-16. Such a vane

system is shown in figure 3-19 for the same

operating conditions as used in figure 3-16, that is,

for Vm/U=0.5 and AVu/U=0.5. Figure 3-19 uses

symbols for absolute velocity V, which correspond

to the assumption that the system shown is a stator

vane system, but it should be clear that the same
system could be used also as a rotor vane system.

Since for an impulse system V2/Vi = 1, one can
select according to figure 3-17 a lift coefficient

CL,_ = 1.5, although it should be recognized that
this is not the only choice possible.

The subdivisions of A V U are chosen to be
somewhat similar but not exactly equal to those in

figure 3-18. These steps start at the leading vane

end with 0.25 AV U and taper off gradually to 0.13

AV U.
In its central portion, the mean velocity curve is

drawn slightly below the circular arc representing a
constant mean velocity in order to achieve a

reduction in this velocity as suggested in section

3.2.3 in connection with figure 3-4. However, as a

consequence of this purpose, the mean velocity

curve is very flat, that is, it rises very little above the

Mean

camber

line

V A

X

Velocity distributionin section A-B plotted &V U
from line XY -,

\

direction

t

Figure 3-19. - Impulse vane system for Vm / U = 0.5 and A Vu/U = 0.5.
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zero-thickness curve, so that the resulting vane is

necessarily quite thin (about 6.67 percent). It may,

nevertheless, have the required stiffness because the

camber is greater than that of the 9.4-percent-thick

blade in figure 3-18.
The vane channel shown in figure 3-19 permits

the application of the stream-curvature method.

The velocity distribution in section AB is plotted
from the baseline XY at the same scale as the

velocities in the vector diagram. It can be seen that

the maximum velocity in section AB is substantially

higher than the inlet and discharge velocities V 1

= V 2. The corresponding vane surface pressures PA

and PB are plotted in the pressure distribution

diagram, which is derived in the same manner as

described in connection with figure 3-18, with PA
and PB determined by equation (3-24) from the
minimum and maximum velocities in section AB.

The fact that the vane system shown in figure
3-19 has a less favorable velocity distribution and

smaller vane thickness than the vane system shown

in figure 3-4 is obviously due to the fact that in
figure 3-19 the inclination of the incoming and

discharging flow against the axial direction (angles

_1 and/_2) is very much smaller than in figure 3-4.

However, figure 3-16 shows that, for the right and
left extremes of this spectrum, the retardation ratio

of the blade row having retarded flow is above the

lower limit of about 0.6, even at the minimum flow

coefficient (0.333) considered in the present

investigation. Therefore an impulse vane system is

developed for Vm/U=0.333 and ,SVu/U=0.5 (not

changed); it is shown in figure 3-20. The lift

coefficient CL,_ used in this figure and the subdi-
visions of AV U are the same as those in figure 3-19,

while CL, I is, of course, reduced according to the
changed ratio of V_ to V I.

In figure 3-20, an attempt is made to use the

increased flow angles/31 and 132 to increase the vane
thickness and to reduce the mean velocity and

thereby the maximum velocity in the midturn flow

section AB between the vanes. This is successful,

since the maximum velocity at midturn (point B)

exceeds V t and V2 by only 27 percent as compared
with 40 percent for the vane system shown in figure

3-19. Correspondingly, the minimum pressurePB is

substantially increased. The vane thickness is

increased from 6.2 to 7.2 percent.

The impulse vane systems in figures 3-19 and
3-20 differ substantially in form from the design

shown in figure 3-4. Since this difference is greater

than can be explained by the differences in the flow

angles, it is desirable to compare the results
obtained by the mean streamline method with those

obtained by the stream-curvature method for the

same flow angles. This is done in figure 3-21 for the

flow angles used in figure 3-20.

The vane contour shown in figure 3-21 by short-
and long-dash lines was obtained in the same

manner as the so-called improved vane shape in

figure 3-4, by starting with the classical design (fig.

3-2), shown in figure 3-21 entirely in long-dash

lines. The design form developed in figure 3-20 by

means of the mean streamline method is shown by
solid lines.

The difference between these vane forms is small

at the inlet and quite substantial at the discharge

side. This should not be surprising, since the so-
called improved design shown in short- and long-

dash lines really corresponds to a design derived by

the mean streamline method without any deviation
of the mean camber line from the mean streamline.

In this respect, the vane shape developed by the

mean streamline method with deviation (solid lines)
represents a higher degree of approximation than

the short- and long-dash-line contour developed by

stream-curvature considerations, which degenerate
into one-dimensional considerations at the vane

ends.

The complete equality of the inlet and discharge

portions of the vane developed on the basis of

stream curvature alone reveals another shortcoming
of this method, namely, that the inlet vane distance

dl was made equal to that corresponding to the
velocity V 1, whereas it should be larger in order to
avoid excessive velocities at the convex side of this

section. This consideration does not apply to the

discharge vane distance d2, because the flow

leaving the trailing edge is not the same as that

approaching the leading edge. Thus one must

conclude that the trailing end of impulse vanes

should have a vane angle _v,2 against the axial
direction larger than that at the leading vane end

and also larger than the discharge flow angle _2.
The vanes developed by the mean streamline

method (solid lines) do have this characteristic.

On the other hand, the vanes developed by the

mean streamline method have a discharge vane

distance d_ which is smaller than that corre-

sponding to the one-dimensional condition of

continuity with respect to the discharge velocity V 2.
A similar but somewhat milder conflict with the

condition of continuity is found in the NACA vane
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Velocity distribution

in section A-B plotted
from that section _CL, I 2 _"

vB

! AV U -- --_ ,

curve Constant- _ ,
Meanvelocity _ velocityarc / /

f ....................

'm ,, // i i

Figure 3-20. -Impulse vane system for V,n/U=0.333 and _Vu/U=0.5.

,A3v,2 : 1_2 _l_v,2>152
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Figure 3-21.-Comparison between impulse uane systems

developed by mean streamline and one-dimensional
methods.

system shown in figures 2-27(b) and (c) and may
exist in most cases where the flow is deflected past
the axial direction. This indicates that the one-

dimensional condition of continuity does not have

to be satisfied strictly at the discharge end of vane

systems with _2 close to zero. Nevertheless one
must conclude that steep vane systems of this type,

if developed by the mean streamline method, must

be checked regarding the normal vane distance not

only at their inlet but also at their discharge ends.
For the vane system shown in figures 3-20 and

3-21, one may use a vane system and vane shape
somewhere between the two designs compared in

figure 3-21 and aim to satisfy the one-dimensional

condition of continuity approximately with respect
to the mean velocity at the discharge as well as the

inlet. This can be accomplished with the mean

streamline method by selecting a somewhat flatter

deviation curve than that shown in figure 3-7. The
vane shapes shown in figures 3-19 and 3-20 were

derived by using the dashed curve in figure 3-7

representing the standard NACA 65-series cas-

cades. By flattening the deviation curve further near
the trailing edge, one can reduce the discrepancy

Ad2 between the actual vane distance d_ and the
distance corresponding to the one-dimensional

condition of continuity (fig. 3-21).
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These considerations lead to the general
conclusion that none of the methods of cascade

design presented in this compendium are self-

sufficient. Any simple check, be it by the one-

dimensional condition of continuity, by the zero-lift

direction (see Weinig's results, sec. 2.5.3), or by any

other simple and rational consideration, is highly
desirable.

A preliminary layout of the retarding vane system

to be used in connection with the impulse vane

system in figure 3-20 is shown in figure 3-22.

According to figure 3-16, the ratio of retardation in

this system is wz/w I =0.635, which by figure 3-17,

suggests a lift coefficient CL,oo=l.0. The

subdivision of Aw u into five steps is chosen to be
the same as in figure 3-18, as is the dimensionless
curve for the deviation of the mean camber line

from the mean streamline, which is the central

branch of the solid curve in figure 3-7. The mean

velocity curve and the vane thickness are derived by

successive approximations. The last correction of
the vane thickness distribution is shown on the

trailing part of the blade by the step from the
dashed-line contour to the solid contour. No

corresponding correction of the velocity diagram

and the mean streamline is necessary, since the

resulting change would be insignificant. The

maximum thickness of the final blade profile is
about 6 percent.

As a check on the design forms presented here,

the zero-lift direction is shown in every vane layout
(figs. 3-18, 3-19, 3-20, and 3-22) as a dash-dot line

through the trailing edge. The intersection of this

line with the mean camber line is marked, and the

location of this point is compared with the

empirical curve shown in figure 2-28. The

comparison is fairly satisfactory with the exception
of the blade shown in figure 3-22, which should be

steepened (i.e., the stagger angle measured from the

axial direction should be reduced) by about 2 ° to

satisfy this requirement, provided one accepts an
extrapolation of the curve in figure 2-28 to a vane

stagger angle/3 v of about 66V2 °.

The departure of the vane system design shown in
figure 3-22 from its usual relation to the zero-lift

direction and the abnormally rapid increase in vane
curvature toward the trailing end make it desirable

to attempt a modification of this design form.

Within the design rules adopted here, the only way

of overcoming the previously mentioned short-
comings of this design is a modification of the curve

describing the deviation of the vane camber line

from the mean streamline. An attempt to do this is

shown in figure 3-23. The deviation curves given in

figure 3-7 are shown as dashed lines. To accomplish
the desired modification, one must increase the

deviation at the leading edge by a factor of 2 over

that used previously. Furthermore, one must reduce

the curvature of the deviation curve over the trailing
half of the vane. With these two requirements

Figure 3-22. -Retarding vane system for V,_/U=0.333 and AwUU=0.5.
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Distance from leading edge divided by chord length

Figure 3-23. - Revised deviation of camber line from mean

streamline. (See also fig. 3-7. )

satisfied, it is not difficult to arrive at the newly

selected deviation curve shown in figure 3-23 as a
solid line.

The subdivisions of ,5 V U are assumed to be the

same as previously used for the impulse systems

shown in figures 3-19 and 3-20, beginning at the

leading end with 0.25 ,SV U and ending at the

trailing end with 0.13 A V U. The mean velocity

curve was selected to conform in the leading half of
the vane to that used for figure 3-22 and somewhat

reduce the height of the old curve in the trailing part
of the vane.

The vane shape resulting from these steps, shown

in figure 3-24, corrects the shortcomings of the
previous design. The zero-lift line intersects the

mean camber line practically at the leading edge, as

demanded by an extrapolation of the curve in figure

2-28, and the curvature over the trailing part of the

vane is greatly reduced.

Thus, it is evident that, by a reasonable change in

the deviation curve, significant improvements in

vane shape can be achieved. The spread of the
deviations originally derived from NACA cascade

forms and tests, which is shown diagrammatically

in figure 2-34, indicates that the solid deviation
curve presented in figure 3-23 can be considered
reasonable.

One arrives at the same conclusion as stated

previously at the end of the design considerations

for impulse vane systems, namely, that a single

design procedure such as the mean streamline

method is by itself not sufficient for arriving at a
good design form in all cases. Additional

considerations must be employed to improve the

probability of finding a successful solution.

As mentioned previously, the use of the vane

systems shown in figures 3-19, 3-20 and 3-24 as

stator and rotor systems can be reversed. This

means that the impulse systems in figures 3-19 and

3-20 could be used as rotor vane systems, with the

system in figure 3-24 becoming the stator system
and feeding to the impulse rotor a stream with

substantial, positive prerotation. It can be shown

that this reversal in the parts played by these

systems does not change the slope of the ideal head-

capacity curve; that is, an impulse rotor system

operating in a stream having the same average

Mean

streamline : . .... f

Aw., _7 AWu -
u,, i_ < < Aw. b

r'Aw-3 ,' _ °,
:_Wu,e u, "Awu c

wd_ iWC_d

, w2 ,,Wb-,,o _

Zero-lift We_ '_." _._'w_'___
• , , J / _" _- .-a/+ !

direchon X ..... _. _,.___"x_w 1 ;"a/k:" / _ /

" _\'_C_," _;i_ v,/

_ v2\ 171

'- Mean camber line [

k-

d

t

Figure 3-24. - Revised design of retarding vane system for Vml U= 0.333 and Awul U= 0.5.
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peripheral velocity as the rotor still has the same

falling head-capacity characteristic as a rotor with

the vanes shown in figure 3-24. Only the flow in the
first (inducer) stage and the discharge from the last

stage change substantially.

With impulse rotors in the higher stages, the

inducer has to develop many times the head it

would develop with impulse stators in the higher

stages; therefore the flow in the inducer may pose a

major problem of relative flow retardation, because
the absolute flow must be accelerated circumfer-

entially to (approximately) the peripheral velocity
of the rotor.

At the discharge, there is the problem of

converting a flow having essentially the peripheral

velocity of the rotor into static pressure. This
problem may not be too difficult if the flow is

collected circumferentially by a single- or multiple-
volute casing (see sec. 4.5.2) discharging through

one or more tangential passages. In this case, a high

peripheral flow component may be advantageous.
A volute casing is a very efficient flow passage, and

the higher the peripheral flow components, the

smaller the volute casing. The velocity head of the

flow leaving the volute casing can be converted

efficiently into static pressure by tangential,

diffusing passages.

Thus the use of impulse rotor systems poses some
flow problems at the inlet, but the flow can

probably be handled efficiently at the discharge. An

impulse rotor has the advantage that the blade

system does not exert any axial thrust, so that the

required diameter of a hydrostatic balancing device

is reduced (see sec. 5.4). Considering that the drag

moment of a rotating disk increases with the fourth
power of its diameter, a reduction of this diameter

is a matter of importance.

In the present section only the symmetrical stage

and the right and left extremes of the spectrum
illustrated in figure 3-16 are considered. It should

be evident that these cases do not exhaust the design

possibilities of multistage axial-flow machines. The

examples presented should be sufficient to guide the

reader in the design of other arrangements within
the spectrum outlined in figure 3-16. Eyen solutions

outside this spectrum, that is, with accelerated flow

in one of the vane systems (stator or rotor), should
be considered.

3.2.7 Cascade Design for Compressible Fluids

In this section, the methods of cascade design
described in the preceding sections are shown to be

applicable also to compressible fluids. The method

of this application is that described in section 2.4,

particularly the use of the change in specific volume

v/v o as a function of the dimensionless fluid

velocity V/Vo, given for isentropic changes in air
(at moderate temperatures) in figure 2-7 (derived

from eqs. (2-21) to (2-23) and (2-25)). For axial-

flow vane systems, these relations apply also to the

relative flow through moving vane systems; that is,

w/w o can be substituted for V/V o in figure 2-7,

where w o is related to the stagnation enthalpy h o of
the relative flow by equation (2-21).

The design of axial-flow cascades is described

first for a compressor cascade with an inlet flow

coefficient of 0.68 (with zero absolute prerotation

assumed) and an inlet relative Mach number w I/a
of 0.93. The flow changes through the system are

assumed to be as high as is safely compatible with
the retardation of the mean relative flow.

The first step is to determine the relative velocity

diagram, which differs for compressible fluids from

that for incompressible fluids because the

meridional velocity component varies with the

specific volume v. The following demonstration is

simplified by assuming that the width of the flow
field normal to the plane of flow is constant. Under

this assumption, the axial component I'm is
proportional to the specific volume, that is,

V m v/v o v

Win,1 Ul /v o Vl
(3-41)

The curve ABD in figure 3-25 is derived under

this assumption, by using figure 2-7 with V� V o =

w I/w o = 0.38. Point B of this curve, marking the

end of retardation under the assumption of no
blockage of any type, is determined by a lower limit

for w2/w I , which is here assumed to be 0.66. The
horizontal distance between A and B is the

circumferential deflection Aw U that can be
achieved under the assumptions w2/w I =0.66 and

w l/w o =0.38, equivalent to a relative inlet Mach

number M 1,re! = 0.93.
It is evident that, for the same retardation

w2/w l, a substantially higher circumferential

deflection zaWu, C could be achieved with an
incompressible fluid, where the end point C of the

deflection is determined by Vm, 2 = Vm, 1 . Inversely,

under the assumption of the deflection AWu, C
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Figure 3-25.-Design of axial-flow cascade for inlet Mach number of 0.93, equivalent to wtlwo=0.38. CL,1=0.407;

CL, oo = O. 582.

achievable with incompressible flow, the

retardation W2,D/W 1 has a much lower value than
for incompressible flow, which leads to the

probability of stall under the influence of increased
compressibility. Furthermore the deflection angle 0

in figure 3-25 diminishes under the influence of

compressibility: Oc > 0o > 0 B.

The end point B may be shifted under the

influence of blockage by vane thickness and fluid

friction to point B", the end point of the discharge
vector w_. This discharge vector w_' and the inlet

vector w 1 permit the construction of an approx-
imate vane shape according to the method

presented in section 3.2.2 and figure 3-1, except for

the fact that the point of intersection between the

zero-lift direction (determined by incompressible

flow considerations) and the mean camber line

cannot be expected to have the location suggested

by figure 2-28. (Apparently compressibility shifts
this point toward or beyond the leading edge.)

However, the rule suggested by equation (3-1)

regarding the vane distance dl gains in importance

for inlet flow approaching the critical (acoustic)
velocity. Choking in the vane passage can be

prevented by making the normal, inlet vane

distance d larger than suggested by the flow in front

of the system, that is, for d=t cos _1,

d I >d (3-42)

where d 1 is the minimum normal distance between
the vanes. This rule is obviously to be modified if

the channel width normal to the plane of flow

shown in figures 3-1 and 3-25 is not constant, since

only flow cross-section areas, not vane distances as
such, are of importance in this one-dimensional
consideration.

The mean streamline method should be expected

to offer, and does offer, a better approximation for

the design of cascades for compressible fluids than

the first approximation presented in section 3.2.2.

The vane design shown in figure 3-25 is carried out

by the mean streamline method, by using figure 2-7

for compressibility effects.
The assumed vane pressure distribution diagram

is shown in solid lines on the right side in figure

3-25; the pressures are replaced by the local

enthalpy of the gas in order to obtain the same

simple relation between this diagram and the
velocities as used for incompressible fluids

(Bernoulli's eq. (2-20)). Since this vane layout is
intended for a fairly high, subsonic inlet Mach
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number (wl/Wo=0.38, M 1 =0.93), one is

interested in minimizing the local enthalpy
reduction and the corresponding velocity increase at

the low-pressure side of the vanes. For the assumed

enthalpy distribution diagram, 2go(hi -hmin)/w2
is chosen to be 0.16, which corresponds to

approximately sonic flow at the vane surface. (It is,

of course, recognized that the actual maximum

velocity is somewhat higher.) The mean enthalpy
change (dash-dot curve) is drawn by eye from its

, 2minimum value ho -(wl) /2g o to its maximum

value h 2 = h o - w2/2go, where w[/w o = 0.39 takes
into account an estimated vane blockage effect at

the leading edges of the vanes (point A" of the
velocity diagram). The enthalpy distribution along

the low-pressure side is approximated by a smooth

(solid) curve from its assumed minimum value to

the discharge enthalpy h 2. On the high-pressure
side, the enthalpy is assumed to rise above the mean

stream value half as much as the enthalpy drops on

the low-pressure side, the value for the latter being
given by the distance between the dash-dot mean

enthalpy curve and the solid enthalpy curve along

the low-pressure side.
The enthaipy distribution over the vane should

now be converted into a pressure distribution in
order to obtain the vane force distribution which

determines the steps in the change in the peripheral

velocity that are needed to find the intermediate

mean velocity vectors and thereby the mean

streamline. The relation between the enthalpy (as
defined in sec. 2.4) and the pressure is (for constant

specific heat Cp and isentropic conditions)

] (3-43)

where 3, is the familiar ratio of specific heats. (For

air at or below room temperatures, 3' is 1.40, and it
drops only to 1.38 at 1000 ° R.) The subscript o

refers to the stagnation conditions except in

connection with the velocity wo, where it is defined
by equation (2-21).

With the definitions for the enthalpy h

introduced in section 2.4, equation (3-43) can be
converted to the form

and with Ah=h o-h and Ap=po--p,

Ah _jv/('_ - t)l - v- = 1 - Ap (3-44)
no / Po

For subsonic and sonic relative inflow velocities,

Ah/h o lies below 0.2, which suggests expansion of

the left side into a power series. Neglecting powers

of zah/h o in excess of 2, one finds with 7 = 1.4 and,

therefore, 3,/(3, - 1) = 3.5

( Ah +4.37(Ah)2AP)= 1--3.51-Fo

Ah( 25Ah)=1-3.5_o l-1. ho

Hence

=3.5Ah(1--1 25
poAP ho \ . Ahho) (3-45)

For the conditions shown in figure 3-25, the

factor 1 - 1.25 Ah/ho does not vary by more than

about 10 percent due to the enthalpy differences

across the blades. For cases of this type (subsonic
up to sonic inflow and velocity changes within the
rule w2/w I -_0.6), one can, therefore, calculate the

steps in the peripheral velocity changes under the
assumption that

Ap _h
-- =constant x -- (3-46)
Po ho

so that the conversion of the enthalpy distribution
into a pressure distribution is unnecessary; that is,

the steps in velocity can be derived from the

dimensionless enthalpy differences across the blade

(Ah/(ho-hl)=O.197, 0.350, 0.586, 0.597, and

0.303) rather than from corresponding pressure

differences. The steps so determined do not depart

more than about + 5 percent from the steps derived

from a pressure distribution; this agreement is well
within the accuracy of procedure justified for the

mean streamline method. The sum of all velocity

steps is, of course, adjusted so as to agree with the

prescribed total change Aw U in peripheral velocity.

The mean velocity curve in the velocity vector
diagram is somewhat more difficult to estimate for
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compressiblefluidsthanfor incompressiblefluids.
Onemustconsiderthatthedeviationof themean

velocitycurvefromthebaselineAB (whichapplies
to zeroblockageof anykind)involvesnotonlythe
blockageeffectbytheboundarylayers(dashed)and
bythevanethicknessbutalsoanincreasein Vrn due

to further expansion of the gas resulting from the

increase in velocity caused by the blockage. The

estimate of at least the maximum height of the

mean velocity curve above the no-blockage line
should include this effect; that is, it should be based

on the specific volume derived by figure 2-7 from

the w/w o value of a velocity vector drawn to the

(estimated) mean velocity curve. This effect on V m
of an increase in specific volume is to be added to

the familiar effects of blockage by the boundary

layer and vane thickness.
Figure 3-25 can show, of course, only the final

result of this reiterative process. The final zero-

blockage line A'B' is based on the specific volumes

derived by figure 2-7 from the velocity vectors
drawn to the mean velocity curve, w/w o =0.390,

0.386, 0.372, 0.341, 0.287, and 0.259. One adds to

these zero-blockage V m values (curve A'B') a V m

allowance for boundary-layer displacement

thickness, which leads to the dash-dot curve. The

remaining distance 2_V m between that curve and the

mean velocity curve represents the effect of vane
thickness alone and is, therefore, used to determine
the vane thickness after the mean camber line is

determined.

The mean velocity curve so estimated and the

steps in peripheral velocity derived from the

(estimated) enthalpy distribution along the vanes
determine the end points of the mean velocity

vectors of the flow through the system. The mean

streamline is then drawn from its tangents which are

parallel to the mean velocity vectors.
To determine the deviation of the mean camber

line from the mean streamline, one must, of course,
know the vane lift coefficient. The lift coefficient

CL,1 (referred to the inlet velocity w l) is derived
from the area inside the dimensionless enthalpy

curve along the vane surface and calculated as the

arithmetic mean of the enthalpy differences across

the vane. This may be regarded as a new definition
of the lift coefficient for compressible fluids.

However, this definition is practically identical with

the conventional force definition, since it uses the

previously derived relation between enthalpy and

pressure differences in the system. The agreement
regarding the lift coefficient should be closer than

that obtained between the local enthalpy and

corresponding pressure differences, since the lift

coefficient is concerned only with the average

pressure and enthalpy difference across the vane.

(The error involves only the departures of local

enthalpy or pressure differences from the average

enthalpy or pressure difference.)
In the case shown in figure 3-25, the average of

the enthalpy differences across the vanes is

CL l =0.407, and the corresponding CL, oo is CL, I

wZ);w2=0.582. From it, one calculates the
deviation of the mean camber line from the mean

streamline. According to figure 2-33, for vane

stagger angles _3v > 50 and for unity lift coefficient

one finds /Xnl/l=O.05, and, therefore, with

CL, oo =0.582, An/l=O.0291. These values apply to
the maximum deviation of the standard NACA

65-series cascades (fig. 2-34). For the trailing-edge-
loaded vane considered here, one uses the upper

(solid) distribution curve of deviation in figure 3-7.
The maximum deviation is, thus, Anmax/l
=0.0291 × 1.54=0.0449.

The question arises of whether the dimensionless
deviations derived from cascade tests with

practically incompressible fluids apply to cascade

flow of compressible fluids. Considerations given in
section 2.4 lead one to believe that these deviations

should diminish with increasing compressibility;

however, no simple way of predicting the reduction
in deviation from the mean streamline is as yet

available.

In the absence of any rule that compares in

simplicity with the concepts underlying the mean
streamline method, the design shown in figure 3-25

uses the solid-line deviations given in figure 3-7,

which may lead for the inlet Mach number

considered here (M1 =0.93) to a slightly greater
deflection than intended. This deflection involves,

of course, the danger of greater retardation and
stall. A reduction in deviation by some unknown

factor (say 0.6) would reduce this danger, but, as

mentioned previously, there is as yet no simple way

of approximating such a correction.

The choice between the leading branches of the

upper deviation curve in figure 3-7 is to be made by

considering the normal vane distance between the

vanes at the inlet to the system. The uppermost of
these three branches has to be selected before the

minimum normal distance dl between the vanes is

larger than the normal distance d between two
successive stagnation streamlines ahead of the

system.
The circumferential vane thickness is r/t

=AVm/Vm, as described previously. This
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thickness is shown at a place where a certain

departure from 7 was permitted in order to obtain a
smooth vane contour.

The dash-double-dot line in the enthaipy

distribution diagram at the right side in figure 3-25

describes the mean enthalpy as derived by

Bernoulli's equation for compressible fluids (eq.

(2-20)) from the mean velocities given in the

velocity vector diagram of the same figure. The

dashed curves, describing the vane surface

enthalpy, are derived from the dash-double-dot

mean enthalpy line by using the same enthalpy

differences as previously. The enthalpy drop on the
low-pressure side of the vanes below the inlet free-

stream enthalpy (0.28 w21/2go) is greater than

originally assumed, and the extent of the supersonic

flow regime along the low-pressure side can be
estimated from the dashed enthalpy curve.

Compressor cascades with supersonic inlet

velocities can be shown, by the same method as
applied previously, to have in the supersonic

regime, and in the absence of blockage, a mean

streamline curvature opposite in direction to that in

the subsonic regime. The zero-blockage curve 12345
for an inlet Mach number M l = 1.43 is shown in

figure 3-26 and corresponds to line ABD in figure

3-25. The zero-blockage curve dips well below the

inlet velocity vector in the supersonic regime, which

indicates an increase in flow angle /3 with

diminishing velocity of the (relative) flow.

Actually supersonic flow is hardly ever retarded

continuously to the local velocity of sound a, but

changes abruptly from some supersonic velocity to

a corresponding subsonic velocity. The velocity

change across this so-called normal shock obeys the
law

ww* = a 2 (3-47)

derived in many publications on gas dynamics, for

example, reference 14 (ch. 19). In equation (3-47),
w is the velocity before and normal to the shock,

and w* is the velocity after and normal to the
shock.

For example, if the incoming velocity w I changes

by a normal shock to the correpsonding subsonic

velocity w_, the end point of the velocity vector

changes abruptly from 1 to 1" in figure 3-26. If the
flow is first retarded supersonically to a velocity

vector with end point 2, a normal shock at this

condition changes the velocity abruptly to a velocity

vector with end point 2", and so on. In the subsonic
flow regime behind such a normal shock, the

velocity changes and design procedures are the same

as described in connection with figure 3-25. Figure
3-27 shows a possible vane and flow configuration

with some supersonic compression in the inlet of the

system followed by a normal shock and some
subsonic retardation similar to the flow described

V m

U/Uo _0.235

'-Zero-blockagecurve

wU ,.

Figure 3-26. - Velocity variations at inclined supersonic and subsonic inlet to cascade.
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byfigure3-25.It shouldbeobservedthatthelow-
pressurevanesurfacebetweentheleadingedgeand
thenormalshockisslightlyconcave,incontrastto
subsonicvaneshapesbut in agreementwith the
vanesystemfor completelysupersonicflowshown
in figure2-36.Neverthelessthevaneshapesshown
in figures3-25and3-27arenotradicallydifferent
fromeachother,sothatthereishopethata vane
system designed primarily for high subsonic inlet

Mach numbers might be usable also for supersonic

inflow, particularly if designed with a very thin and
almost uncambered leading portion.

Configurations such as that shown in figure 3-27

invite the question of what minimum flow

retardation ratios w2/w ] can be accepted if part of
this retardation takes place in a normal shock. Two

considerations apply to this question:
First, it has been proven that a normal shock is

necessarily connected with some losses (increases in

entropy), which have the practical effect that the

pressure rise through a shock is always less than if

the change in velocity and pressure takes place

isentropically (without losses). Figure 3-28 shows

this shock pressure ratio as a function of the Mach
number and of the dimensionless velocity V� V o or

w/w o immediately in front of the shock. For Mach

numbers that are likely to occur in compressor vane

systems in front of a shock (say M <1.45), this

pressure loss does not exceed 5 percent and is,
therefore, usually not serious. For a Mach number

of 1.3, this loss is less than 2 percent. Thus one is
tempted to regard a normal shock at moderate

supersonic Mach numbers as an efficient form of

gas compression.

Second, a normal shock, however, produces an

abrupt increase in boundary-layer thickness at the

place where the shock meets the wall, particularly if
the wall boundary layer is already thickened by a

/f -

/f_ Normal /_____.-" ,action with
r .... // \ boundary//

/ -
Figure 3-27. - Vane system with supersonic inlet•

o

oa

.u2

I 1 i I I J J
1.0 1.1 1,2 1.3 1.4 1.5 1.6

Mach number

Figure 3-28.-Ratio of pressure change across normal

shock to pressure change by isentropic compression.

supersonic retardation in front of the shock, as

shown in figure 3-27. As a consequence, further

retardation after a shock is either impossible or
must take place very gradually if separation is to be

avoided. In any event, the retardation through a

normal shock must be considered when deciding on

additional retardations before and particularly after

the shock. Unfortunately sufficient test data are not

available to predict the allowable total retardation

ratio w2/w 1 in the presence of a shock, while the

retardation ratio w/w* through the normal shock
is, of course, given by equation (3-47) if the

dimensionless velocity w/w o in front of the shock is
known.

Two final observations are in order in this

section:

(1) The relation between the mean camber line

and the zeroqift line drawn through the trailing

edge given by figure 2-28 does not hold for the vane
system developed in figure 3-25. A casual

examination of this figure indicates that this fact is

not entirely due to the effects of compressibility,

but is also due to a rather generous allowance for

boundary-layer thickness made in this design.

Furthermore the blade thickness chosen (about 7.5

percent) is perhaps a little larger than justified for a
blade of such small camber, the latter being indeed

due to compressibility effects. The comparison with

the zero-lift direction may lead one to the

conclusion that the vanes in figure 3-25 are a little
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too steep for the discharge flow requirements, that
is, the vanes may generate a somewhat greater

deflection (angle 0) than intended. Only test results

obtained with the design inlet Mach number can

answer this question. It must be considered that

compressibility takes this design method still farther

away from the NACA test data from which the

empirical elements of this method were derived,
particularly the deviation of the camber line from
the mean streamline.

(2) Compressibility effects are small for vane

systems with small changes of the mean flow

velocity. Impulse vane systems are systems of this

type. Even for the determination of the velocity

distribution across strongly curved flow passages,
compressibility is not of primary importance,

because the law of constant angular momentum is

primarily kinematic and, therefore, does not

depend on changes in fluid density. Even supersonic
flow on the inside of a curved passage does not lead
to difficulties until the local Mach number is

sufficiently high to generate a strong normal shock
as the local flow is retarded toward subsonic

velocities.

Only if one desires to obtain streamlines is it

necessary to derive a curve of mass flow per unit

area from the velocity distribution curve by means

of figure 2-7. The area under the mass flow curve is

divided into equal parts to determine the points of
intersection of the streamlines with the flow cross

section considered, as described previously in
section 3.2.5.

It is of practical interest that the design of

impulse or near-impulse vane systems is actually
aided by the effects of compressibility. Recall that it

is desirable to have at midturn a larger flow cross

section and lower mean velocity than at inlet and/or

discharge in order to minimize the velocity excess

on the convex wall. Also recall that this arrange-

ment is in conflict with vane thickness require-
ments. However, at high subsonic Mach numbers, a

fairly small increase in cross-sectional area leads to

a fairly substantial reduction in mean velocity

because of the velocity effect on the specific volume

(fig. 2-7), and the previously mentioned design
problem is eased considerably.

3.2.8 Summary of Cascade Design

The following items summarize the foregoing
considerations on the fluid mechanics of vane

system or cascade design. These considerations deal

with the flow within given cylindrical sections

through axial-flow turbomachines for prescribed

inlet and discharge velocity diagrams. The main

emphasis is placed on the design of pump and

compressor vane systems. However, the principles
of designing axial-flow turbine vane systems on the
same basis are included. Considerations deter-

mining the inlet and discharge velocity diagrams are
presented in section 3.3.

(1) The methods of cascade design outlined in

section 3.2 deal with the design of an entire cascade

as a unit (vane shape, solidity, and stagger) from

the inlet and discharge velocity diagrams, in
contrast to the more conventional methods of

composing cascades out of vane sections of various

given shapes (see refs. 6, 16 to 18, and 54).

(2) The solidity l/t, the lift coefficient CL._, and
the given velocities are related by equation (2-54),

and the maximum lift coefficient is given

approximately by the ratio of retardation V2/V 1 or
w2/w 1 , as shown in figures 2-26 and 3-17.

(3) A first approximation of pump or compressor

cascade design is obtained according to figure 3-1,

where the inlet portion of the vane is approximately

parallel to the inlet velocity vector w I ; the discharge
portion of the vane is related to the zero-lift

direction as shown by figures 3-1 and 2-28. The

zero-lift direction is related to the discharge velocity

w 2 according to figures 2-18, 2-19, and 3-1, and

the minimum normal vane distance is dl ->tcos _31.

(4) Strongly curved vane systems of high solidity
can be developed or improved through the stream-

curvature method, by determining the velocity
distribution in the curved passage in the first
approximation from the radii of curvature of the

passage walls according to the law of constant

angular momentum (eqs. (3-30) and (3-31) and

figs. 3-4, 3-9, and 3-10). A better approximation

can be obtained by considering also the curvature of

intermediate streamlines according to figures 3-11
to 3-14.

(5) The shape of the mean camber line can be

determined by the mean streamline method as
follows:

(a) The mean streamline is derived from an

assumed distribution of vane pressure difference
and an assumed distribution of vane and boundary-

layer blockage. The former determines progressive

changes of the mean peripheral relative velocity,

and the latter progressive changes of the mean

meridional velocity through the system (see figs.

2-31, 3-6, 3-8, and others). The vane pressure

distribution is estimated from the prescribed
minimum pressure or maximum velocity along the

224



vane and from the discharge (relative) velocity w2

and pressure ,o2 . The lift coefficient is derived from

the area inside the vane pressure distribution curve
so determined, and from it the solidity of the vane

system (eq. (2-54)) is found. Instead of using this

procedure, one can determine the lift coefficient
from the ratio of retardation (figs. 2-26 and 3-17)

and from it the vane pressure diagram, by assuming

the distribution of the pressure difference.

(b) The dimensionless normal deviations An of
the mean camber line from the mean streamline are

derived from NACA cascade test results and are

represented in figures 2-33, 2-34, and 3-7. The

dimensionless deviation ( ,Snj/Dmax in figure 2-33

refers to unity lift coefficient (CL, oo= 1) and to the
maximum deviation of the standard NACA

65-series cascades. The general deviation An/l is

proportional to CL,oo.
Cascade shapes of high solidity derived by the

mean streamline method should be checked by

means of the zero-lift direction (figs. 2-18, 2-19,

and 2-28) and the one-dimensional condition of

continuity relative to the inlet and discharge normal

vane distances d I and d 2 and the corresponding

relative velocities w I and w 2 . These conditions need
to be satisfied only approximately.

(6) The design of the higher stages of multistage
axial-flow pumps (fig. 1-39) must consider rotor

and stator vane systems together. The primary

criterion of the velocity diagrams is the retardation

ratio V2/V l and w2/w I of stator and rotor,

respectively (fig. 3-16). The predominantly used

symmetrical stage (figs. 3-15(a) and 3-18) is not the

only configuration to be considered, and it is very

nearly the least favorable with respect to flow
retardation.

The flow coefficient I/m/U of the higher stages
must be derived from the flow coefficient of the

first (inducer) stage, which is determined by
cavitation considerations (fig. 1-18).

(7) The design methods just listed are directly

applicable to compressible fluids at flow velocities

up to Mach 1, provided the volume flow rate is
corrected for changes in the specific volume

according to figure 2-7 (which applies to air at

moderate temperatures). The subscript o applies to

the stagnation conditions, except in V o and w o,
which are the fictitious velocities achieved by ideal-

flow expansion to zero pressure and zero absolute

temperature. Figure 3-25 shows cascade design for

high subsonic velocities by the mean streamline

method for constant width normal to the plane of

flow, where the meridional velocity V m changes

§3.2.8-3.3.1

proportionally to the specific volume ratio V/Vo.
Compressibility leads to a reduced deflection z_w U

or 0 (in fig. 3-25) for a given ratio of retardation

w2/w 1, or to a reduced (more severe) ratio of

retardation for a given deflection Aw U or 0. The

pressure distribution along the blades can be

replaced by the enthalpy distribution.
With supersonic flow at the cascade inlet, the

velocity changes abruptly (by normal shock) from

supersonic to subsonic according to equation

(3-47). Velocity changes in the supersonic flow

regime are handled as outlined in section 2.5 in

connection with figures 2-36 and 2-37 (see also fig.

3-27}. Changes after the normal shock are handled

like changes after a subsonic inlet (fig. 3-25), except
that retardations after a normal shock must be very
conservative.

The retardation by a normal shock must be

counted when considering lower limits of the ratio
of retardation, but these limits are not known

quantitatively for flow with a normal shock.

(8) The deviations of the camber line from the

mean streamline are probably lower for high

subsonic velocities than for low velocities, where

the fluid is practically incompressible, but the
amount of this reduction in deviation is not known.

The deviations derived from cascade tests at low

Mach numbers cannot be expected to apply to

supersonic relative flow.

3.3 Three-Dimensional Aspects of

Axial-Flow Turbomachinery Design

3.3.1 Geometric and Mechanical Blade Design

Aspects of Axial-Flow Pump Rotors

The preceding section 3.2 describes the hydro-

dynamic or gas-dynamic design of cylindrical flow

sections through axial-flow vane systems. These
flow sections do not determine the three-

dimensional vane or blade shape uniquely. This
section describes how the three-dimensional vane or

blade shape can be derived from the cylindrical flow

sections on the basis of geometric and mechanical

design considerations. These considerations are

essentially the same for axial-flow turbines as for

pumps or compressors, but are discussed in this
section primarily with respect to axial-flow pumps.

Figures 3-6 and 3-8 show the tip and root

sections of an axial-flow pump system. Two

cylindrical sections are generally not sufficient to
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describea system with a hub-tip diameter ratio of

0.5 (see fig. 3-5). A third cylindrical flow section at

the radius r=0.75 r o is shown in figure 3-29; this
section is developed by the same mean streamline
method and for the same flow conditions as the

sections in figures 3-6 and 3-8. On the left side in

figure 3-29, only the mean streamline and the

resulting mean camber line of the blade section are

shown. The corresponding blade section is shown

on the right side.

The blade or cascade sections shown in figures

3-6, 3-8, and 3-29 are so far completely dimen-
sionless. The dimensions shown in these three

figures bear no meaningful relation to each other,

nor to any additional physical condition that may
apply•

If all cascades shown in figures 3-6, 3-8, and

3-29 belong to the same axial-flow (rotor) system,

the first condition to be satisfied is obviously that
the circumferential vane spacing t be proportional

to the radius r of the cylindrical flow section
considered, that is,

27rr = Nt (3-48)

where N is the number of vanes and has, therefore,

the same integer value for all cylindrical flow

sections of one system. Thus equation (3-48) settles
the scale of figures 3-6, 3-8, and 3-29 relative to

each other, but not in any absolute sense.
The next question to be answered is how should

the various cylindrical vane sections be located
relative to each other in the circumferential and
axial flow directions.

The mechanical answer is the following: if

centrifugal forces are not to exert any bending

moments on the blades, the centers of gravity of the

cylindrical vane sections (including the effect of
internal voids) should fall on one line which is
radial and normal to the axis of rotation.

The hydrodynamic or aerodynamic answer is the

following: if the blade forces are to be purely
circumferential and axial so as to have no effect on

the meridional flow, the centers of gravity of the

hydrodynamic or aerodynamic blade forces of the

various cylindrical blade sections should fall on a
radial line normal to the axis of rotation.

Figure 3-30 shows the blade sections of figures
3-6, 3-8, and 3-29 brought to a compatible scale

according to equation (3-48) and stacked up so that

the centers of vane pressure fall approximately

along one radial line represented by point O in this
figure. The hydrodynamic condition satisfied here

is not in major conflict with the previously stated
mechanical requirement. The blade sections shown
as dashed lines are discussed later.

The foregoing considerations and equation

(3-48) can be satisfied by any whole number of

blades N as long as this number is the same for all
coaxial, cylindrical blade sections. The dimensions

of the cylindrical blade sections in relation to the

radial dimensions of the rotor must be determined

by the allowable blade bending stress in relation to

the hydrodynamic or aerodynamic blade load. The
proper starting point for this consideration is the

stress specific speed presented in sections 1.2.3 and

1.3.3.2, particularly in the form of equations (1-64)

and (1-66). These equations relate the stress specific
speed

e_ , c / , =._

f k.._'w¢/./'3.b." i \ _ / ./ X -
W -, _./." / . _ E

• 7" ;"->'/"...."w "-nF,71LW / / /" _ ', \ I o_.. :._ ./:-.-_ oo-.... a . -/ / / _ k . i J 4 _'_

..... ._" . _ - - w_=O.791. '_ _ ...--/"/ .-_ / \ ', I l _ "-
;-_'> _ 7_--'Y ',._ . ,." Vm =U.L) / / -/ / \ \ I I u

_.__::;_7, Camoerllne '" /" ...e'- J- / ', \ I m ,,*_
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Figure 3-29.-Design of cylindrical midsection r10.75 ro. CL,_=0.56; t/1=0,68. (See also figs. 3-6 and
3-8. )
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Board

section

A ,_

-5o Radial section

B B

200 Radial section a
tl

10° Radial section

Figure 3-30.-Stacked view of cylindrical blade sections from figures 3-6, 3-8, and 3-29. Dashed lines indi-

cate approximate sections, O. 1 r removed from r o, 3/4 ro, and 1/2 r o sections (solid lines), derived by inlet and discharge

flow angles only.

to the stress parameters

(1-66)

Ofw 2 _ q ms (1-113)
2of C L b21

and

U 2
=q_..2_9_._ ms

2af CL w 2 b21
(1-114)

where the subscript f denotes fluid, w is the fluid

velocity relative to the blade, related to the blade

force by the lift coefficient C L (i.e., w I is used with

CL,I, and woo with CL,_), ms is the section
modulus of the blade root section, referred to an
axis normal to the resultant blade force, b is the

blade span (the radial blade length), and l is the

chord length. The constant q is 2 for blades

cantilevered from the root section, such as those

usually used for axial-flow rotors.
The blade section at half the outside radius,

shown in figure 3-8, is considered here to be the
root section in the mechanical sense. The scheme

for determining the section moment of inertia and

thereby the section modulus m s , shown in figure
3-31, is to use a bending axis parallel to the baseline

(or chord) of the section. The moment of inertia so

determined is probably close to the minimum
moment of inertia of this section.

The exact determination of the bending moment

acting on this section is somewhat complicated
because of the twisted shape of the blade and the

nonuniformity of the load distribution. However,

an exact determination would not be justified

because of the uncertainty of the allowable steady

bending stress, which is known to be only part of

the total bending stress.
The following simple determination of the

number of vanes is based on equation (1-113),
which is derived in section 1.3.3.2; it avoids most of

the aforementioned complications by using for the
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/

Neutral

axis

Figure 3-31.-Determination of moment of inertia of
blade root section.

relative velocity w and the lift coefficient C L some
reasonable average values of these variables for the

entire blade. Furthermore, one may use for the

chord length 1 the chord length of the root section

rather than some average value of the entire blade

since the length does not vary dramatically with the
radial extent of the blade. The use of the root chord

length leads to a very desirable simplification.

Calculation of the root section modulus, by using
the approximation illustrated in figure 3-31, leads

to the following dimensionless expression:

ms 1.3

l 3 1000
(3-49)

Equation (1-113) can, of course, be converted
(with q = 2) into the form

_ 2 m s 12
2of CL 13 b2 (3-50)

For the vane system considered here, one can use

the lift coefficient CL, oo =0.56 (see fig. 3-29) of the

midsection r=0.75 ro, which must be associated
with the mean relative velocity w=woo of that
section. Thus equation (3-50) can be written

Ojw 2 - 2 1.3 l 2

2of 0.56 103 b 2

For liquids having approximately the density of

water, one can use for the fluid density

Of=2 _/\ ft /

The allowable stress of the blade material should be

estimated conservatively, since the most destructive
vibratory stresses are not included. It is assumed
that

of=8000 lb =1.152×106 lb
in ._ ft_ (3-51 )

Finally, it is assumed that the representative

mean relative velocity woo,a v is 100 feet per second,
somewhat higher than the mean relative velocity of
the r=0.75 ro section in order to carry out the load

averaging process in the most probable manner.

(This writer would estimate that woo,a v should be
assumed to be between 1.1 and 1.2 times the

vectorial mean woo of the r = 0.75 ro section.) With
the foregoing assumptions, one finds

O/-w2 _ 2 X 104 1
- (3-52)

2of 2×1.152x106 115.2

and, according to equation (3-50),

l 2 103 0.56

b 2 ! 15.2 2.6
- 1.86

or

l
= 1.37 (3-53)

At the root section (fig. 3-8), 1/t=2.155. Fur-

thermore, according to figure 3-5,

b = ro - rroot = ro - O.5r o = O.5 ro (3-54)

and t=(2rro)(O.5)/N , where N is the number of

vanes, so that

1=2.155t =2.155 7rr°
N (3-55)
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Substituting equations (3-54) and (3-55) into

equation (3-53) yields

2.155 7r
1.37 -

0.5N

or

2.155 rr
N= - 10 (3-56)

1.37×0.5

Equation (3-56) indicates that 10 vanes satisfy the

foregoing assumption about the steady bending
stress in the root section of the blade. It must be

remembered that, according to the suggestion made

in reference 55, an equal vibratory stress should be

assumed, which should be combined (at right

angles) with the steady-state stress in a modified

Goodman diagram (fig. 31 of ref. 55).

In the rocket pump field, much higher fluid

velocities than wo_,av = 100 feet per second may be

employed. The stresses increase with the square of
the velocities, just like the head or pressure
differences in the machine.

According to equation (3-50), the fluid-induced

bending stress af increases proportionally to the
square of the aspect (span-chord) ratio b/l of the
blades under otherwise similar conditions, that is,

increases proportionally to the square of the num-
ber of blades for similar cascade configurations,

specifically those with the same solidity of the

system and similar blade shapes in cylindrical
sections.

The three cylindrical blade sections at ro, 0.75 r o,

and 0.5 r o shown as solid lines in figure 3-30, in the

relative locations given in that figure, determine the

vane surfaces by three points along other sections

through the vanes and smooth curves drawn

through these points, as further explained later in
this section. The sections A-A, B-B, C-C, D-D, and

E-E normal to the axis of rotation (so-called board

sections) and four radial and axial sections at 20 °,
10", 0", and -5 ° from the chosen radial axis (O) of

the vane were selected for this purpose. The

resulting radial and board sections are shown in

figure 3-32.
Three points can always be satisfied by a smooth

curve with a single curvature. However, the blade

surface so determined may not be the hydro-

dynamically correct vane shape, since certain
hydrodynamic conditions have to be satisfied at

cylindrical sections between those at r o, 0.75 r o,

and 0.5 r o . The most straightforward way to satisfy

these conditions is, of course, to develop

hydrodynamically additional cylindrical vane
sections between the three sections chosen here.

Aside from the additional work involved, this

method requires a very consistent choice of design

parameters (particularly the solidity l/t and the

Sections normal to axis ol rotation (board sections)

200 10 o
10o 0° -50 -- , 0 -o Radial

_oo '_ I _ _ ,._ }b_ section E

___._r ° 4--_ , I
!

--3,4ro_ ,

i/ " o

Conical section X-Y Radial sections

D C B A

-5oi

Figure 3-32. - Three-dimensional layout of axial-flo w pump rotor.

__. _ 314 r o

1/2 r 0
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vane thickness) for the intermediate sections in

order to achieve reasonably smooth, three-
dimensional vane surfaces. Because this method is

difficult and time consuming, an alternative

method of vane surface determination is employed
here.

From the existing three cylindrical vane sections,

three additional vane sections 0.10 r away from

these sections are developed by swinging the leading
part of the vane about point O (in fig. 3-30)

according to the change in the inlet flow angle and

the trailing part of the vane about point O

according to the change in the discharge flow angle.

In other words, the differences between the inlet

and discharge flow angles and the vane surface

angles along the respective parts of the cylindrical
vane sections are kept constant. The inlet and

discharge vane edges are assumed to lie on smooth

curves drawn through the same vane edges of the

existing three vane sections, and the resulting vane

sections are corrected to have continuous, smooth
contours.

The sections so developed (dashed lines in fig.
3-30) are not treated as equivalent to the three

primary vane sections (solid lines), but are used

only to obtain an approximation for the tangents to
the radial sections and the board sections at the

points determined by the three primary cylindrical

sections. This approach is particularly helpful for

the inward extrapolation of the radial and the board

sections from the r=0.5 ro section toward the

conical hub. However, the continuity and
smoothness of the derived radial and board section

lines (fig. 3-32) take precedence over the direction

of these curves as determined by the auxiliary

section shown by dashed lines in figure 3-30.
The extrapolation of the radial sections and

board sections toward the hub permits the

construction of a conical section X-Y (fig. 3-32),

approximately parallel to the hub, placed outside
the fillet between the vane and the hub. This section

is also a flow section of the vane and must,

therefore, have a hydrodynamically acceptable,

smooth contour. The direction of its inlet portion is
determined by the inlet velocity diagram which can

be constructed for the leading edge of this section.

The same is true to a somewhat lesser degree for the

trailing edge. Attention must be paid to the obvious

requirement that all sections through the vane

surface must be geometrically compatible with each
other.

The contours of the board sections and radial

sections in figure 3-32 are called fairing lines, and

the geometric process of obtaining smooth vane

surfaces by means of these lines is known as fairing.
The board sections owe this name to the fact that

these sections determine the contours of the boards

normal to the axis of rotation from which a wooden

rotor of this form, or a pattern (core box) for its
production as a casting, can be made.

Since centrifugal forces are radial, such forces

generate bending stresses in vane sections in planes

normal to the axis of rotation that are not straight

and radial, whereas with radial and straight vane

sections in such planes, a centrifugal force field

generates practically pure tension in the rotor
vanes. For this reason, the vane sections A-A, B-B,

D-D, and E-E in figure 3-32 are not particularly

favorable with respect to centrifugal forces. This is

not serious for the liquid-handling rotors
considered here because the bending stresses

generated by circumferential hydrodynamic forces

usually dominate over the centrifugal stresses (see

ch.1, sec. 1.3.3.2). For gas-handling rotors, the
circumferential and axial extent of the blades is

greatly reduced because of the relatively smaller

bending loads; this reduction permits much greater
aspect ratios b/l, that is, the use of a larger number

of radially more slender blades. This change greatly

reduces the curvature of blade sections in planes

normal to the axis of rotation. This design problem
is serious in connection with liquid hydrogen, where

bending and centrifugal forces may be of equal

importance. This problem is discussed further in
section 3.4.

The circumferential overlapping of blades is

shown most clearly in the cylindrical sections at r o
(fig. 3-6), 0.75 r o (fig. 3-29), and 0.5 ro (fig. 3-8).

3.3.2 Hydrodynamic Effects of Inclination of

Vanes Against Radial Direction

The vane or blade layout described in section

3.3.1 is based on the assumption that the stacking

axis O of the vane, shown in figure 3-30, is straight,
radial, and normal to the axial direction. Since this

axis is chosen to coincide with the centers of vane

loading, this geometric restriction causes the vane

forces to have approximately the circumferential
and axial directions, that is, the vane forces have no

significant radial component. Thus the vanes have
at most only minor effects on the meridional

velocity distribution as far as irrotational flow is
concerned.

This section discusses effects of departures from
this geometric restriction, that is, the effects of an

inclination of the vane against the radial direction.
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Thegeometriceffectof this inclinationof the
bladeaxisOisrelativelyeasytodescribe.If thisaxis
is inclinedandconceivablydeformedto becomea
simplecurve,all cylindricalvanesectionsare
displacedinthecircumferentialandaxialdirections
as longaspointO, wherethis axispierceseach
cylindricalsection,retainsitspositionrelativetothe
vanesection,andthevanesectiondoesnotchange
its orientationrelativeto the axialand circum-
ferentialdirections.Theboardsectionsandradial
sections,of course,changeaccordingtotheshifting
of thecylindricalsections.

However,theinclinationof theaxisthroughthe
centersof pressureof thevariouscylindricalvane
sectionsaffectsthe flow, as indicatedin section
2.7.6,becausethisaxisof thevaneactionisabound
vortexline(explainedin sec.2.7.6).In thepresent
case,theentirevaneactionisrepresentedbyone
vortexline,theaxisof thevane,whereas,insection
2.7.6,thevaneactionisrepresentedbyanumberof
boundvortex lines to obtain a moregeneral
representationof thetruephysicalconditions.

Figure3-33isanattemptto representtheaction
of aninclinedvaneinanaxial-flowsystembysuch
a singlevortexline.Thesameschemecouldalso
representpartof thevaneaction,asdescribedin
section2.7.6,butthisrefinementisnotconsidered
here.

Somewhatarbitrarilytheinclinationof thevane
is hereassumedto fall approximatelywithin the
planeof thevane,althoughit is recognizedfully
thataturbomachineryvaneisnotaplanebutmore
nearlyahelicalsurface.Inclinationin thedirection
describedmayproperlybecalledsweep,ananalogy
to the sweepof airplanewings.An inclination
normalto theplaneof thevaneis calledtilt. Its
hydrodynamiceffectsare also coveredby the
considerationsin theparagraphsthatfollow,and
itsmechanicalsignificanceisdiscussedattheendof
thissection.

Figure3-33showsthat, insteadof beingradial
andnormaltotheaxisof rotation,asislineAB,the
centerlineXYof thevaneisinclinedagainsttheline
ABbyanangleof skewX,asseeninaplanenormal
to theaxisof rotation(sketchat left in fig. 3-33),
andbyanangleof rake¢, asseeninanaxialand
radialplane(sketchatlowerrightin fig.3-33).Asa
consequence,the boundvanevorticitywhichis
parallelto the inclinedcenterlineof thevanehas
three components:the radial componentg'r,
representingthe usualvanevorticity,that is, the
vaneturningactionseenin coaxial,cylindrical
surfacessuchassectionN-Mwith radiusr (sketch

at upper right in fig. 3-33), the axial component _'z,

representing the vane vorticity seen in planes
normal to the axis of rotation (sketch at left in fig.

r° \\" _ xx\ 0 // r'7
- rh Tt7 -

+z_

Vz =Vm

SectionN-M(radiusr)

, i---c/H/;
t = rOt

o_ _Vu] ' /
_/_z_ t_J_ t

_/_ Rotation

_,-..,_,-..._\_.\\-..'_'_.-.... B I y\\. -..-_.

l N / ,Ol_/r i_/ M |

A,r --- _O--_"_-t -r r° rh /
/ r7 /

r ' T 7;,,?,,7//_/_//_// _iAlllll,.tll/ ro

I r2 r

J _
Figure 3-33. - Pump rotor vane with backward skew X and rake _.
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3-33), and the circumferentialcomponent_'u,
representingthevanevorticityseenin anaxialand
radialplane(sketchatlowerrightin fig.3-33).

Theradialcomponent_'risthevanevorticitythat
oneisaccustomedto dealingwithinanyaxial-flow
vanesystem,includingthecaseof zeroskewand
rake. It is relatedto the changein angular
momentumacrossthe vanesystemseenin the
cylindricalsectionwith radius r according to

equations (2-A-31) of appendix 2-A:

ore ov z
_r = OZ r O0

where the x-direction of equations (2-A-31) is here
assumed to be circumferential, so that dx=r dO,

and the y-direction of equations (2-A-31) is now

the radial direction. For reasons of axial symmetry,

OVz/r dO=O, so that

OVu (3-57)
_r- Oz

An average value of _'r is by definition constant

over any axial distance 2Az over which the vane

action is assumed to take place (say the axial extent
of the vane system). Hence

_'r 2_z=AVu= VU,2 - VU, I (3-58)

or for axial flow with r = constant,

fr 2_ r=r AVu =r( Vu,2 - VU, 1) (3 -59)

which is the familiar change in angular momentum

appearing in Euler's turbomachinery momentum

equation (see sec. 2.3).

The axial vorticity component _'z has an almost

trivially simple significance, which becomes

immediately clear by traversing the inclined vane

system radially from B to A. At B, that is, in front

of the vane system, the angular momentum is

Vu,1, o ro, and at A, behind the vane system, it is
Vu,2, h r h. According to equation (2-A-29) of
appendix 2-A,

10(rVv)
_-

r Or

_zrav Ar = A(rVu) = r2 VU, 2 - r I VU, l (3-60)

In order to have the bound vane vorticity with the

components fr, _'z, and _'u be the only vorticity
considered, one must assume the flow in front of as

well as behind the vane system to be irrotational,

that is,

rl VU, 1 = constant = rVu, 1

r 2 VU, 2 = constant = rVu, 2

(3-61)

Furthermore it is reasonable to assume ray = r, that

is, r as shown in figure 3-33 is an average of rl and

r 2. With the last conclusion and equations (3-61),
equation (3-60) can be written in the form

fzAr= VU, 2 - VU, 1 (3-62)

Dividing equations (3-58) and (3-62) and
considering that, according to figure 3-33,

fz/fr --tan¢--2Az/Ar (approximately), one sees
that equations (3-58) and (3-62) are completely

equivalent, so that the introduction of the axial

vorticity component does not express any new facts

beyond those expressed by the usual turbo-

machinery equations when applied to a vane system

inclined against a plane AB normal to the axis of
rotation by the rake angle ,#.

The situation is different with respect to the
circumferential inclination of the vanes, called

skew. With skew, the circumferential vorticity

component _'u is normal to the radial and axial
plane and thus innoduces vorticity, that is,

departures from the potential flow pattern, into the

meridional flow. For example, the meridional

velocity distribution between a cylindrical hub and
a coaxial, cylindrical outer shell is not uniform

under the influence of skewed (i.e., circum-

ferentially inclined) vanes.

and, if _'z is assumed to be a constant, average
vorticity over the radial extent of the vane system Ar

along the plane AB,
It is evident from figure 3-33 that the skew-

induced vorticity of the meridional flow is _-u
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=_'r tan X. This vorticity extends over the cir-

cumferential projection of the vanes, as shown in

the sketch at the right in figure 3-33. For the axial

symmetry assumed here, every vortex line of this
flow field is a circle about the axis of rotation of the

vane system. The flow generated by this system of

ring vortices constitutes the skew-induced departure

of the meridional flow from a straight and uniform
axial flow between two coaxial cylinders with the

radii ro and rh. An exact determination of this

departure from the potential meridional flow would

be too complex for practical procedures of

preliminary design, not only because there are

difficulties in solving a flow problem with vorticity

prescribed over a part of the flow field, but also

because the flow field to be determined is not plane
but symmetrically distributed about an axis of

revolution with coaxial, cylindrical flow bound-
aries.

One simplification is suggested immediately from

the previously introduced model describing the vane
action by a single bound vortex located at the axis

of the vane. When combining this model with the

assumption of axial symmetry, one arrives at the

assumption that the vane action is concentrated at a

conical vortex sheet XY in figure 3-33 (sketch at
lower right).

Even this model still poses a formidable flow

problem, namely, that of the flow induced by a
conical, or perhaps flat, vortex sheet normal to the

axis of rotation, in which the vortex lines are
concentric circles about the axis of rotation and the

flow field is bounded by two coaxial cylinders. No

general solution of this problem is known to this

writer. Even if such a solution were available, its

increased number of independent variables (rake

angle _pand radius ratio of ro/rh) would make its
application unduly complicated.

In view of this situation, the design engineer has
no other choice but to construct his own model to

obtain an approximation which is sufficiently

simple for design purposes.

The first simplification to be introduced is the

elimination of rake, that is, the elimination of the

axial inclination of the vanes shown by the angle _p

in the sketch at the lower right in figure 3-33. By
this simplification, the vortex sheet formed by the

circumferential blade vorticity component _'u
becomes a plane normal to the axis of rotation. This

change may not be too serious because the effect of

rake can probably be approximated by subjecting

the flow field obtained with the plane vortex sheet
to an axial shear deformation equal to the rake of

the actual blade. The blade configuration without

rake is shown in figure 3-34.
A more severe simplification is obtained by

converting the actual, axisymmetric arrangement to

a plane arrangement, in which the concentric,

circular vortex lines of _'u are replaced by parallel,
straight vortex lines normal to the plane of the

meridional flow. Thereby the effect of _'u on the

flow along the inner boundary with radius rh
becomes oppositely equal to its effect on the flow

along the outer boundary with radius r o . According
to figure 3-33, this situation does not conform to

the actual one. However, the simplification

achieved by this approximation is sufficient to

justify its use for the solution of the design

problems. An approximation of the effect of the

actual, axially symmetric arrangement is described
later in this section.

The scheme for the solution of the flow problem

so reduced is shown diagrammatically in figure
3-35. The vortex sheet of _'u appears as the vertical

line AB, and the radial distance r o --rh between the

-z 0 +z

,l I,

Vm p_Z__l_AZ_- _
+&Vz

_\\\\\_ F///////_ ////////A

Vortexsheet-,

Tp

ro - rh = 2yo
/

Hub i ro

/
r h

__ _____1_ _

Vm: Vz i Areaof i
---,-- circumferential:

vorticity

rh

L\\\\\'_ i

I

ro- rh = Yo ,

: iI
Figure 3-34.- Circumferential vorticity in vane system with

skew but without rake.
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flowboundariesis designated2yo. The centerline
of this flow space is the zero axis of the coordinate y

normal to the vortex sheet. This axis is parallel to
the assumed flow boundaries.

Two cross-stream coordinates x and y, normal to
the axial coordinate z, are used. The coordinate x
describes the location of the vortices distributed

along the central plane z=0, which generate the
flow field considered here. The coordinate y
describes the (radial) locations at which the axial

velocities Vz, generated by the vortex sheet at z = 0,
are determined and plotted.

The lines x=y=+Yo=COnstant and x=y
= -Yo = constant can be made flow boundaries by
reflecting the vorticity along the line AB in these

boundaries. This means that the vortices along the

line AB must be reflected by oppositely equal
vortices along the continuations of the line AB from

x=+y o to x=+3y o and from x=-y o to

x= -3yo. This reflection is repeated at x= +3yo,

x= ± 5yo, x= 4-7yo, and so on.
At every point x along the line AB and its

continuations, there exists an elementary vortex
with the circulation

_,, ) dFm < 0 +Yo

, !\ __ 3yo
\,

'\

\

\

+Yo

lYo

Figure 3-35.-Scheme for deriving changes in meridional

velocities from uorticity of meridional flow.

dI'm = + _U 2z3_Zdx (3-63)

where alternating directions of rotation are those
indicated in figure 3-36. The circulations between A

and B are assumed to be positive. The axial extent
2_z of the region having the vorticity _'u is here
assumed to be negligibly small; this assumption has

only a secondary effect on the results obtained

outside of the vorticity region with the small extent
2Az, because Az cancels out of the final relations.

According to the sketch at the upper right in
figure 3-33, it is clear that the circulation of one

vane corresponding to the radial vorticity compo-
nent _'r is

Y'U = (Vu,2 - VU,1)t=AVu rot (3-64)

and its relation to the radial vorticity component
obeys the law that the circulation is equal to the

vorticity times the area inside the contour of

circulation (see appendix 2-A):

r u = _-r2AZ re t (3-65)

As already proved from figure 3-33,

_'u = _'r tan h (3-66)

Combining equations (3-64) to (3-66) with
equation (3-63) leads to

diem = ± _'r tan h 2AZ dx

and

dr' m = + A V U tan h (ix (3-67)

where the plus or minus sign is determined by the
alternating direction of the elementary circulation,
which is assumed to be positive between A and B,

that is, for [xl < _Vo1.
The determination of the velocity vector induced

by the vortex sheet AB (and its reflections) at any

arbitrary point P between y= +Yo and y= -Yo is
illustrated in figure 3-35. Point P has the
coordinates y and z from the centerline y = 0 and the
vortex sheet AB.

The elementary velocity vector dV induced at
point P by an elementary vortex with the circulation
aT m is obviously

dV= OTto
2_rD (3-68)
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Single vortex at
reflected center --
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Figure 3-36. - Simplified solution for determination
of vorticity-induced meridional velocities.

where D is the distance of point P from the

elementary vortex, located along the vortex sheet

AB or its reflections. The vector dV is normal to D

and has the direction of the circulation dr m

(counterclockwise if positive).

From figure 3-35, the axial component of dV is

x-y

dV z=dV D (3 -69)

and the y-component is

z

dVy =dV D
(3 -70)

which cancels (by virtue of the reflections) at the

boundaries y= ±Yo, as required. Only the axial

velocity component V z is considered in the

following, because it is of primary importance for

the effect of vane skew on the meridional flow.

Combining equations (3-68) and (3-69) leads to

dF m (x-y)

dV z - 27rD 2

Evidently

D 2 = (x-y)2 + z 2

Therefore using equation (3-67) also gives

AV utanX (x-y) dx

dVz = ± 2r (x-Y) 2 +z 2 (3-71)

The integration is carried out separately for the

steps from x=-yo to x= +Yo, from x= +Yo to

x= +3y o, from x= -3y o to x=-yo, and so on,

because of the alternating signs (direction of

circulation) in these various sections. Therefore the

total effect of the vortex sheet (and reflections) on

the meridional velocity V z (see fig. 3-36) is

AVz_AVutanX[IYo (x-y)dx
27r L o -yo(x-Z_2y)2-_z2

_ I3yo (x-y)dx
d yo (x- y)2 + Z 2

+ _5Yo (X--y)dX

d3Yo (x--y) 2 +Z 2

-s s ]-yo (x-y)dx +
-3yo(X--y) 2+z 2 -Syo (x--y) 2+z 2" " "

(3-72)

This equation can be written in the form

A Vu tan X
A V z = lim 2_

p--oo

p

X E(-l)[rl _ (2r+l)y° (x-y)dx
d(2r-l)Yo (x--y) 2 +Z 2

-p

(3-72a)

where p and r are integers, such that

-p_r_p

and 2ry o is the distance of the center of the vortex

sheet AB and of its reflections from the origin

z =Y = 0; p marks the extent of the approximation

used.
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Fortunately the integral of (x-y)dx

/[(x-y) 2 +z 2] can be found in standard tables of

integrals. In section 2 (Mathematics) of Mark's
Standard Handbook for Mechanical Engineers (ref.

58), this integral appears in the form

I (m + nx)dx na + 2bx + cx 2 - _ ln(a + 2bx + cx 2 )

mc- nb _ dx

c J a + 2bx+ cX 2

The comparison with the previously mentioned

integrand shows that, in the present case, m = -y,
n=l, a=y2+z 2, b= -y, and c =l, so that n/2c

=1/2 and mc-nb=-y+y=O. Thus the present
integration is simplified to

I (x-y)dx _ l ln [(x_y)2 +z2 ] (3-73)(x-y)2 + z 2 2

where the limits of integration are those given in

equation (3-72), and the simplification Yo = 1 is
used.

In carrying out this integration, one finds that,

for Ixl > 13YoI, the solution for distributed vorticity
can hardly be distinguished from that for a single
vortex in the center of every interval with the width

2yo above the previously mentioned limits of Ixl.
The validity of this approximation is assured by

using the solution expressed by equation (3-73) in
most cases up to IxI = 15YoI, except for z = 0, where
it is carried out to Ix] = 17yo I.

The circulation of the single vortex located at the

center of every step of the length &,v=2y o is,
according to equation (2-A-27) of appendix 2-A,

F l = _u 2Az 2y o (3-74)

where _'u = G tan X, as given in figure 3-33.
The circulation per blade is, according to the

circumferential section N-M of figure 3-33,

FU=_r 2_z t=AVu t

so that _r=AVu/2,_Z. Therefore, according to
figure 3-33,

AV U
_'u = _- tan X

With the previously used simplification Yo = 1, the
circulation of every discrete vortex at the centers of

the steps 2y o is, in accordance with equation (3-74),

IF1 ] = 2AVu tan k (3-75)

The z-component of the velocity induced at y and
z by every one of these vortices can be derived from
figure 3-37:

AVz-- F l x-y _ P 1 x-y (3-76)
27rD D 27r (x-y)2+Z 2

where the alternating directions of F l must be taken
into account. Using equation (3-75) also, one
obtains for the z-components of the velocities
induced by all discrete vortices along the axis z = 0

,  xvz _ -y
A V U tan X y2 + Z 2

2y o -y -2y o -y

(2y ° _y)2 +Z 2 (_2y ° _y)2 +Z 2

4y o --y --4y o --y
+ -t ... (3-77)

(4y ° _y)2 + Z2 ( _ 4y ° _y)2 + 7.2

This equation can be written in the form

p

v.rAVZtan_, - lim _(- 1)lklA -t_ p- -p

2ky o -y
x (3-77a)

(2ky ° _y)2 + z 2

where p and k are integers, such that

-p<k<p

and 2ky o is the distance of each vortex (approx-

imating a vortex sheet of length 2Yo) from the
origin z =y = 0. As previously, p marks the extent

of the approximation used, and where the
summation is to be carried out for the vortices

located at x=(0), (±2yo), (±4Yo), +6y o,
+ 8yo .... 4-2ky o .... ±2py o. The parentheses
indicate that in these steps the discrete vortex
solution is usually not used to replace the solution

with distributed vorticity. The direction of vorticity
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isassumedto bepositivebetweenA andBinfigures
3-35and 3-37andto alternateaftereverystep
Ax= ±2y o .

The complete solution described here obviously
has the form

27r ,AVz

A Vu tan X

_I (2r+ I)Y° (x-y)dx
= (- 1)lrl "(2r (x--y)2 +z2

_p - 1)y o

E 2ky° -Y (3-78)
+2 (_ ])lkl (2kYo-Y) 2+z2

k

where r, k, and p are integers with the same

meanings as given after equation (3-72a) and
(3-77a). The y values of interest here are those of

the physical flow field between y=-yo and
Y = +Yo, and z continues to be the axial distance
from the vortex sheet. The fact that z appears only

at its second power conforms to the physically
obvious fact that the axial flow field generated by
the vortex sheet is the same on both sides of the

vortex sheet.
The nature of the numerical solution obtained

from equation (3-78) is best described by numerical

example. Using z=0.5 and y= +Yo =1 for this
purpose, one obtains the following solutions of

equation (3-78) as a function of the number of
terms used in the second summation: For x= -5 to

+ 5 (i.e., - 2 _<p _< 2), the first term gives - 1.8932.

The following table gives the values the parameter
27r AVz/AV U tan X attains when the second term of
equation (3-78) is terminated with the listed values:

x= +6 Yo

x= -6 Yo

x= + 8 Yo

x= -8 Yo

x = + 10 Yo
x= - 10 Yo

x= +12Yo

x= - 12 Yo

The results oscillate up and down in steps of two
successive summations. This characteristic exists

r Single vortex represenling vorticity
,' distributed (for examplel between

" x : +Syo and x = +7yo; circulation r-1

r t < O# / of this vortex is negative

T .
I

+x-iyo x[y I \

i/._;////////////////_

+y, +x

-y, -X

IX _ .

_ --+- m -

Y

Ixl +[yl

_//////////////////

/,,v_6 < y'o
t
i

Z -- 7 0

YO

Figure 3-37.-Scheme for deriving changes in meridional

velocity from single vortices at centers of reflected flow

fields. Shown as an example are velocity changes induced by
vortices located at x= +6Yo and x=-6)'0, which have

negative circulations.

with all y and z values investigated. While this
characteristic casts some doubt on the convergence
of the second summation in equation (3-78), it is

reasonable to assume on physical grounds that there
is a solution. The first value after a reversal in the

up and down trend of the successive summations

(underlined) approaches an optimum approx-
imation of the correct solution. In all cases, the

value obtained after adding (algebraically) the
effect of the vortex at x= - 12 Yo is used as the

solution of equation (3-78).
The solutions so obtained are plotted in figure

3-38 as functions of the position y across the flow
field for various values of the distance z from the
vortex sheet.

The same solutions are represented by the solid
curves in figure 3-39 as functions of the distance z
from the vortex sheet for Y=Yo and y=yo/2.

Figure 3-39 also shows as long- and short-dash
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curves the solutions obtained in the same manner by
using a single vortex in the center of the physical

flow field between -Yo and +Yo and at the centers

of all reflections of the flow field in its straight
boundaries. This is obviously the flow field of an

infinite, straight row of equally spaced vortices with
alternating directions of circulation. This flow field

is well known, but figure 3-39 shows that it does
not constitute an adequate approximation of the

flow field generated by a continuous, straight

vortex sheet between and normal to two straight
and parallel boundaries, which is described by the
solid curves.

The last major step in this section is that from an
approximation of a plane, two-dimensional vortex
flow field to an approximation of the real, three-

dimensional, axisymmetric flow field generated by
the trailing vortex sheet shed from a vane system
with skew (shown in fig. 3-33). As previously, the

effect of rake (angle ¢ in fig. 3-33) is disregarded,
so that the axial flow between two coaxial,

cylindrical stream surfaces (flow boundaries) is now
under the influence of a plane vortex sheet normal
to the axis of rotation, with circular vortex lines

coaxial with the cylindrical flow boundaries.
As already stated, this flow problem is too

complex for the simple design considerations used
in this compendium. Instead the plane-flow

solution established in the first part of this section is
corrected by means of the condition of continuity

of the axial flow V z between two coaxial surfaces,
as shown diagrammatically in figure 3-40. The hub
surface has the radius rh, and the blade tip surface

the radius ro. In the notation of the previous plane-
flow considerations, figure 3-40 shows that

ro - r h = 2 Yo"

The condition of continuity of the axial flow in

the space of revolution between radius rh and
radius ro is satisfied by the physical condition that
the vorticity along the vortex sheet normal to the
axis of revolution cannot generate any net axial
flow, that is,

I r° r dr A Vz(r ) = 0 (3-79)
rh

or the rate of flow from left to right in figure 3-40 is
oppositely equal to the rate of flow from right to
left. This condition can be satisfied approximately
by the equation

2rrc, oIAcAVzdr=-2r:rc, hICAVzdr (3-80)

where an axial line rc, o = constant divides the flow
diagram DAC into two equal areas, and an axial

line rc, h =constant divides the flow diagram EBC
into two equal areas. This approximation is
considered sufficient, because in order to use the

previously derived, plane-flow velocity distribution

across the stream, one must assume that the velocity
distribution curve DCE in figure 3-40 has the same

form as shown in figure 3-38 for the same axial

distance Z/Yo from the vortex sheet. This assump-
tion is, of course, not exactly true in the same

axisymmetric case.

The condition of continuity for the vorticity-
induced flow in the space of revolution can be

satisfied by varying ro, o, the location of the point
C, where V z = 0, until equation (3-80) is fulfilled.
This process of trial and error can be simplified by

using the approximation

1.0 \\\\\\\\\\\\_

"rip

-Y " [

N\\\\\\\\\\\\\'_ _\\\\\\\\\\\\\

_\\\f\\\\\\\\\\\\\-_

"_,\\\\\\\\\

-4 -3

Figure 3-38. - VelocRies normal to straight vortex sheet between two straight and parallel flow boundaries at + Yo and -Yo.

Vortex sheet is normal to boundaries, vorticity is counterclockwise, and z is clistance from vortex sheet.
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Figure 3-39. - Velocities normal to straight vortex sheet between two straight and parallel boundaries normal to vortex sheet.

Hub

_-...6m--.__

rc, h

dt

ro-Yo

:rh+Y o

I

fAAv z dr

I_AVz dr

AD x AC
n

BE x BC

= 'SVz'°(r° -row) = rc'--_h (3-81)
AVz, h(ro, o -rh) rc, o

which assumes (inaccurately) that the curve CD is

(relative to AC) geometrically similar to the curve

CE (relative to CB). Closer approximations can be
found, but are hardly justified in view of other

approximations used in this derivation.
It should be evident that the difference between

the axisymmetric solution and the plane-flow
solution previously derived lies mainly in the fact
that, in the axisymmetric solution, the point C,

where AV z =0, does not lie halfway between the
inner and the outer flow boundaries, as it does in

the plane-flow solution. For the axisymmetric
solution,

ro - ro, o < ro, o - rh (3-82)

Figure 3-40.-Approximate transformation from plane to
axisymmetric flow induced by vortex sheet. Under the assumptions made here, it follows that
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aVz, o=(:_V_.o-arO<_xV_.o )
_XVz,h = (_XV_,o+ a _ > AV_.o

(3-83)

figures 3-38 and 3-39 as rh/r o approaches unity,
that is, for very large hub-tip diameter ratios.

where A V_z,o is the vorticity-induced axial velocity
at both flow boundaries obtained by the plane-flow
solution.

The inequalities (3-82) and (3-83) express the
results of the present, simple approximation of the

difference between the (obviously inadequate)
plane-flow solution and the present axisymmetric

approximation. Inequality (3-82) is probably cor-
rect and can be used with confidence. Inequalities
(3-83) and equations (3-80) and (3-81) are more

questionable, but are the best that can be derived by
the simple approximations used in this section.

While not accurate, they probably meet the

requirements of preliminary design, because they
present the most essential characteristics of the
axisymmetric flow induced by the trailing vorticity

of vanes with backward skew (fig. 3-33). An
example of the solutions obtained by this

approximation is shown in figures 3-41 and 3-42
for ro=2r h. The simplicity of this solution,

described previously in connection with figure 3-40,
permits the reader to extend this solution to other

values of the ratio rh/r o . Furthermore this solution
approaches the plane-flow solution shown in

Besides the numerical and graphical approx-
imations regarding the effects of either skew or

sweep on the meridional flow through turboma-
chines, one can draw some general conclusions
from the foregoing considerations.

For a pump rotor with backward skew, one can

conclude from figure 3-33 that the change AV z of
the meridional velocity is negative at the outer flow

boundary ro and positive at the inner flow

boundary rh. This situation is favorable for

resistance to cavitation, since the blade tips have the

highest relative velocity, and it is reduced by a
reduction in the meridional velocity. However, the
meridional velocity reduction alone also has a

major effect on cavitation performance, as

expressed by equation (1-42). This is an important
reason for using backward skew in pump rotors.
For fan or compressor rotors, skew reduces the

Mach number of the relative flow normal to the

inlet edge (the same effect as with swept airplane

wings), but skewing is usually precluded by
centrifugal force considerations.

For a hydraulic turbine rotor with the same

overall configuration as shown in figure 3-33

rtl

i

3 4

Figure 3-4L -Approximation of axial velocities in cylindrical space of revolution induced by vortex sheet normal to axis
of revolution. Approximately circular vortex lines are coaxial to space of revolution.
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Figure 3-42. -Approximation of vorticity-induced axial velocities in space of revolution shown infigure 3-41 plotted against
axial distance z from vortex sheet.

(except for the blade camber) and with the same
direction of the meridional flow, the direction of

the blade vorticity _-r is reversed, since Vu, 1> Vu, 2.

This reverses the direction of the vorticity _'u of the
meridional flow and thus increases the meridional

velocity at the outer flow boundary. The higher
meridional velocity is unfavorable for resistance to
cavitation. A favorable effect on cavitation

resistance can be obtained by designing a turbine
rotor with forward skew, that is, in the direction of
rotation.

As mentioned previously, figure 3-33 shows a
combination of axial and circumferential incli-

nation (rake and skew) such that the resulting
inclination (sweep) of the vane falls approximately

in the general plane of the vane. One should expect
this arrangement to be mechanically favorable with

respect to the strength of the vane to resist

centrifugal forces. However, the foregoing
considerations are definitely not limited to this

particular configuration. In fact, in order to
simplify the analysis of the effect of circumferential

inclination (skew), we have eliminated the

geometric consideration of axial inclination (rake).
Therefore the vane shown in figure 3-34 must be

understood to have only circumferential inclination
(skew) as shown in the sketch at the left side in

figure 3-33. This gives the skewed vane an

inclination normal to its general plane, which is
called tilt.

Under the influence of centrifugal forces, tilt

introduces a blade bending moment about an axis
approximately parallel to that of the minimum
section moment of inertia of sections near the blade

root. With backward skew, this centrifugal bending

moment opposes the hydrodynamic bending

moment of a pump blade and may, therefore, have
a favorable effect. For a turbine rotor, the

hydrodynamic forces have (for the same direction
of through flow and of rotation) the opposite

direction to that in a pump rotor and, therefore,

add to the centrifugal bending stresses. For a
turbine rotor, one should, therefore, use either
forward skew with little or no rake or backward

skew with a rake angle so larger than that leading to

approximately zero tilt, as indicated in figure 3-33.
It should be recognized that with skew (or sweep)

the blade is also subjected to a torsional moment

whenever the hydrodynamic and the centrifugal
bending moments do not cancel each other. This
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cancellation of blade bending moments is,
therefore, of particular importance for blades with
skew.

3.3.3 Design for Small Departures From Strictly
Axial Flow in Turbomachines

along the appropriate cylindrical surface ZZZ with

radius rz. The question is merely whether locally

the vane shape can be approximated according to
the cylindrical flow at that radius while the

meridional flow along the conical stream surface

has a radial component

Moderate departures from a strictly axial

direction of the meridional flow exist in many

practical cases of axial-flow turbomachinery
design, for example, in the case treated in section
3.3.1 (figs. 3-5 and 3-32). There the conical stream

surfaces are simply replaced by cylindrical stream
surfaces in order to retain the great theoretical and

empirical advantages available in the axial-flow

field. One can interpret this simplification as a
division of the meridional flow into an axial and a

radial component, with the hydrodynamic (or gas

dynamic) effects of the radial component neglected.
If this simplification can be justified, the theory and
experience of axial-flow rotors can become avail-

able in the mixed-flow machinery field for small

departures ¢ from strictly axial flow (figs. 3-43 and
2-41).

The suggested approximation does not mean that

one neglects the changes in distance from the axis of
rotation as the flow proceeds along a conical stream

surface such as M - N in figure 3-43. At M the vane
is properly designed for flow along a cylindrical
surface with radius rM, at N it is designed for flow

along a cylindrical surface with radius rN, and at
any intermediate station it is designed for flow

Vr = Vm sin _o= Va tan (3-84)

and the relative flow has a vorticity (according to
eq. (2-103))

_rel = -2w sin _o (3-85)

where w is the angular velocity of the rotor.

Under the assumption that the radial velocity
component V r is small, it seems reasonable to

approximate its direction in planes normal to the
axis of rotation in the simplest way possible, which

is the one-dimensional assumption that the flow is
parallel to the vanes. In other words, the radial flow

is assumed to be parallel to vane sections normal to

the axis of rotation, such as section A-A in figures
3-43 and 3-44 (a board section). If the vane is a

straight, helical surface, such sections are straight
and radial, and the radial flow does not have a

peripheral velocity component. However, board

sections generally are not radial. For example,
section A-A of the rotor shown in figures 3-43 and

3-44 is inclined backward by an angle X, as shown

by the sketch at the right in figure 3-43. (The

A
I

y X "

1

F

Rotation

_ _-x

Figure 3-43. - Mixed-flo w rotor.

242



§3.3.3

general orientation of board sections is shown by

the sketch at the left in fig. 3-32).
The general velocity configuration at any point in

a slightly mixed-fiow rotor is shown in figure 3-45.

Without any radial flow component, the flow in a

cylindrical flow section has an absolute velocity

vector V o ending at point A o and a relative velocity

vector w o ending at B o. The peripheral components

are Vu, o, ending at D o and Wu, o, ending at C o.
With radial flow but no inclination of vane

sections normal to the axis of rotation (straight,
radial board sections), the absolute velocity vector

(not shown) ends at A', and the relative velocity

vector at B'. The peripheral velocity components

remain unchanged.

With the board section inclined by the angle X
against the radial direction, as shown in figure

3-43, the absolute velocity vector V ends at point A,

and the relative velocity vector w ends at B. With
backward inclination of the board section, the

peripheral component V v of the absolute velocity is
reduced by

Vu, o - Vu=SVu = Vr tan X (3-86)

(see fig. 3-43), and the peripheral component w U of
the relative velocity is correspondingly increased.

The foregoing deliberations solve in a straight-
forward fashion the so-called direct problem, that

is, the problem of determining the flow for a

slightly mixed-fiow rotor (or stator) with a given

vane shape. The flow in a cylindrical section, V o
and w o, is determined according to section 2.5.

The indirect problem, that is, the design problem,

is solved by the following process of iteration: One
first estimates the inclination X of board sections

near the discharge vane edges and determines (by

the condition of continuity) V m and V r = V m sin _o

A

Figure 3-44. - Stacked blade sections.

6Vu°-

.... vU _ --_
/" /> _ "/ \ '_ _"--A

Figure 3-45. - Velocity vector diagram.

from an assumed profile of the rotor like that

shown in figure 3-43. For pumps, D i is known
from cavitation considerations (secs. 1.2.2 and

1.3.2), and Dh. 2 is given by the head coefficient

_bh,E=2goH/U_,2 (secs. 1.2.1 and 1.3.2). The

desired peripheral velocity VU, 2 at the discharge is
determined by Euler's turbomachinery equation

and the peripheral velocity VuA of the incoming
flow.

From the estimated vane inclination X at the

discharge edges, one determines the change tSVu, 2

of the discharge peripheral velocity VU, 2 (caused by
the radial velocity Vr) according to equation (3-86)
and from it the discharge peripheral velocities

Vu,2, o for which the cylindrical vane sections are to
be designed. The cylindrical vane sections are

determined according to section 3.2 by using

particularly the first approximation (sec. 3.2.2).

Next one establishes the overall vane shape

according to section 3.3.1; this procedure gives a

better approximation for the inclination X of the
board sections of the entire vane. Then the

foregoing process is repeated except for using a
better than first approximation for the design of the

cylindrical vane sections, because this iteration is

likely to be the last one justified by the approximate
character of the entire design process. A similar

process applies to the inlet portion of the vane if the
meridional flow is not axial.

Still to be answered is the question of what

happens in this process to the vorticity of the
relative flow Fret" This question can be answered by

stating that the vorticity - 2w of the radial flow V r
should be taken into account. This problem is

considered in section 2.6, and its most practical

answer is expressed for the end of radial-flow vane
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systems in the form of the Stodola correction (see

sec. 2.6.3.5). One should consider whether to apply,

at the discharge end of a mixed-flow vane system,

an additional negative correction of Vu, 2 of the
type expressed by equation (2-142) and figure 2-48,

except that the angular velocity o_ in equation

(2-142) would have to be the angular velocity of the
system within the plane development of the conical

flow surface M-N in figure 3-43. This angular

velocity would obviously be

w_ = _ sin _o

where _0 is the angular velocity of the actual mixed-
flow vane system. One would subtract from the

peripheral fluid velocity at the discharge, in

addition to the previously introduced correction
6V U (which depends on the inclination _, of the

board sections), a Stodola correction

WSA=W,p_=co_ sin_ (3-87)

where d2 is the normal distance between two

successive vanes at the discharge of the vane system,
measured in the development of the conical surface

M - N. Consequently one would have to design the

cylindrical vane sections for a peripheral discharge

velocity Vu,2,o, which is larger than the actually
required velocity Vu, 2 by the sum of the two
corrections mentioned, that is,

VU,2, o -- VU, 2:6Vu+ wSA (3-88)

where 6 V U is given by equation (3-86), and WSA by
equation (3-87). This correction is entirely

reasonable, but there are no experimental results

known to this writer that confirm (or contradict) it.

It is important to observe that, for the discharge

conditions, both corrections 6V U and WSA should

be evaluated for the mixed-flow angle _ in the

discharge region of the vane system. Both

corrections are zero for strictly axial meridional
flow at the discharge. Furthermore it is of interest

that both corrections reverse sign, that is, become

additions to Vu,2, o when _ is negative (for radially
inward mixed-flow rotors).

The Stodola correction applies only to the

discharge portion of the vane system, whereas the

geometric correction 6V U applies throughout the
vane system.

Of course, the Stodola correction is zero for

stationary vane systems, whereas 6V U applies to
stationary as well as rotating vane systems.

It is reasonable to assume that the considerations

of this section should not be applied to meridional

flow departing from the axial direction locally by

more than about 30 °. For larger departures from

the axial direction, the vane system should be
designed by means of the actual conical stream
surfaces, and radial-flow considerations should be

applied to the plane developments of these surfaces
(see sec. 2.6 and ch. 4).

3.3.4 Design of Axial-Flow Vane Systems With

Vorticity in Main Stream

3.3.4.1 Introduction.--Vorticity in the main
stream results in departures from the familiar

potential velocity distributions, that is, from
uniform axial velocities in the space between two

coaxial cylindrical flow boundaries, and in

departures from the law of constant angular
momentum rVu=constant in the peripheral flow

V U in this space of revolution. The laws of such
fluid motions are outlined in section 2.7.

The specific design problems discussed in the
present section are

(1) Improvement of the suction specific speed
of pump rotors by positive prerotation with

radially increasing angular momentum of

the flow entering the rotor; laws of this type
of fluid motion are described in section

2.7.2 in connection with figures 2-60, 2-61,
2-63, and 2-64

(2) Design of stationary inlet vane systems

generating rotation of the flow with radially
increasing angular momentum

(3) Design of an axial flow rotor receiving the
flow from such a vane system

3.3.4.2 Improvement of suction specific speed by

means of positive, solid-body prerotation at inlet to

a pump rotor.--Positive prerotation,that is,
rotation of the incoming fluid in the direction of the

rotor motion, is here considered to be generated by
a stationary axial-flow vane system.

The peripheral velocity V U induced by the system
is regarded as increasing proportionally to the

distance r from the axis of rotation, the familiar

solid-body rotation used in the example worked out

in figure 2-64 in section 2.7.2. This velocity
distribution is chosen because it permits, besides the
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graphical solution given in section 2.7.2, also a

simple analytical solution on the basis of
Bernoulli's equation which lends itself to the

intended application to the cavitation performance

of axial-flow rotors.

For solid-body rotation (eq. 2-161), the radial
distribution of static pressure behind the vane

system is particularly simple to calculate by means

of the equation of simple radial equilibrium

Op _ OV2u (2-162)
Or r

which is introduced in section 2.7.2. By substituting

r (2-161)V U = Vu, o --
go

into equation (2-162) and considering r as the only

independent variable, one obtains the following

expressions:

S v2fioPo _ r dr
Po -P= dp=p 2

P r o

= OV2--_U 1-
2 (g

r o

P {V 2po-p--5 uo- (3 -89)

where, Po and Vu, o are the pressure and the

peripheral fluid velocity at the outer radius r o, and
p and V U are the same variables at any smaller
radius r. Since this derivation is intended to be

applied to a cavitation problem, the density p can be
considered constant.

Bernoulli's equation applies to the resultant

velocities V= NfV 2 + V 2 and V o = "X/V2u,o + V2,o ,
so that

°Po -P= _ _ ( V2u,o + V2,o) (3-90)

Substitution of equation (3-89) into equation (3-90)
leads to

- + v V ,o- V ,oU,o

Hence

(3-91)

or

22Vm-Vm,o =2 1

V_,o vEu,o

Substituting equation (2-161) for solid-body

rotation gives

(r2) V2m_o (3-92)
V2m =2 1- +

VZu,o ro_ V2u,o

which determines Vm as a function of r.

One may, of course, refer everything to some

other (intermediate) radius rA, in which case

equation (3-92) would appear in the form

r2 Vm AV2m =2 1-- + (3-93)

v ,A V .A
Results of the last equation are compared with

those obtained graphically and represented in figure

2-64. The comparison is shown in figure 3-46,

which seems quite satisfactory for design purposes.

To evaluate the foregoing results with respect to

the cavitation performance of a pump, that is, with

respect to its suction specific speed, one must
determine the volume flow rate Q connected with

the meridional velocity distribution just derived.

Obviously

f rhQ=27r Vmrdr (3-94)
ro

By substitution from equation (3-92),

Q=27r VU, o

rh r2 _ r dr
x 1-_ + V2

ro ro u, o

2 VU, oQ=27r ro

× I rh ,_/V2m__ 2r 2 r dr
ro "_ V2,o -4- 2 ro2 ro ro

(3-95)
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D r Graphical solution._°L_--_ ,,' lhg. 2-64)

) /z j_,_nalytical soluti

(eq (3-93)

I

I:
I

B

Meridional (axial) velocity V m
D

Figure 3-46,-Comparison between graphical and
analytical solution for axial flow with vorticity

according to solid-body rotation of peripheral flo w.

Of course, equation (3-94) can be written directly
in the dimensionless form

Q _ Irh V m r dr (3-96)
2_rr2oVu, o ro VU, o ro ro

which can be evaluated by means of equation (3-92)

to obtain equation (3-95) divided by 2_rr 2 Vu, o.

Vu _ r (3-99)
VU, o ro

Obviously the same law applies to the circum-
ferential velocity U of the rotor, that is,

U r

U o ro
(3-100)

so that

Vu U

Vu, o Uo

or

VU - Vu'° =constant=A (3-101)
U U o

which is, of course, the ratio of solid-body

prerotation. By substitution of these relations into
equation (3-98), one obtains

2goHsv =(CI + ap)V2,o

X\ VLo+ vL- o Vo"

2goHsv

f.)2° = (C 1 + ep)A 2

The total inlet head above the vapor pressure

required by a pump rotor behind the stationary

vane system can be calculated from equation (1-42)
in section 1.2.2 in the form

I/2 w 2

Hsv = C] _o + Op _go (3-97)

where I/2=V_+V2m and w 2=(U-VU) z+V L
= U 2 - 2UVU + V2U+ V2m, so that

2goHsv =(el +Op)(V2 + V L)

+ apU2 (1 - -_) (3-98)

The law of solid-body rotation, which is assumed

to apply, is

x( r2 -_'_+ r2(l_2Vu, o_o + Op -- ) (3-102)V u, o I r2o -_o

and, by substitution for V2_V2u, o
(3-92),

2goHsv

U 2 -(Cl + O'p)A 2

( r2 V2m_ ) + ap _22(1 - 2A)
x 2-_--_-+ V2,oFO o

where one may use the expression

Vm,o_ Vm,o Uo _ Vm,o 1
VU, o U o VU, o U o A

so that

from equation

(3-103)
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r 2

-[(C1 +op)AZ-op(1-2A)]r-_o (3-104)

It is of interest to evaluate the last equation for zero

prerotation, that is, for A = 0:

2 r 2

2g°Hsv _ + ap --_ (3-105)
u2° =(Cl + Op) u2° ro

When r=ro, V=V too, and w 2=U 2+V 2
, m,o _

equation (3-105) is equivalent to equation (3-97).

If equations (3-96) and (3-104) are to be used for
the calculation of the suction specific speed under

the influence of solid-body prerotation, the suction

specific speed must be transformed as follows:
The number of revolutions per second n is related

to the peripheral velocity U o of the rotor at radius

r o by n=Uo/2_rro. With this substitution, the
suction specific speed can be written in the form

S=
(goH, o)3/4

U o x/-_ro Vxf_,U,o--0t]3/2

-- _ V_ro x/Vu, o(goHsv)3/4 U 3/2

which is readily converted to the terms used in

equations (3-96) and (3-104):

/ U 2 "X3/4 / VU, o
2 1/4 Q

S=Trl/-----S 2_rr2oVu,o k2goHsv) _ Uo

(3-106)

The evaluation of the inlet head coefficient

2goHsv/U 2 according to equation (3-104) is shown
in figure 3-47 for CI = 1.1, the same value as used

in figure 1-18, and ap =0.2, the lowest value for
which approximately cavitation-free operation can

be expected with well-designed vanes. For (C1 + op )

AE>op(1-2A), the inlet head coefficient
2goHsv / U2o required to prevent cavitation increases
with decreasing r/ro, because the minimum
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Figure 3-47.-Radial distribution of required Hsv for

• inflow with solid body rotation.

pressure on the rotor vanes does not occur at the tip
section as usual, but at the minimum radius r=rb.

With (C1 +op)A2<ap(l-2.4), the coefficient of

r2/r 2 in equation (3-104) is negative, so that the
term containing r2/r 2 is added to the first term,

that is, 2goHsv/U' , increases with increasing r/ro
and reaches its maximum value at the tip radius

r=ro (as usual). For (C1 +ap)A 2 =Op(1 -2A), the
head coefficient is independent of r/r o, as shown

by line X in figure 3-47. The corresponding value of

the prerotation ratio A = VU, o/U o is 0.2673.

The 2goHsv/U_o values at the tip radius r o are
shown in figure 3-48 as a function of the

prerotation ratio A= VU, o/U o with the tip flow
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coefficient Vm, olU o as a parameter. The values
chosen for this investigation were Vm, o I Uo = 1/10,

1/7, and 1/5. At prerotation values VU, o/U o
>0.2673, the suction head coefficient at the center

of rotation (r h = 0) is larger than at the tip and is
shown by the nearly straight upper branches of the
curves.

The dimensionless volume flow rate Q/2rr2o Vu, o
is determined from equation (3-96) by numerical

and graphical procedures, since the designer may

not find an analytical solution of equation (3-95).
The integrands of equation (3-96) are shown in

figure 3-49. Equation (3-95) shows that equation

(3-96) depends on only one parameter:

•32

.16
• 08 .12 .16 .20 .24 .28 .32 .36

Prer0tation ratio. VU, otU0

Figure 3-48.- Required inlet head at outer inlet radius ro as
function of solid-body prerotation.

V_,o _ Vm,o Uo
Vu, o Uo Vu, o

(3-107)

The results of the integration from ro to r h =0.2
ro are given in table 3-11 together with the head
coefficients given in figure 3-48 and the S values

calculated according to equation (3-106). The ratio

of prerotation Vu, o / U o and the tip flow coefficient
Vm,o/U o are also listed.

Figure 3-50 presents graphically the suction

specific speeds calculated according to equations
(3-96), (3-104), and (3-106) that are listed in table

3-II. The number of points available for this plot

from table 3-II is really not sufficient to establish
these curves completely, but is sufficient to show

the general trend of this relation in a dependable
fashion.

The small difference between the curves obtained

for the two tip flow coefficients Vm, o/U o =0.1 and
0.2 is remarkable. It is also of practical significance
that the maxima of both curves fall between

Vu, o/U o = 0.2 and 0.267 (short-dash vertical line),
the latter being the prerotation ratio at which the

minimum pressure shifts from the tip section to the

minimum radius ratio r h/r o. It is quite possible that

the curves have a break at this prerotation ratio, but
this investigation is not sufficiently detailed to

establish this fact. However, it is of practical

importance that one should not select a prerotation

ratio in excess of the critical ratio 0.267, partly

because the head coefficient 2goHsv/U2o rises (see
fig. 3-48) and partly because the most demanding
cavitation conditions should not be used at the

lower radius ratios, where the flow has to be

deflected more strongly than at the tip section.

It is of interest that the increase in suction specific

speed gained by solid-body prerotation is greater,

and reaches over a wider range, than the advantage
gained by considering positive prerotation at the tip

section without any effect of this prerotation on the

meridional velocity distribution (see shaded band in
fig. 3-50). The anticipation of this advantage gave

rise to the foregoing investigation.

3.3.4.3 Design elements of axial-flow pump with

positive, solid-body prerotation at rotor inlet.--To

illustrate the application of the foregoing results,

one must establish the design elements of an axial-
flow pump with positive, solid-body prerotation to

the extent necessary to demonstrate whether such a
design is feasible.

From figure 3-50, it is reasonable to select a

prerotation ratio VU, o/U o =0.25 and a tip flow

coefficient Vm, o / U o = 0.20. With these values and
the previously assumed blade cavitation coefficient

Op = 0.20, it should be possible to achieve a suction
specific speed of 0.77 (13 200) with only limited
cavitation.

Figure 3-51 represents a design engineer's work

sheet for the problem presented. The velocity
triangles OAB, OCD, and OEF represent the inlet

conditions to the pump rotor, which satisfy the

previously stated assumptions regarding VU, o/U o
=0.25 and Vm, o/Uo=0.2. These triangles also
satisfy the condition of solid-body rotation, since

the circumferential velocity components Vu, l
drawn to points A, C, and E are proportional to the
radii ro, 0.8 r o, and 0.5 ro .

The axial or meridional velocity distribution

corresponding to the solid-body rotation is given by

equation (3-92) and represented by the curve GHIJ
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Figure 3-49. -Integrands of equation (3-96).

.1 .8 .9

TABLE 3-II. - CALCULATION OF PREROTATION EFFECT ON SUCTION SPECIFIC SPEED

Ratio of flow

to rotational

velocity,

Vm, o/Vu, o

0.3

.5

.6

.8

.8

1•0

1.6

Prerotation

ratio,

VU, o/Uo

1/'3

1/5
1/3
1/4
1/8
1/5
I/8

Tip flow Inlet head

coefficient, coefficient,

Vm, o/I5o 2
2goHsv/U o

0.I

.I

.2

.2

.1

.2

.2

0. 298

• 1845

.338

• 2325

.1833

.2225

• 222

Rate of flow

coefficient,

Q

2 _r2V_
0 ,0

0.4729

.5126

.5389

.5997

•5997

.6647

.9060

Suction specific

speed,

S

0.66 (11 350)

.76 (13 060)

•641 (11 020)

•774 (13 315)

•6604 (11 360)

•7535 (12 950)

•6956 (11 960)
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Figure 3-50. - Suction specific speed as function of solid-body prerotation. Hub-tip radius ratio rhlr o, 0.2; Cy = 1.1; op = 0.2 in
equation (3-97).

plotted against the horizontal r/r o scale to the right
of the origin O; this curve determines the vertical

positions of the points A,B,C,D,E, and F above the

horizontal coordinate axis through O. The assumed
inlet hub radius is r/r o = 0.2, the assumed discharge

hub radius is r/r o = 0.45, and the minimum radius
of completely developed, cylindrical flow sections is

r/r o = 0.5.

To determine the flow at the discharge of the
pump rotor, one must, of course, make an

assumption about the dimensionless head expected

(Euler's turbomachinery equation). It is assumed

that, at the minimum flow section (r/ro =0.5), the
relative velocity is turned just slightly beyond the

axial direction to point U. A larger or smaller

change in the peripheral velocity components wu
and V u can be assumed; it is essential that this

change be substantial, but not unreasonable. In a

practical case, this change is prescribed by the head,

more specifically, by the head coefficient required
by the specific speed. This change in the peripheral
velocity component determines the change at all

other discharge radii under the assumption of a
radially constant head, that is, under the

assumption that A Vur=constant (radially). This
constant (in dimensionless form) is assumed to be

aVu __r=0.8
VU, o ro

Since one is now concerned with the change A Vu of
V U through the rotor, one must remember that

Vu, o is the peripheral fluid velocity at the inlet to
the rotor tip.

The rotor discharge velocities are derived in two
steps: First, a new axial inlet velocity distribution is

derived from equation (3-92) by applying this

equation to a fictitious rotor with a cylindrical hub

having everywhere the radius rh = 0.45 ro. For this
case, equation (3-92) is evaluated with two or three

increased values of Vm, o /VU, o by estimating these
values by the fact that the meridional velocities are

inversely proportional to the meridional flow area,

which is reduced by the change from rh/r o = 0.2 to
rh/r o =0.45. The flow rate for rh/r o =0.45 is of

course, the same as that for rh/r o =0.2. The final
curve ZH'I'J' (fig. 3-51) is obtained by

interpolation or extrapolation from the curves

derived from equation (3-92) by means of various

estimated values of Vm, o/Vu, o, as described
previously.

Second, a new meridional discharge velocity
distribution is derived in the manner to be outlined

here for the fictitious rotor with a cylindrical hub

(rh/ro = 0.45) and for a radially constant head or

constant change in dimensionless angular

momentum (AVu/Vu, o) (r/ro)=0.8 , which for

r/ro=0.5 gives AVu/Vu, o=I.6 , as shown in
figure 3-51. This value turns the relative velocity
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Figure 3-51. - Velocity diagrams and V m distributions for axial-flo w impeller with solid-body prerotation and H r = constant.

vector in the r/r o = 0.5 section just slightly beyond
the axial direction, which constitutes the choice in

rotor head previously mentioned. (This particular
choice leads to very instructive results, as becomes
evident later.)

The physically simplest and, therefore, most

reliable way of determining the rotor discharge
velocity distribution is based on Helmholtz' law

that vorticity remains connected with an inviscid

fluid. The vorticity entering the rotor is a trailing
vorticity and, therefore, parallel to the flow. Hence

_u,] _ Vu,]

_m,l Vm, l
(3-108)

For radially constant change in angular
momentum (z_Vur = constant), the rotor does not

add (or subtract) vorticity to (or from) the flow, so
that this vorticity continues to be parallel to the

absolute flow. Hence, at the discharge,

_U,2 _ VU,2

_m,2 Vm,2
(3-109)

The radially constant change in angular
momentum implies that _'m (which controls the

circumferential flow) does not change through the

rotor, that is, _'m,2 = _'m,1 = _'m" Hence, by dividing
equation (3-109)by equation (3-108), one finds

_'u2 _'m x _'u,2 Vu,2 Vm,_

fm,2 fu,_ fu,_ Vu, t Fmp2
(3-110)

In all equations of this section, the subscript I
applies to the flow conditions in front of the

fictitious rotor system with a cylindrical hub, and

the subscript 2 to the flow conditions behind it.

The incoming vorticity _'m,] is connected with
solid-body rotation of the flow. Hence, with

O Vu/Or = Vu/r = VU, o/ro,

a v U v U Vu, o
_'m,1 = _ + -- =2 -- =2r To

(3-111)

since, for all present considerations, it is most

simple to set Vu, o=l and ro=l, so that all

velocities and radii are regarded as divided by Vu, o
and r o and are thereby made dimensionless without

change in notation. Then equation (3-92) assumes
the form

I/2,1 =2(1-r2)+ V2m,o (3-I12)

and, for purely axial, meridional flow, that is, for
Vr=0,

dVm,1
_U,I -- dr

- 4r 2r

2V'2(1-r2)+ I/2,o Vm. 1

(3-113)

This equation permits the construction of the Vm,],
r curve from its tangents, provided one starts from

a point where Vm, 1 is known. Furthermore
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equation (3-113) indicates that the slope of the

Vm, l curve approaches infinity as Vm,1 approaches
zero. The same construction can be used for the

Vm, 2, r curve on the basis of _'u,2 determined by
equation (3-110), provided one starts from a point

where Vu,2/Vu, l and Vm,2/Vm, l are known.
It is assumed that Vm, 2 = Vm, 1 at r=r/r o =0.8.

At this point, I' in figure 3-51, the dimensionless

velocities are according to previous assumptions

Vm,2=Vm, l=l.458, VU, I=0.8, AVu=I.0,
VU, 2=VU, 1 +AVu=I.8, and, therefore,

VU,2/Vu, I=2.25. Furthermore, according to
equation (3-113),

0.8
_'u,1 =-2× 1.458 1.097

Hence, at point I',

= _U 1 VU'2 --
' VU, 1

2.47

The tangent so determined permits an estimate of

values of Vm,2 at other radius ratios, and the
tangent slopes derived from them by equations

(3-110) and (3-113) and _'u,2 =dVm,2/drpermit the
improvement of these estimates by letting the

successive tangents intersect each other about
halfway between the radii to which they apply. The

curve KI' L in figure 3-51 is derived in this manner.
It is obvious how the rotor discharge velocity

diagrams OMP, OQR, and OSU in figure 3-51 can
be constructed from this information. These

diagrams, together with the inlet diagrams OAB,
OCD, and OEF and with some data on cavitation

(or Mach number ) characteristics required, permit

the design of the cylindrical rotor vane sections at

r=r o, 0.8 ro, and 0.5 ro according to section 3.2.
The diagrams for any other cylindrical sections can

be readily derived from the information presented.

Obviously the Vm, 2 curve KI' L has to be checked
for compliance with the condition of continuity

according to equation (3-96). The curve is found to
conform to this condition within approximately 1

percent, which is within the general accuracy of

these calculations. Discrepancies up to about 5

percent can be corrected with sufficient accuracy by

a parallel, vertical shift of the Vm,2 curve.

The absolute rotor discharge velocity diagrams
present the familar problem of the feasibility of the

discharge diffuser vane system.

At first glance one might think that the tip section
presents the greatest problem, because of the

assumption that the absolute discharge velocity

I/2, o has to be retarded to Vm, o, 1 . However, since
the rotor has radially constant vane circulation, it

adds a radially uniform energy (head) to the flow.

For axial discharge, then, the velocity Vm, 3 of the
flow leaving the diffuser must be radially uniform.
For the same hub diameter as the discharge of the

rotor (rh/ro = 0.45), this velocity is obviously the

average meridional velocity at the rotor discharge
(see fig. 3-51). This design involves excessive

retardation only at the r/ro =0.5 section. If a
constant tip radius through the diffuser is assumed,

an increase in the axial discharge velocity from the

diffuser can be accomplished by a continuation of
the increase in hub radius through the diffuser. The

minimum discharge velocity is assumed to be 0.60
of the maximum diffuser inlet velocity. When the

retardation of the flow along the cylindrical surface

r/r o =0.45 is disregarded (because the flow along
the hub surface is retarded very little), this velocity

is 0.6 I/2,0. 5, which is Vm, 3 = 1.78 Vu, o,I for the
velocities shown in figure 3-51. The corresponding

hub radius at the diffuser discharge is rh,3/ro
=0.60. The resulting overall design is examined

after the vane layout of the inlet guide-vane system
is determined.

The inlet vane sections at r=r o and r=0.5 ro are

shown in figure 3-52. For these vane layouts, the

first approximation described in section 3.2.2 is

used, except that the flow is reversed in comparison

with that shown in figure 3-1, and the vane distance
d applies to the discharge rather than to the inlet of

the system. The inlet velocities shown in figure 3-52
are, of course, those in the actual rotor inlet with

rh/r o = 0.2.
Since the flow is strongly accelerated in the tip

section, the lift coefficient Ct_ is chosen to be 1.6,
which is conservative according to figures 2-26 and

3-17. For the r=0.5 ro section, an even more
conservative value of CL = 1.0 is selected because

the actual circumferential vane spacing t0. 5 is only

half that at the tip section. The vane layouts in
figure 3-52 are, of course, dimensionless, and their

scales must be adjusted to satisfy the relation

to ro ro

t0.5 r0.5 0.5 r o
=2 (3-114)
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In addition, the number of vanes must be an

integer.

Figure 3-53 shows the profile of the inlet, rotor,

and diffuser vane systems discussed. The inlet vane

system profile is determined for 10 vanes, whereas

the rotor and diffuser system profiles are mere

estimates and satisfy only the inlet and discharge
hub diameters assumed or determined in the

foregoing calculations.

_ / " direction _ ,,"ij.....

/' /

r _ r o (tip section)

to.5

\

r =0.5 r o

Figure 3-52. -Dimensionless layouts of inlet guide vanes.

The foregoing solution of the problem considered

is not the only solution possible. In particular, a

radially uniform rotor head may be desirable only

for single-stage machines, whereas, in multistage

machines, the higher stages can be used to eliminate

progressively any radial nonuniformities in total
head at the discharge from the first stage (see ref.

33). Thus a radially nonuniform rotor head might

be employed to reduce the nonuniformity in the
meridional velocity leaving a rotor with radially

nonuniform angular momentum (circulation) at its

inlet, as described previously.

A second work sheet, figure 3-54, shows the
same velocities as figure 3-51 with corresponding

points and curves marked by the same symbols,

except that the r/r o scale is vertical, and Vu, l and

Vu, 2 are plotted in the horizontal direction as a
function of r/r o. For radially constant rotor head

(no addition of vorticity by the rotor), the Vu, 2,

r/r o curve MQS can be plotted from the data

previously presented, specifically from figure 3-51,

where the end points of the V 2 vectors are M, Q,
and S. The tangents to this curve (at the same

points) are easily derived from the Vu, 1,r/r o line
A'C 'E 'O. For the tip conditions, this derivation is

represented by the points A' and M and, for r=0.5

ro, by the points E' and S, with H r = constant so

that _'m,l = aVu/Or+ Vu/r= _m,2. The lines A'A"
and MM" have the directions of the irrotational

Vu, r/ro curves, where aVu/Or=-Vu/r. The

departures from these directions _'m,l Ar (where zar

is an arbitrary length) are the same for Vu, 2 as for

Vu, 1 as long as the rotor does not add vorticity to
the flow, as stated previously for curve MQS.

As mentioned previously, the addition of

vorticity by the rotor has the purpose of changing

the meridional rotor discharge velocity distribution

KI'L to a more uniform shape. The following
considerations are simplified by assuming that the

desired meridional velocity distribution Vm,2(r) is
the same at the rotor discharge as at its inlet (curve

H'I'J'). The previously used fiction of a

cylindrical hub (rh=0.45 ro=constant) is
maintained.

There are (at least) two methods of determining

the circumferential rotor discharge velocities Vu, 2

which satisfy the meridional flow condition

Vm,2 = Vm, l everywhere. One is that described in
section 2.7.2 in connection with figure 2-63, except

that, in the present case, this operation has to be

carried out for the relative flow leaving the rotor,
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Figure 3-53. -Profile of axial-flow pump with prerotation having radially increasing angular momemtum.

because the vorticity added by the rotor is trailing in

figure 3-55 for two steps from r=0.8 ro: one step

to r=0.9 ro and the other step to r=0.7 r o. At

r=0.8 ro, it is assumed that I'm, 2 = I'm, 1 . At r=0.9
ro and 0.7 ro, the desired meridional velocity

I'm, 2 = Vm, ! differs from that obtained with zero
rotor vorticity (curve KI'L) by 5Vm, o.9 and

Vm,o. 7, respectively, which are the local distances

between the curves KI'L and H'I'J' at r=0.9 ro
and 0.7 r o. The corresponding changes in the

peripheral velocity components are derived from
the rotor velocity diagrams (fig. 3-55) by swinging

the relative velocity vector W2,0. 9 (at r=0.9 ro)
from its end point U (corresponding to the

irrotational rotor flow, curve LI'K, fig. 3-54) to
the new end point Vdetermined by the difference in

meridional velocity tSVm,o. 9. At r=0.7 r o, the

relative velocity vector W2,0. 7 is swung from its end
point X to a new end point Y determined by

6Vm,o. 7. The end points of the corresponding

absolute velocity vectors V 2 are U °, V*, X °, and
Y* (at the left side in fig. 3-55).

The process just described can be continued by
drawing through the points V' and Y' (fig. 3-54),

g a M - V .... ----Vu - ' Vm L _Vm' 1,- /

1"0 _---_-@/E_°;lang_s- 1 _Equa anges VU'I'VU'O ---- -_'-"_ _' t '.0

""( m_' ?--_r_-,, _ '" Qn' 1Ar_ C' V

r - - °".... ....... I\\ / _vm.o.7 r

r0 7v_,_'"r0_:_ A___ ", _ { y!_'_. 6vm - _7,°

._ _%vu.,_.a5 -_-_vu.2.o._,o_... _ _C:_._;,,u. H j_, , K_,..5
rotor vorlicity for

S. " / _r,_. ....... -7 -- -- - _\ "_, 7"\\ L Vm'2co.lslanlHr

Eq.alangl_s ......... \\_...\Equa,I
angles

r/r o

Figure 3-54. -Extension of velocity layout in figure 3-51 to include radially nonuniform rotor head Hr.
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0

Figure 3-55. -Rotor discharge velocity diagrams with correction for trailing rotor vorticity. Velocity symbols in parentheses

refer to rotor discharge with radially constant rotor head.

just reached on the Vm,2 = Vm, 1 curve H'I'J' at

r =0.9 ro and 0.7 ro, short segments of the Vm, 2
curves for zero rotor vorticity. These curves are

approximated by their tangents whose inclinations
are given by equation (3-110), which, with

Vm,2 = Vm, l, assumes the form

dVm'2 VU'2 (3-115)
_U,2- dr --_U,I VU, I

where _'U,I is given by equation (3-113), and VU, 2 is
the new value arrived at by the preceding steps

(points V ° and Y*, fig. 3-55). Since the Vm,r curves

are not strongly curved, the tangents to these curves
can be used to the next stations r=r o and 0.6 r o to

determine new values of _V m, after which the

preceding process is to be repeated (although not
shown in figs. 3-54 and 3-55).

Vm'2 = Vm'l T

J_U, I = _U, 2

(3-116)

With this provision and r2 = rl, as well as P2 = P l
(as previously), equation (2-172) reduces to the

simple statement

_m, lWU, l =_m,2Wu,2 (3-117)

where

0 V U V U
_'m = -_r + --r (3-1 18)

According to equation (3-111), _'m,1 = 2 VU, o/r o = 2

(with VU, o = 1 and ro = 1). Hence equation (3-117)
is further reduced to

A second method of solving the present problem
is based directly on equations (2-172) and (2-175)

of section 2.7.3. While physically not as illustrative

as the first method, it is under the existing

circumstances more practical for obtaining a

reasonably complete solution of the problem on
hand.

For maintaining the meridional velocity distri-

bution before and after the rotor, it is apparent that

_m,2 = 2 wU' 1 (3-119)
WU,2

which is easily evaluated by using Wu, l = VuA -U
and Wu, 2 = Vu, 2 -U. The inlet velocity VU, I is, of
course, known, since, for solid-body rotation,

Vu,1/Vu, o,l = r/ro. The calculation is started at a
point where the discharge velocity is assumed to be

known for the rotor with vorticity, for example, by

prescribing the point where the new curve intersects
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the old curve MQS (in fig. 3-54) derived for zero
rotor vorticity.

Evidently, from equation (3-118),

i_Vu,2 Vu,2
_m,2 - ar + r

For the determination of Vu, 2 as a function of r
only, by means of equation (3-119), the working
equation for the numerical evaluation becomes

dVu'2 -2 Wu'_l Vu'2 (3-120)
dr W u, 2 r

Selecting point Q at r=0.8 as the starting point,

where Vu,2=I.8, Wu,2=Vu,2-U=l.8-3.2

= - 1.4, and Wu, 1 =0.8 -3.2= -2.4, one finds

dVu'2 - 1.18
dr

A tangent drawn with this slope through point Q

can be extended to r= 0.7 and r= 0.9 to permit an

estimate of Vu, 2 and calculation of dVu,2/dr for

these two radii. The estimate of Vu, 2 can be
improved by letting the new tangents at r= 0.7 and
r=0.9 intersect the tangent Q about halfway

between r=0.8 and r=0.7 on one side and halfway

between r=0.8 and r=0.9 on the other; thus VU, 2

and dVu,2/dr are redetermined until satisfactory

consistency between VU, 2 and its derivative is
obtained. Convergence is quite good unless

dVu,2/dr is much larger than in the present case, as
found later. When the described process is

repeated, a new Vu, 2,r curve aQb is determined by
its tangents.

The values of Vu, 2 reached at r/r o =0.9 and
r/r o = 0.7 are compared with the values obtained by

the first method, shown as points V* and Y* in

figure 3-54. The difference 2t between these two sets

of results is as small as expected in view of the

approximations used with both methods compared.

Other Vu,2,r curves can, of course, be con-
structed by beginning at other points along the old

curve MQS for zero rotor vorticity. Evidently one

cannot start at point S at r=0.5, because Wu, 2 goes
through zero in the vicinity of this radius and,
therefore, according to equation (3-120), the slope

of the Vu, 2, r curve increases without bounds. Even

an attempt to construct a new Vu, 2, rcurve through
point c at r=0.6 leads to an infinite slope when

approaching r=0.7. The construction by tangents
converges at r=0.5, but the resulting curve dce

obviously has no practical value.

A new curve constructed through point f at

r = 0.7 converges quite well and has useful, practical

significance. It might be of theoretical interest, but

hardly of practical interest, to explore where the

Vu,2,r curves cease to stay within finite bounds,
since, well before this limit is reached, the solution
cannot be used because of excessive variations of

the rotor head over the radial extent of the rotor

vanes. Already, with the apparently well-behaved
curve aQb, the ratio of the rotor head between

r=r o (tip section) and r=0.5 ro is about 2.4. For

the next higher curve gfh, this ratio is about 2.7 and

must reach very high ratios between curves gfh and

dce. As already mentioned, head variations

encountered with Vu, 2 curves such as aQb and gfh
are practically acceptable only in multistage

machines, where the higher stages can be used to
reduce these nonuniformities in rotor head. The

only exception to this statement exists in the field of
propulsion pumps and other cases where most of

the pump head is converted into kinetic energy, so
that radial nonuniformities in head merely result in

corresponding nonuniformities in the velocities of
the discharging jet.

The foregoing deliberations can only be examples

for the application of the laws of vortex flow in

turbomachinery to some practical design problems.
The laws outlined in section 2.7.3 permit the

solution of a large variety of practical design
problems. Problems of numerical solutions are

today effectively met by means of computers.
Essential, in all cases, is close attention to the

physical aspects of the overall problem in order to

recognize early some mistakes that can always occur

in the operations involved, which, although by

themselves minor, if undetected, might vitiate the

purpose of the work before us.

3.4 Design of Axial-Flow Inducers

3.4.1 Requirements Regarding Suction Specific

Speed and Discharge Head of Inducers for Liquid

Rocket Pumps and Other Applications

The need for pumps operating at higher suction

specific speeds than achievable with little or no

cavitation is fairly old. The first extensive need for

such pumps arose in steam powerplants, where the
condensate pumps receive their flow from the hot
well of the condenser. The water in the hot well is
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boiling or very close to its boiling point. Therefore

the total inlet head Hsv of the condensate pump is
approximately the difference in elevation between

the free water in the hot well and the pump inlet.
Since the hot well is usually located close to the

lowest floor in the powerplant, this inlet head is
often restricted to a few feet.

Such condensate pumps usually operate with very

low fluid velocities, so that cavitation damage to

impellers of good materials is not serious. In fact,

the flow rate is often controlled automatically by

varying cavitation as a function of the changing
water level in the hot well.

A much more serious demand for pumps of high
suction specific speeds has arisen in the field of

oxidizer and liquid fuel pumps for rocket engines.

Here the weight of the entire pumping unit is of
critical importance. The weight of rotating

machinery is, for the same head and volume flow

rate, about inversely proportional to the speed of

rotation. Furthermore there arise major advantages
of increased speed if the pump is directly coupled

with the driving gas turbine. These advantages

include not only lower weight, but also, and at least

equally important, simplicity of arrangement,
higher reliability, and lower cost.

The inducer was developed to satisfy these

conditions. It is an axial-flow rotor with long,
helical vanes of low advance ratio or flow coeffi-

cient.

Figure 1-18 (ch. 1) reveals at a glance that

increased suction specific speeds demand reduced
flow coefficients, because curves of constant

cavitation parameters ap show a maximum in
suction specific speed approximately at constant

values of 2goHsv/F2,i between 3.0 and 4.0. While
at conventional suction specific speeds between 0.5

and 0.6 (8500 to 10 000) the optimum suction

specific speed (at zero inlet hub diameter) is reached

with Vm, i/U i between 0.25 and 0.35 (see curves for

gp = constant), the corresponding optima at suction
specific speeds between 1.5 and 2 fall in the vicinity

of Vm,i/O i =0.1. Such suction specific speeds have
been reached by conventional, radial-flow

condensate pumps with cast impellers.

In the rocket pumps, suction specific speeds
between 2

with cast

machined

initially).

very thin
which are

speeds in

and 3 have been achieved, not, however,

impellers but with axial-flow rotors

with straight, helical blades (at least

Machining makes it possible to obtain

blades with very sharp leading edges,

essential for achieving suction specific

excess of 1 (17 200), although such

operation is connected with substantial cavitation.

Figure 1-18 shows that, at suction specific speeds in

excess of 2 (34 400), the flow coefficient Vm, i/U i

must be less than 0.1, perhaps as low as 0.05.

Obviously the very flat vanes required for such low

flow coefficients must be very thin to avoid

unreasonably large blockage effects by the vanes,

and experience has shown that the high suction
specific speeds associated with such low flow

coefficients (according to fig. 1-18) can be realized

only by using very sharp leading edges of the vanes.

The necessity of using machined vanes for such

rotors is, therefore, understandable, although

today rotors of this type can also be produced by
precision casting.

Very thin blades operating in a fairly dense,

liquid medium at reasonably high fluid and

peripheral blade velocities must have a low aspect

ratio, that is, large ratio of the circumferential
extent of the blade to its radial extent. Thus there

develops the picture of an axial-flow rotor with

thin, helical blades and low aspect ratio. Nothing

has been derived as yet regarding the solidity (ratio

of overlapping) of the vane system of such a rotor.

Two considerations give at least qualitative

solutions to this problem:

First, figure 1-18 shows that in the range for
suction specific speed considered here, 2 to 3 or

more (30 000 to 50 000 or more), the blade cavi-

tation parameter op=(p I -pv)/6ow_/2) must be
between 0.05 and 0.01. Such low values preclude

the possibility of cavitation-free operation; in fact,
cavitiation on the blade surfaces must be expected

to be quite extensive. There are two ways of meeting
this situation:

(1) One could try to operate an inducer with fully

developed cavitation, often called super cavitation.
In this case, the cavitation void extends over the

entire low-pressure sides of the blades, as described

briefly in section 2.5.4.1 and figures 2-21 and 2-22.

There is no static-pressure rise through the rotating
vane system, and the following vane system receives

a rotating system of regions alternately filled with

liquid and gas or vapor. Perhaps these regions can
be converted into two circumferentially continuous,

rotating liquid and gas or vapor masses, as shown in

figure 2-22, with the liquid mass entering a radial-

flow system. The hydrodynamic properties of such

an arrangement have not yet been explored.
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(2) The usual solution is to allow the cavitation

void to end (collapse) within the first half of the

rotating vane channel. After this collapse, the

relative flow may be retarded gradually. This

retardation is quite limited, because there exists a

separated turbulent wake, or at least a very thick

boundary layer, behind the cavitation void. (The

s_tuatlon is comparable to that in supersonic flow of

a gas with a normal shock in the vane channel,

described in sec. 3.2.7 and by fig. 3-27.) This
solution clearly requires a solidity of the vane

system well in excess of unity, but the actual value

of the solidity must be determined by additional

considerations of the pressure distribution, possibly
by the previously described mean streamline
method.

Second, in addition to being required to operate

at high suction specific speed, inducers must
generate sufficient head H to permit operation of

the following pump stage without extensive

cavitation. This head requirement is given as one of
the design criteria for inducers in reference 59.

Operation without extensive cavitation has been

achieved reliably with suction specific speeds up to

0.5 and 0.6 (8500 and 10 000), whereas completely
cavitation-free operation requires still lower suction

specific speeds. These figures apply only to

impellers with hub diameter at the impeller inlet not

more than 40 percent (Dh,2/Di, 2 -_0.4), like those
shown in figures 3-56 and 3-57. Larger hub

diameter ratios, such as used in multistage, axial-

flow pumps beginning with the second stage (see

fig. 1-39), call for correspondingly lower suction

specific speeds of the stage following the inducer.

Evidently the total inlet head (above vapor
pressure) of the stage following the inducer is

Hsv,2 =Hsv,l +HI (3-121)

where the subscript 1 applies to the inducer, that is,

the first stage, and the subscript 2 to the second

stage. Continuing with this definition of subscripts,

one finds (for constant n and Q)

SI /43/4 H1)3/4__ _= "'sv 2 = (Hsv, l +

S 2 i43/4 t43/4
"'sv, l "'$v,l

(3-122)

and, therefore,

S 4/3 H l
-I+--

S 4/3 Hsv, 1

r
Di, 1

_ +"_ 11 /

Figure 3-56.- Two low-head inducers in combination with

radial-flow impeller inlet.

or

Hsv, l _ 1

OH'I- HI '-'le4/3/e4/3"'2- 1 (3-123)

which permits the determination of the basic

specific speed of the inducer stage:

-S _3/4
t/S, l - It, H, 1 (3-124)

From the specific speed, one can calculate a number

of design parameters according to equations (1-24)
to (1-26). In order to appreciate the practical

significance of these and the foregoing relations,

one should evaluate an example numerically.

Assume that the suction specific speed of the

inducer is Sl = 2.4 (41 250) and the suction specific

speed of the following radial-flow or mixed-flow

pump is S 2 =0.5 (8600), values which should be
achievable with an inlet hub diameter ratio not over

Dh,2/Di, 2 =0.4 (see fig. 3-56).

Figure 3-57.-C1ose coupling of inducer and radial-flow

impeller. (Rapid contraction from Di, 1 to Di, 2 is prob-
lematic. )
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From equation (3-123), one obtains

1 1

trH'l 4.84/3 - 1 7.1
(3-125)

and, from equation (3-124),

2.4 2.4
=0.553 (9500) (3-126)

ns, l - 7.13/4 - 4.34

which is a reasonable value for an axial-flow pump

(see figs. I-8 and 1-9). In order to verify this
contention, one can determine the discharge hub

diameter ratio Dh,2/Di, l of the inducer from

equation (1-26), because at Dh, 2 the head

coefficient 6h,2 = 2goH/U2,2 can be estimated, and

the flow coefficient Vm,i/U i is approximately given
by the suction specific speed by using figure 1-18.

As in previous cases, the head coefficient at the

discharge hub diameter 6h,2 can be assumed to be
unity. Reading the flow coefficient F m i/Ui =0.08

(corresponding to S 1 = 2.4 and 2goHsv'/V2,i = 3.3)

from figure 1-18, one obtains from equation (1-26)

with Dh, i/Di, l =0.2 the result Dh,2/Di, 1=0.385.
Fortunately this ratio is slightly less than the

maximum hub ratio of the impeller following the

inducer, for which the suction specific speed of 0.5
can be assumed to be achievable if the inlet

diameter Di, 2 of the radial-flow or mixed-flow
impeller following the inducer is equal to the inlet

diameter Di, I of the inducer. This assumption may
not be correct, however, because the impeller inlet

diameter Di, 2 must approximately satisfy the flow

coefficient Vm, i,2 / Ui, 2 , which is appropriate for the
impeller suction specific speed S 2 = 0.5. Figure 1-18

shows that, for this S 2, the optimum flow

coefficient is approximately Fro,i, 2/Ui, 2 = 0.3.
When the notation associated with the solid

contours in figure 3-56 is used, the condition of
continuity for axial flow leads to the relation

D2Vm,i, 1D2i,1 l--_j,l )

which can readily be rewritten in the form

(3-127)

Vm i 1 Ui, 2 1 - D 2 /D_ 1 D3,, h,1 =.__.__

2 2 D_ 1ui, i Vm,i,2 1-Dh.2/Di, 2
(3-128)

With Dh, i/Di, l=0.2 and Dh,2/Di,2=0.4, as
assumed previously,

§3.4.1

0.08 0.96 D 3
0.7 x _ =0.3048 = -_-

Di, l

Hence Di, 2/Di, 1 = 0.673, and

Dh,2 -- Dh.2 Di'2 =0.4×0.673=0.2693
Di, l Di,2 Di, l

which is substantially less than the inducer

discharge hub diameter ratio of 0.385 calculated

previously on the basis of the inducer head

coefficient 2goH/U2,2 = 1 assumed for this diam-
eter.

Figure 3-56 illustrates in solid lines the inducer

and impeller inlet profile (plane radial section
containing the axis of revolution) which satisfies the

diameters established by the foregoing calculations.

This profile shows
(1) A rather abrupt necking of the hub diameter

after the inducer discharge in order to connect the

inducer discharge hub diameter with a smaller

impeller inlet hub diameter (0.4 Di,2).
(2) An even more rapid reduction in outside

diameter from the inducer inlet to the following

impeller inlet. The design criteria in reference 59

suggest that this reduction in outside diameter does

not begin (axially) before the flow enters the

completely enclosed inducer vane passage.

Nevertheless a reduction in outside diameter, shown

by solid lines in figure 3-56, may lead to hydro-

dynamic stability problems, because the radially

converging part of the inducer passage constitutes

in its outer portion a radially inward-flow impeller
with its as yet unsolved problems.

There is a critical speed problem connected with

these variations in hub diameter, since the nearest

bearing is probably located behind the radial- or

mixed-flow impeller, that is, to its right in figure

3-56. This problem can probably be reduced by the

closely coupled arrangement shown in figure 3-57,
in which the inducer discharge hub diameter is

moved under the impeller inlet and into the back

shroud of the (radial- or mixed-flow) impeller. The

reduction in axial length (overhang) achievable in

this manner is limited, because the axial extent of

the inducer is largely determined by the steepness of

the inward slope at its outer contour. The slope

shown in figure 3-57 is the steepest this writer
would attempt to use. Furthermore radial sections

through the inducer vanes shown in figure 3-57 are,

no doubt, inclined toward the inlet side, and this

inclination emphasizes the problem of mechanical

strength in the design of this inducer.
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The necking of the hub between the inducer

discharge and the impeller inlet, shown in figure

3-56, can also be avoided by giving the impeller
inlet an increased hub diameter ratio. This ratio can

be increased by rewriting equation (3-128) in the
form

Vm'i'l Ui'2 1 - =

Oi 1 Vm, i,2 Di, 1 D3• i,l

t D*2 D2 tx 1 - _h-0-_2"-'i'l
D 2 D*2

i,l i,2

(3-129)

where D*h,2/Di, 1 is the given discharge hub
diameter ratio of the inducer (0.385 in this case).

The numerical evaluation of equation (3-129) now
assumes the form

0.08 _ _ 0.1483 D_,2
0.7 × 0.96 = 0.256 = D3 - Di, 1

i,l

which has the solution Di,2/Di, 1 =0.7125.
The inducer and impeller profile resulting from

the last figure and from the assumption that the

impeller inlet hub diameter is equal to the inducer
discharge hub diameter (determined by the inducer

head) is shown in figure 3-56 in dashed lines.

Intuitively one favors this form of the profile for

mechanical reasons. This choice is probably correct

when comparing the profile with others having the

conventional inducer and impeller arrangements

shown in figures l(a) to (d) of reference 59. On the
other hand, this change in hydrodynamic design

increases the impeller inlet head Hsv,2 required for
reasonably cavitation-free operation of the im-

peller.

The fact that the increase in Di, 2 increases the
relative velocity at the periphery of the impeller

inlet must be taken into account in the impeller

design with respect to the retardation of the relative
flow.

The present considerations on inducers with

discharge hub diameter ratios of less than (say) 0.5

would be incomplete without a brief discussion of

the question of whether a radially nonuniform
inducer head might be advantageous for the
combination of the inducer and a radial- or mixed-

flow impeller. This question is suggested by the fact

that the inlet head required to avoid or limit

cavitation in an impeller with an axial inlet is

usually greater at the outer portions of the impeller

inlet than at its inner portions. At first glance, it

seems to be easy to generate more head at the outer

periphery of the inducer discharge than at its hub.

While this is true in principle, the degree to which
the inducer head can be varied from the hub to the

outside of its discharge deserves further investi-

gation.

A design for radially nonuniform inducer head is

easily derived for an inducer with a radially uniform

total head at its inlet. Departures from the flow

associated with uniform inducer head appear in the

form of vorticity trailing from the inducer blades,
so that the velocity components representing this

departure from irrotational flow are normal to the

relative flow leaving the inducer. The principles of
this characteristic of vortex flow in turbomachines

are outlined in section 2.7.2 with reference to figure

2-63, except that, in the present case, the relative

velocity leaving the inducer takes the place of the

absolute velocity shown in figure 2-63.
A simple approximation of this process is shown

in figure 3-58, which applies to inducers of the

general form shown in figure 3-56 in dashed lines.

Velocities carrying the subscript i apply to the
outermost stream surface, while velocities without

this subscript apply to a stream surface having a
diameter about half that of the outermost stream

surface, that is, a diameter a little greater than the

hub discharge diameter. The velocity vectors repre-

senting the potential velocity distribution leading to

a radially constant inducer head are shown by solid

lines, while those representing the discharge flow
with vorticity leading to a radially nonuniform

inducer head are shown in dashed lines, and the

velocity symbols of this vortex flow are distin-

guished by primes.

For a reduction in meridional velocity (at a

diameter D2=Di, I/2 ) to about one-half (Vm, 2

= Vm,2/2), the head at that stream surface is
reduced from its potential value by approximately

14 percent (V'u,z/Vu,2=0.86). The head at the
outermost stream surface is increased by

approximately 18 percent (V_J,i,z/Vu, i, 2 = 1.18), if,
at this stream surface, an increase in meridional

velocity of Vm, i,2/Vm,2=l.83 is assumed. This
assumption is yet to be checked by the condition of

continuity.

The variations in meridional velocity assumed

here are as large as possible, since, for a discharge

hub diameter slightly smaller than Di, l/2, the
meridional velocity there may drop to zero. This
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Figure 3-58. - Inducer velocity diagrams with nonuniform inducer head.

example, therefore, gives an indication of the
maximum radial variations in inducer head (+ 18

percent and -14 percent) that one can hope to
achieve in this manner. It is doubtful whether these

variations are sufficient to justify departures from

the constant-head design. On the other hand, the

change in relative flow angle, from _2 to _,

associated with a reduction in head and meridional

velocity near the hub may be quite significant and

desirable, because the flow angle achieved by this

departure from the constant-head design brings the

resulting inducer vane shape much closer to a

helical surface than the flow angle /_2 associated
with the constant-head design.

The foregoing considerations regarding the

inducer head required to prevent major cavitation

in the second-stage inlet have been applied

primarily to the so-called low head inducers, that is,
to inducers with a hub diameter ratio of less than

0.5 at their discharge, like those in figures 3-56 and
3-57 as well as figures l(a) to (d) of reference 59.

The same considerations apply with (at least) one

modification also to the so-called high-head

inducers shown in figures 1-39 and 3-59, as well as

figures l(e) and (f) of reference 59. The

conventional designations (low-head and high-

head) are, of course, related to the difference in

discharge hub diameters of these two types of
inducers, since the inducer head is more or less

dictated by the discharge hub diameter ratio

through the condition (assumed here) that the head

coefficient referred to this diameter _bh, 2

= 2goH/U_, 2 is approximately constant.
The most significant difference between high-

head and low-head inducers lies in the fact that in

the latter the hub-tip diameter ratio of the inlet to
the second-stage impeller is not a variable of major

significance, since this ratio is fairly low, say not

greater than 0.4 or 0.5, as assumed. In this case, the

effect of this ratio on the suction specific speed is

less than 14 percent and can be considered a minor

correction of the S values appearing, for example,

in figure 1-18. In this respect, the analysis of high-

head inducers must be altered from the foregoing

procedure.

The physical relation to be observed is, still, that

the inlet head to the inducer Hsv, l plus the head

generated by the inducer H I must be equal to or
larger than the inlet head above vapor pressure

Hsv,2 required to operate the second stage without
major cavitation. The second relation that can be

considered in a simple manner is the condition of
continuity of the meridiona] flow.

The head generated by the inducer is, by
definition of the head coefficient ¢,

_kU2 (3-130)
H 1 - 2g °

Thus _b is determined by the peripheral blade

velocity U. As stated previously, the maximum

value of ¢ at the minimum discharge diameter (i.e.,

the discharge hub diameter of the inducer) is the
only one that can be generally predicted. As in other

cases, it is assumed that _h,2 = 1 at the discharge
hub diameter of the inducer, that is, that
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I

Di,1

Di,l

Di,l
2

Figure 3-59. -High-head inducer profiles for K2= 1.5.

H l = Uh2,2 (3-131)
2go

When the outlet diameter (D i according to fig.
1-20) is used, this can be written in the form

U 2 D 2
HI=X_Z_!__-_-

2go D 2
i,l

(3-132)

that is, the inducer head changes for constant speed

of rotation according to the square of the discharge

hub diameter ratio Dh,2/D i.

Obviously the second-stage inlet head Hsv,2 is
given, as previously, by the relation

Hsv,2 _ Hsv, l +HI HI
- 1 + -- (3-133)

Hsv, l Hsv,l Hsv,1

where the last term is the reciprocal of the Thoma

parameter OH of the inducer.

The inlet head above vapor pressure required by

the second stage for reasonably cavitation-free

operation is expressed best by the cavitation

parameter 2goHsv,2/V2,i,2 , which varies relatively
little for optimum conditions (see fig. 1-18). At the

fairly low suction specific speed required for

operation without major cavitation in the second

stage, this parameter has a value of about 4 (see fig.

1-18), so that

Hsv, 2 = 4V2m i 2 (3-134)
2go

A corresponding relation can be written for the

required inlet head Hsv, l of the inducer. In this high
range of suction specific speed, the optimum value
of the cavitation parameter is read from figure 1-18

to be 2goHsv, l/V 2 = 3.3, so thatrt/, I, 1

V 2
Hsv A = 3.3 " m i 1 (3-135)

2go

The relation between the inducer head Hi and the

second-stage inlet head Hsv,2, expressed previously
by equation (3-133), may now be written in the
form

Hsv,2 H l 4 2
Vm i 2 (3-136)

Hsv, 1 - 1 + Hsv, 1 -K 2 3.--3 V 2 .
m, t, 1

where the minimum value of K 2 is 1, which gives
the second stage just the inlet head required; larger

values (K 2 > 1) indicate that the inducer generates

more head than required to keep cavitation in the

second stage below specified limits.

From the condition of continuity, it is evident
that

Vm, i,l (Oi2,, -- Dh2,1)= Vm, i,2 (Oi2,2 - D2 2)

so that

D2 -D2 /D21Vm, i,2 _ _ 1 h,l

Vm i 1 D 2 -D2h 2/D22,, i,2 1 , ,

Combining equations (3-132) to

obtains the following expression:

(3-137)

(3-137), one
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1+ U_ 1 D2
3.3 2 D 2

Vm, i,l i,1

2 2 2
4 D 4 (1-Dh,1/Di, l)

2 2 23.3 2
Again using Vm,i, 1/Ui, 1 =0.08,

(3-138)

so that

U21/3.3 V2m,i, 1 = 47.3, and 4/3.3 = 1.212, one finds

K2 - (1 +47.3D_h,2/D_i,1)(l-D_,2/D_i,2) 2

1.212(D_i,l/D_i,2 ) (1 - D_h,1/D_i,l) 2

(3-139)

which, for ease of calculation, can be converted
into the form

g 2 -
[1 +47.3(D2h,2/D_i,2)(D_i,2/D_i,l)](1-D2h,2/D_/,2)2 x _/_

1.212(1- D_h,I/D_/,I) 2
O_i,l

(3-140)

The numerical evaluation of this equation for

Dh, l/Di, 1 =0.2 is given in figure 3-60. Below
K 2 = 1, the curves do not have any direct design

significance and are, therefore, presented as dashed
lines.

Figure 3-59 illustrates the physical mealaings of

equation (3-140) and figure 3-60 by showing the

inducer profiles resulting from this equation and

figure for K 2 = 1.5, that is, the inducer profiles
resulting under the plausible assumption that the

first (inducer) stage supplies to the second stage 1.5

times the inlet head Hsv,2 required for reasonably
low cavitation in the second stage. Only the values

of Dh,2/Di, 2 larger than those corresponding to the
maximum values of K 2 in figure 3-60 are

considered in figure 3-59, since only these values
apply to high-head inducers.

Figure 3-60 indicates that lower discharge hub

diameter ratios Dh,2/Di, 2 than shown in figure
3-59 are readily usable in the range where the K 2

curve lies above the assumed K 2 value (1.5), which

means that the ratio of available to required second-

stage inlet head K 2 is larger than that assumed in

figure 3-59. In other words, the Dh,2/Di, 2 values
shown in figure 3-59 are maximum values for

K 2 = 1.5, so that the head developed by the inducer

is the highest possible under the assumed
conditions.

It should be observed that Di, 2 is the outer inlet
diameter of the second stage, and for this reason,

the subscripts i and 2 are used.

The foregoing considerations and their results,

illustrated by figures 3-56 to 3-60, present the

diameters required for high-head inducers under

given assumptions. The following sections give the

design requirements for blade flow sections

(cylindrical sections) resulting from the cavitation
conditions under which inducer blades must

operate.

3.4.2 Vane Inlet Design of Axial-Flow Inducers

As noted previously, according to figure 1-18
and the underlying equations (1-42) to (1-49) as

well as equation (1-50c), a substantial increase in

suction specific speed is necessarily connected with

a reduction in the flow coefficient Vm, i/U i and
particularly with a reduction in the vane cavitation

number Op =(.O 1 -pv)/(pw2/2) to values which are
much lower than those achievable with cavitation-

free operation. Some conclusions regarding the
vane shape are drawn in the preceding section 3.4.1.

In the present section, more specific conclusions are

derived regarding the vane shape required to permit

very low Op values with the accompanying cavi-
tation.

Obviously, to account for the cavitation void

expected on the suction side of the vanes, one must

delete the equality sign in equation (3-1), to state

dl >tcos/3 i (3-141)

which means that the normal inlet distance d l

between successive vanes must be substantially, say

10 percent, larger than the distance required to

admit the relative flow approaching the vane system
without any increase in relative velocity. This is so
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K2
1.5

2

Discharge hub diameter ratio, Dh, 2/Di, 2

.g 1.0

Figure 3°60. - Ratio K 2 of inlet head supplied by inducer to second stage divided by inlet head required by second stage. Inlet hub

diameter ratio Dh, l/Di. I, 0.2.

because, adjacent to a cavitation void, this velocity

has already attained its maximum value.
As mentioned in section 3.4.1, the existence of

very low blade cavitation numbers can be met either
by a cavitation void covering the entire low-pressure

side of the blade or by a cavitation void ending
within the vane channel of the inducer. In this

section, only the second of these two forms of

cavitation is considered; it is the form used almost

exclusively in practical inducer design and

operation.
Reference 59 makes the plausible suggestion that

the low-pressure side of the vane should stay

everywhere within the bounds of the cavitation void

shed from a sharp leading edge, so that the

cavitation void does not have to be larger than it

would be under the ideal conditions prescribed by

the given, low value of the cavitation number ap.

The simplest approximation for this boundary of

the cavitation void (also suggested in ref. 59) is a

straight line through a sharp leading edge in the

direction/31 of the oncoming, relative flow with the

velocity w I (see fig. 3-61). If the wedge angle c_w of
the leading vane end is to be finite and practical, the

leading side of the vane must be substantially

steeper than the trailing (low-pressure) side, that is,

the leading side vane angle/3 v (measured against the
axial direction) must be smaller than the trailing

side vane angle. Hence, with reference to figure
3-61,

/3v +_w <[31 (3-142)

Furthermore it is suggested in reference 59 that the

low-pressure side of the vane should stay within the

cavitation void up to a rate of flow 10 percent larger
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than the design capacity. By this rule and with
reference to figure 3-62,

cot(_v +O_w)= l.lOcot/31= l.lO Vm'l (3-143)
Wu,1

so that the equality sign in equation (3-142) is to be
deleted.

Finally, reference 59 suggests that the direction

/3v of the leading side of the vane is determined by

making the angle of attack c_ between the leading

side and the inlet relative velocity w I a value

between 0.35 and 0.5 of 7r/2-/3 v, the larger values
applying to relatively thicker blades. The preferred
value is the mean between these limits

c_= 0.425(2 -/3v) (3-144)

which is used in figure 3-61 on the basis of the

following derivation. According to figures 3-61 and
3-63,

Hence

o_= 0.739 _-/31 (3-145)

This equation can obviously be used to derive a

relation between/31 and/3v in the form

/3v =131-0.739(2-/31 )

-/3v = _ -131 +0.739 -/3_

2 /3v=1.739 -/31 (3-146)

where the factor 1.739 corresponds to 0.425 in

equation (3-144). If this factor in equation (3-144)

were 0.5, one would find

71" 71"

-/3.= _-_l +_
and, if the same factor had its minimum value of

0.35, the result would be

or

;3v=/31-u

Substituting into equation (3-144) gives

o_-0 +o)
or

o_0 o_-0

2 -/3v =--1.54(2 -/31)

One can, therefore, conclude that

2 13v=(l'54t°2) _-/31 (3-147)

The foregoing considerations and rules establish

the leading-edge design of inducer vanes

empirically. It is desirable to relate these rules to the

actual flow pattern to be expected. In addition to an

illustration of the previously mentioned approx-

t

Boundaryof cavitationvoid_ " /

WU'I

.... _h Vm,1

Figure 3-61. -Inducer vane inlet configuration.
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Meridional direction Meridional direction

Circumferential direction

-....._V m,1

Figure 3-62. -Inlet vane and flow angles.

imation of the cavity boundary (by a straight line
through the sharp leading edge in the direction of

the incoming relative velocity wl) , figure 3-61
includes an estimate of the actual boundary of the

cavitation void with the void itself represented as a

dotted region. The origin of the cavitation void at

the sharp leading edge is shown enlarged in figure

3-64. Both figures indicate that the vane thickness

at the leading edge could be increased over the

sharp-edged wedge contour without increasing the

size of the cavitation void. Reference 59 suggests a
maximum leading-edge radius r 1 of not more than

0.01 t, that is, of not more than 1 percent of the

circumferential vane spacing, or a total leading-
edge thickness not greater than 0.02 t.

No doubt the form of the leading edge is

important in this connection. This geometry is
shown in figure 3-63 for a flow coefficient

Vm, 1/wu, 1 =0.1. Beveling the leading edge in the
circumferential direction (as shown by the line ab)

is, of course, mechanically quite simple. Under the

assumption of a zero leading-edge thickness after

beveling, the circumferential width of the leading-

edge cut shown in figure 3-63 is approximately

r 1 =0.15 t= 15rl (3-148)

The sharp edge between the leading side of the vane
and the circumferential cut would, of course, have

to be blunted by polishing, as indicated in figure

3-63 by rn. o =rl, so that the rounded leading edge
would be slightly behind the theoretical leading

edge generated by the circumferential cut.

The foregoing equations (3-141) to (3-148) and

figures 3-61 to 3-64 describe the design of the inlet

portion of inducer vanes on empirical grounds. On
the other hand, the actual contour of the cavitation

void shown in figures 3-61 and 3-64 can be

determined theoretically on the basis that pressure
and velocity along the boundary of a cavitation

void are constant. Perhaps the oldest solution of

this problem for a straight system of parallel,
straight vanes is given in reference 9, where the

problem is solved for op =0. This publication is
valuable insofar as it includes an introduction to the

hodograph method for solving this type of
problem. More recent publications are references 60

and 61, which apply directly to inducers of

turbopumps.

From reference 59, one receives the impression
that the previously mentioned theoretical solutions

.tn 1 = 2.6rl _

[ _ _ //////////////////_ " ', Xn o =rl ,- rl 5_O.Olt

;-_ _ _ .... /'/ - Circumferential direction

Figure 3-63. - Leading-edge geometries for Vm, 1/ U = O. 10.
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Figure 3-64. - Leading-edge flow configuration.

are fairly successful. Yet the empirical approach

outlined in this section is the only solution described

in reference 59. This writer considers the empirical

solution the most dependable one, partly because
the cavitation voids in inducers often differ in

appearance markedly from the theoretical model

and partly because measurements by Ruggeri et al.

(refs. 42 and 43) indicate that the pressure in a

cavitation void is not uniform (see fig. 2-79, sec.
2.8.4), whereas its uniformity is the basis of the

theoretical approach. The empirical approach

outlined previously, therefore, seems to be the only

dependable rule available for the design of the inlet

portion of inducer vanes.

3.4.3 Design of Entire Vane Section of Axial-Flow
Inducers

With the exception of the inlet portion of the

vane, the design of cylindrical sections through
axial-flow inducers can follow the same principles
as described in sections 3.2.2 and 3.2.4 for axial-

flow vane sections in general. However, there is at

least one important difference to be observed with

respect to inducer vane sections, the fact that the

leading edge of the vane is designed with a positive
angle of attack. This angle, together with the

existence of a cavitation void on the low-pressure

side, determines the pressure distribution over the

leading portion of the vane. Thus there is a design
condition different from the prescribed minimum

pressure condition usually observed when designing
a vane system for zero or limited cavitation. This

difference between the vane design for inducers and

that for other axial-flow vane systems is the
principal subject of this section.

§3.4.2-3.4.3

seems to have only a minor effect on the results

obtained with this approach and partly because

simplicity of reasoning is important for design
work.

Figure 3-65(a) illustrates the intended procedure,
considering the flow areas of the system in relation
to the flow conditions in a section a-a inside the

system. This section has an, as yet unknown, axial

distance Ya from a line connecting the leading edges
of the vanes.

The relative velocity through this section varies

from Wa, min along the high-pressure side of the

vane to Wa, ma x along the cavitation void on the low-
pressure side. Evidently, if constant cavity pressure

Pv is assumed,

Pw2a max +pv = pw_
2 _-- +Pl

Hence

2
Pl -Pv

Wamax =1+ --l+op
w_ pw2 /2

(3-149)

For example, with a cavitation number ap =0.02,
which is quite common with cavitating inducers,

Wa, max/W ! = 1.01, that is, Wa, ma x is only 1 percent
larger than w 1. If cavity pressure is not exactly

constant, Wa,ma x may be closer to Wl than indicated
by the foregoing approximation.

Furthermore, considering that the flow within

section a-a can be assumed to have uniform energy,

Pa max + _ pW2 max
• 2 =Pv + 2

P 2
Pa, max--Pv =APa = _ (W2a, max - Wa, min)

Ap a =p Wa, max + Wa, min (Wa, ma x -- Wa, min)
2

and, with (Wa, max+Wa, min)/2=-Wa, which is a
mean relative velocity in section a-a, one finds

While the pressure distribution in a vane system

operating with extensive cavitation can be

determined by theoretical means (see refs. 9, 60,

and 61), a much simpler, quasi-one-dimensional

approach is employed here, partly because the

doubtful assumption of uniform cavity pressure

Apa = PWa(Wa,max -- Wa, min)

Since (by definition of

= 2(Wa, rnax -- Wa),

Apa = 2pWa (Wa, max -- -W-a )

W'a) Wa, max -- Wa, min

(3-15o)
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t_c

I
{a) V w 1 151

L WU'I I

{b)

(a) Inducer vane system inlet.

( b ) Vane pressure distribution near leading edge.

Figure 3-65. -Approximation of flow in inducer vane system.

The condition of continuity obviously demands

that

tVm, 1 =(t-rc)Vm, a (3-151)

where rc is the circumferential vane thickness plus
the circumferential thickness of the cavitation void

(see fig. 3-65(a)). Furthermore

Vm a
w--a _ ' (3-152)

COS Ha

where the mean flow angle _a in section a-a can be

only slightly larger than/3 v (see fig. 3-65(a)).
From equations (3-151) and (3-152), one finds

m

Wam
Vm, 1 t _ Vm, 1

cos _a t - rc w 1

Wl t cos 31 1
×

cOSRa t-re cos_" a Wl l_(re/t)

or

Wa =AWl

where

COS )_ 1 1
A - (3-153)

cos _'a 1 - (r c/t)

so that, according to equation (3-150) and with the

small difference between Wa, max and w I neglected,

Apa =2pw2A(1 -A)

or

Apa =4A(1 -A) (3-154)
pw2 /2

The ratio cos 131/cos fla varies only from 0.72 for

cot /31 =0.05 to 0.62 for cot _3] =0.15 when the
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rules outlined in section 3.4.2 are used for/3 v and it

is assumed that _-a is 1 ° larger than/3v, as shown in

figure 3-65(a). Therefore A and thereby the vane

face pressure coefficient ,_pa/(Ow2/2) = 4A (1 -A)

vary primarily with blockage ratio rc/t.

The relation between the vane face pressure

coefficient and the blockage ratio (including the

cavitation void) calculated from equations (3-154)

and (3-153) is shown in solid lines in figure 3-66.

The points where these curves drop to Ap a

/(pw21/2)=O obviously mark the condition which
can only be described as cavitation choking, since

the rate of flow is here restricted by cavitation and

the condition of continuity. This condition cannot

be approached closely because of the uncertainties
involved in the calculations leading to these curves

and because of irregularities in the flow. The

dashed line AB connects the points at which rc/t is

80 percent of its value at the choking condition

Ap a =0. This ratio is somewhat arbitrarily assumed

to be the highest blockage ratio which can be used

in design to be reasonably sure of avoiding
cavitation choking. According to figure 3-66, then,

the pressure coefficient Apa/(pw_/2) cannot be
lower than its values at the points where the dashed

line AB intersects the curves describing the relation

between this pressure coefficient and the blockage
ratio.

Higher pressure coefficients obviously involve

lower blockage ratios than indicated by the points
at which the line AB intersects the respective

pressure coefficient curves. The upper limits of this

pressure coefficient are, therefore, given by the

lowest values of the blockage ratio rc/t which are

mechanically feasible. Such lower limits are not
directly evident, because rc is not measured normal

to the vane. The corresponding thickness measured

normal to the vane is evidently, according to figure

3-65(a),

rn,c = rc cos/3v (3-155)

This relation is represented graphically in figure

3-67, where rn, c is made dimensionless in the same
manner as previously by division by the

circumferential vane spacing t. The flow coefficient

Vm, i/Wv, I is obviously cot /31 (see fig. 3-61), and
/31 is related to/3v by equation (3-146). It should be

clear that rn, c includes an assumed thickness of the
cavitation void as does r c.

The lower practical limit of the thickness ratio

rn.c/t is assumed to be 0.025. Thus, for example, a

i • T
i

Flowcoefficient, i

, Vm l/wU 1 '

i
!

.05 .I0 .15 .20 .25 .30 .35 ._
Blockageratio, [clt

Figure 3-66. - Pressure coefficient at pressure side of vane near
inlet as a function of blockage ratio.

three-vane inducer 10 inches in diameter, with

t= 107r/3 = 10.47 inches, has rn, c =0.025 × 10.47
=0.26 inch; this value is here considered a mini-
mum for an inducer 10 inches in diameter, because

the actual vane thickness must be less, certainly not

more than 0.20 inch, since rn, c includes the
thickness of the cavitation void.

The horizontal line rn, c/t = 0.025 in figure 3-67 is
transferred to figure 3-66 and appears there as a
dash-dot curve marked with the same thickness

ratio. The corresponding curves are drawn for

rn,c/t=O.03 and 0.04.
The solid curve for Vm, t/Wu, l = 0.05 lies entirely

to the left of the dash-dot curve for rn,c/t=O.025,
so that this flow coefficient cannot be reached with

the assumed minimum vane plus the cavity

thickness ratio rn,c/t=O.025. The minimum flow
coefficient that can be reached with the stated

minimum thickness ratio is established

approximately by adding part of the curve for a

flow coefficient of 0.06 to this diagram. This curve

intersects curve AB just slightly to the right of the

curve rn, c/t=O.025, so that Vm,1/Wu, l =0.06 is
just slightly above the minimum flow coefficient
that can be reached with this thickness ratio. The

minimum pressure coefficient APa/(Pw 2/2) usable
under the rules adopted here is approximately 0.3,
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Figure 3-67. - Blockage analysis of inducer vane system.

and its maximum value for Vm, l/WU, 1 =0.06 is
only slightly higher (0.34).

Furthermore, when it is assumed that flow

coefficients higher than O.l are of only limited

practical value in the rocket pump field (see fig.

1-18), the foregoing restrictions lead to the

conclusion that the shaded area in figure 3-66 is the

only usable area in the field of application discussed
here.

When these results are used, it must be

remembered that the various assumptions made to

arrive at the diagram in figure 3-66 and its

underlying equations are quite hypothetical,

considering the complexity of the actual flow,

which is discussed further in section 3.4.5. Figure

3-66 can, therefore, serve only as a means of

general orientation. For example, it indicates that

the inducer flow coefficient probably has a lower
practical limit, here estimated to be 0.06. From

figure 1-18, one must conclude that this leads to an

upper limit of the suction specific speed obtainable

under the assumptions made here, without thermal
effects on cavitation.

As yet there is no indication of the location along

the vane at which the face presssure coefficient, just
established to be between 0.35 and 0.7, is to be

expected. This location can be approximated as

i

follows: If 3p a is the average vane pressure
difference from the leading edge to section a-a

along the pressure surface (see fig. 3-65(b)) and Ya
is the axial distance of section a-a from the leading

edge, the change in circumferential momentum is

related to the circumferential blade force by

_aYa =A'(wu, 1 -_U,a)p(t- rc)V-'m,a (3-156)

L

where (t-Tc)Vm, a =tVm, 1 is the volume flow rate
per vane and per unit height normal to the plane of

the flow. The coefficient A*< 1 expresses the fact
that in a nonuniformly distributed flow like that

shown in figure 3-65(b) the regions with the greatest

momentum change have the least flow per unit
area, and vice versa. However, this effect can

hardly be major.

Combining equations (3-150) and (3-156), one
obtains the relation

2_a(Wa, max - W'a) -_ _ Y = A*(wu, 1 - WU,a)
Ap a a

x (t - Tc)Vm, a (3-157)

From figure 3-65(b), it is evident that, under the

assumption o._._fa pressure distribution expressed by
this figure, Apa/Apa > 1. As explained previously,
with A* < 1,

Ap a 1

Apa A*
--- =B>I (3-158)

but may not be v___erymuch larger than 1, since the

departures of AplAp a and A* from unity are not
expected to be very large. With the notation

introduced by equation (3-158), equation (3-157)
can be written in the form

m

2 Wa'max - wa B = t- r c Vm, a _ t - r c COS _-a
WU, I -- WU, a Ya W---a Ya

(3-159)

since V--m,a/_a=COS "fla is evident from figure
3-65(a). From the same figure, it is reasonable to

make Ya dimensionless by dividing by t cot fly, that
is, by the rise (or advance) of the pressure face of
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one vane over the leading edge of the following
vane. This introduces the ratio

y_ Ya Ya sin/3 v (3-160)
t cot By t cos By

With this notation, equation (3-159) can be written

in the form

cOSta (3-161)
2Wa'max_ -_a BY= (1 - _)sin _v cos/_-----_

WU, 1 -- WU, a

Figure 3-68 shows that, for a typical velocity

diagram drawn with Vm,1/U=O.I, the ratio

(Wa,max --Wa)/(WU, l - W..U,a) is within drafting

accuracy equal to 1/sin/3 a =1.017, that is, the ratio

is practically unity. When/3 a -/3 v = 1° is assumed,
the ratio cos _a/COS _v is -0.914 and sin By is

approximately 0.98, so that sin j3v cos _a/COS _3v
=0.896. Hence equation (3-161) reduces to the

form

2BY=(1--_--)_Zc\0"896=_I / -_)0.881

From figure 3-66, one may conclude that an

average, useful value of r c/t is approximately 0.24.
With this value, one finds BY=0.335. Since B is

slightly, say about 10 percent, larger than unity, it is

reasonable to conclude that

Y=0.3 (3-162)

as shown in figure 3-65(a). Thus the vane face

pressure coefficient shown in figure 3-66 applies for

a solidity of 1 to a point less than one-third of the

vane length removed from the leading edge. Since

inducer vane systems usually have solidities much

greater than 1, the point to which the Apa/6OW2/2)

values in figure 3-66 apply lies very close to the

leading edge, for example, at a distance slightly less
than one-sixth of the vane length for a system with a

solidity of 2.

The foregoing results require some additional

analysis before they are ready to be used in the

design of inducer vane sections. Particularly there
should be an estimate of how the momentum or

head rise from the inlet to section a-a (fig. 3-65)

compares with the total momentum or head rise
accomplished in the entire cylindrical section

considered. Such an estimate permits the

establishment of an approximate relation between

Ap a (as given by eq. (3-154) and fig. 3-66) and the
vane pressure difference over the remainder of the
blade after section a-a.

The rise in angular momentum from the inlet to
section a-a is expressed by equation (3-156), which

obviously contains the mean vane pressure
difference from the leading edge to section a-a. On

Wa, max" Wa

_ ¢_'--1 Percent of Wl _
Wa, max_

-_ *a
Vm, a

w1

Vm, i __UaI -%I---- %.I , - - .
I 1

_a

14, = U1
I Wu'1
I lI

I I I I
1.0 .9 .8 .7

I I I 1 I I
.6 .5 .4 .3 .2 .I 0

Velocity ratio, wuIU I

Figure 3-68. - Velocity diagrams for Vmd l U= O. 1 = cot 8 t at axial distance Ya = 0.3 t cot 8t, frorn leading edge. For reasons of

clarity, wu, i - wu, a and Wa, max -- Wa are shown at twice their correct size.
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the other hand, equation (3-154) and figure 3-66

describe the local vane pressure difference £xp a at
section a-a. These two relations can be combined in

the form

Apa = APa Apa_aa=A*AVuaO_a" Vm'l (3-163)

where AVU, a =Wu, 1 - WU, a and tVm, 1

= (t - 7c) Vm, a .
The desired result is here derived for Ap a

/(0w2/2)=0.4 and for a flow coefficient

Vm, 1/Wu, l =cos/31 =0.07, which in figure 3-66 is
associated with rc/t=0.24 and has an acceptable
location within the shaded area of practically useful

and possible design conditions.

With `sPa=0.4 0w2/2, and when equation

(3-160) is used, equation (3-163) can be written in
the form

D

1 wl yCOS/3v w1AVu'a -0.2 A*
U U sin/3v Vm,l

With the notation introduced by equation

(3-158), as well as the trigonometric relations

between the velocity ratios and the inflow angle/3j

(see fig. 3-61), one finds

, B 1 rcos/3_, 1AVu a =0.2
U sin/31 -s-_v, cos/31

(3-164)

With the flow coefficient cot ;31 = 0.07, one obtains

/31=86 ° and according to equation (3-146),
/3v =83.04*. Using the previously derived value
Y=0.3 and for B the estimated value of 1.1, one

obtains

1
AVu'a =0.22× xO.3

v

0.1212 1
x _ x 0.0698--------3=0.1157

This velocity ratio can readily be converted into the

head coefficient applying to section a-a:

2goH a ,5 VU, a _ 1.7 × 0.1157 = 0.1967
_'a -- U2 --2_h U

where the so-called hydraulic efficiency _h is
assumed to be 0.85.

The foregoing evaluations of equation (3-163)

apply primarily to the tip section of an inducer,
because of the assumed flow coefficient cot

/31 =0.07. Figure 3-66 shows that substantially
larger diameters are not possible, because 0.07 is
close to the minimum flow coefficient feasible

under the assumptions used here. The maximum

total head coefficient of the tip section with

diameter Di, 2 can be estimated from the head

coefficient g/h,2 = 2goH/U2,2 by the relation

_i =_h,2 _ (3-165)
D 2i,2

For the frequently assumed value fib,2 = 1, this
equation is obviously reduced to the simple form

_i = _ (3-166)
D 2

i,2

Consider, for example, a so-called high-head

inducer having a discharge diameter ratio

Dh,2/Di,2=0.8 (see fig. 3-59, particularly the
second drawing from the top). With _bh,a = 1, it is
seen from equation (3-166) that ffi=0.64. If

ffa =0.2, it follows that _i/_a =3.2 and, therefore,
that the total momentum and head rise in the tip

section is 3.2 times this rise up to section a-a.

However, as previously shown on the basis of the

approximate relation (3-162), the vane length from

the inlet to section a-a is only about one-sixth of the

entire vane length. The mean vane pressure
difference over the rest of the vane after section a-a

must, therefore, be only about one-half of the mean

vane pressure difference Ap a from the leading edge
to section a-a. Consequently this vane is necessarily

leading-edge loaded.

This situation is even more pronounced with the

so called low-head inducers. Consider a typical case

with Dh,2/Di,2=0.4. According to equation
(3-166), this value leads to _bi =0.16. With radially

increasing inducer head, as described in connection

with figure 3-58, ffi could be increased to about
0.2, but not much more. Thus, for low-head

inducers, the momentum and head rise reached at

section a-a is at least as great or greater than the

entire momentum and head rise required at the tip
section.

This conclusion does not mean that the tip
section of the vane could end at section a-a. One

reason why it could not is that it would operate with

the cavitation void passing through the system to its
discharge side, which would change the action of

the system, as explained briefly in section 2.5.4 by

means of figure 2-21. A second, related reason is
that the earlier assumption that the mean flow anzle
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/3ain sectiona-awouldbeonlyslightlylargerthan
/3vwouldbeinvalid.A (straight)extensionof the
vanesbeyondsectiona-awouldbenecessaryto
permitclosingof thecavitationvoid within the
systemandto evenouttheflowbeforeit leavesthe
system,sincein sectiona-athechangein angular
momentumis essentiallyzerofor thestreamline
alongthecavitationvoidandistwiceitsmeanvalue
for thestreamlinealongthepressurefaceof the
vane.Neverthelesstheextensionof thevane(inthe
tip section)beyondsectiona-ahasonly indirect
reasons,as indicated,if the requiredchangein
angularmomentumis alreadyaccomplishedin
sectiona-a. In additionto the closingof the
cavitationvoid andtheequalizationof theactive
flow, thisextensionof thevanesmustalsopermit
the gradualdissipationof the turbulentwake
behindthecavitationvoidshownin figure3-61.
Generallythe minimumsolidityof inducervane
systemsmustbesomewhatlargerthanunity,as
becomesmoreevidentin section3.4.5

Forvanesectionswheretheincreasein angular
momentumAVu/U is distinctly larger than 0.12,
the mean streamline method may be employed to

obtain a reasonable vane pressure distribution. One

might be tempted to assume a rather abrupt

increase in static pressure after the point of closure
of the cavitation void. This is not likely to be a valid

assumption because of the existence of a turbulent

wake in this region (see fig. 3-61). One should

assume instead a gradual pressure rise after the
closure of the cavitation void. Even ahead of an

assumed point of closure (estimated from the wall
pressure and the mean flow pressure), the cavity

pressure can be expected to rise in the direction of

the flow, because of dispersed liquid in the cavity.

This assumption is in accordance with the work by
Ruggeri, et al. (refs. 42 and 43) represented in

section 2.8.4 by figure 2-79. It is important to

maintain a very conservative pressure gradient

behind the cavitation void, since the turbulent wake

following the termination of this void (see fig. 3-61)

is very prone to separation in an adverse pressure

gradient.

3.4.4 Summary of Procedure for Design of Inducer

Vane Systems Based on Frictionless Flow Through
Axial-Flow Inducers

This section summarizes the results of the

foregoing sections 3.4.2 and 3.4.3 and of reference

§3.4.3-3.4.4

59 on the basis of the idealized flow considerations

employed in these sections. These considerations

exclude (except for overall efficiency) the effects of

fluid friction (viscous or turbulent) and of the

secondary fluid motions induced thereby. (Only in
one instance were local fluid friction effects

considered, when recognizing the existence of a

turbulent wake behind a closing cavitation void.)

The method of designing cylindrical vane sections

of inducers emerging from these considerations is
the following:

(1) The design is based on the direction of the

relative velocity w I of the flow before entering the

vane system. This direction is expressed by the angle

131 measured from the axial (or meridional)
direction.

(2) The low-pressure side of the vane should not

touch the boundary of the cavitation void, which is

approximated by a straight line through the leading

edge of the vane having the direction /31 of the
oncoming relative flow w 1. This rule should be

satisfied up to a flow 10 percent in excess of the

design flow. With the notations given in figures

3-61 and 3-62, this rule assumes the form

Vrn 1
cot(/3v+O_w)=l.10cotl31=l.10- '

wu, l
(3-143)

where/31 and Vm, 1 express the design flow rate.
(3) The leading portion of the vane is wedge-

shaped, as shown in figure 3-61. The pressure face

near the leading edge is straight and has the

direction/3 v determined by the empirical relation

-- /3v = (1.54 to 2) -/31 (3-147)

which is intended to assure an adequate wedge angle

c_w. A factor of 1.739 corresponds to 0.425 in
equation (3-144), according to equation (3-146).

(4) The low-pressure side of the vane, as

described by item (2), should turn in the direction

/3v of the leading side of the vane in a region from
0.5 t to 0.8 t removed from the leading edge (see fig.

3-61). The desired vane thickness is important in
this choice.

(5) The leading edge may be shaped approx-

imately according to figure 3-63.

(6) In section a-a (fig. 3-65(a)), at an axial

distance from the leading edges of approximately

Ya =0.3 t cot/3v, the leading face pressure above the
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vapor pressure is approximately given by equations

(3-154) and (3-153) and by figure 3-66. These

equations and this figure are derived by a quasi-
one-dimensional consideration under the assump-

tion that the cavitation void extends through section

a-a.

(7) On the basis of the results quoted under item

(6), one can estimate the momentum and head rise

up to section a-a (fig. 3-65(a)) from equation

(3-164). For a flow coefficient Vm, I/WU, 1 =0.07,

with U= Wu, 1, the momentum rise up to section a-a

is AVu, a -_0.12 U, which is for high-head inducers a
substantial part, say one-third, of the total
momentum rise of the tip section. For low-head

inducers, it is about equal to the total momentum

rise of the tip section.

(8) If the total circumferential deflection

expected from the cylindrical vane section

considered is not substantially larger than A V U

=0.12 Wu, 1, the pressure face of the vane can
continue approximately under the angle _v to the
trailing edge, and the suction face curves can

continue gradually to meet the trailing edge at a
small, final vane thickness. The vane must extend

considerably beyond section a-a to permit cavity
closure and equalization of the flow. The solidity

required to accomplish this is empirically found to

be never less than unity. The pressure on the suction

side of the vane starts with the vapor pressure Pv

and begins to rise gradually somewhat before the

(estimated) end of the cavitation void (beyond

section a-a). The pressure on the high-pressure side

of the vane starts with Apa at section a-a (given in
figs. 3-66 and 3-65(b)) and smoothly approaches

the discharge pressure of the system, which is

p2=Pl +p(wZ-w2)/2. In estimating the dis-

charge relative velocity w 2, one should take the

boundary layers into account. A vane system

designed as outlined here is expected to generate

somewhat more head than indicated by the mean

change in angular momentum predicted for section
a-a.

(9) If the total circumferential deflection required

from the cylindrical vane section considered is

substantially larger than AVu=0.12 Wu, 1, the
mean streamline method permits the design of the
vane section with a smooth transition from the inlet

portion designed according to the preceding

consideration. Up to section a-a (axial distance Ya),

the vane pressure distribution is given by Pv on the
suction side and Ap a (from fig. 3-66) on the high-

pressure side. Near the leading edge, the stagnation

pressure is reached, as indicated in figure 3-65(b),

but this pressure distribution should be plotted

against the axial coordinate y as previously
described for the mean streamline method of

design. The pressure along the suction side of the

vane begins to rise slightly above the vapor pressure

somewhat before the (estimated) end of the

cavitation void. The subsequent pressure rise

toward the discharge static pressure of the mean
flow must be very gradual to avoid separation
under the influence of the turbulent wake behind

the cavitation void. Separation is avoided by

selecting a low lift coefficient, certainly lower than

the pressure difference Apa/(pw2/2) near the
leading end of the vane; that is, the lift coefficient

CL,1 should be lower than 0.4. For inducer vanes,
this value leads to leading-edge-loaded profiles in
contrast to vane systems designed for little or no

cavitation, where uniform loading or trailing-edge

loading should be preferred.
(10) The three-dimensional layout of the entire

inducer vane can follow the same principles as

described and used in section 3.3.1. The geometric

and mechanical problem is often more difficult with
inducers than with more-standard, axial-flow pump

rotors because of the large circumferential (angular)

extent of the inducer vanes. No general solution of

this problem is known to this writer. However, in

the rocket pump field, the problem is met by using

far-reaching compromises in favor of mechanical

design and ease of manufacture.

3.4.5 Effects of Fluid Friction on Flow in Axial-

Flow Inducers

Inducers for suction specific speeds in the range
between 2 and 3 (35 000 and 50 000) must, accord-

ing to figure 1-18, have flow coefficients between
0.10 and 0.06. Furthermore the solidity of the vane

system is usually in the vicinity of 2 in the tip section

and considerably larger near the hub. These values

imply a very large ratio of blade chord to the

average normal distance between the blades, so that

the effects of fluid friction must be expected to be

quite large. For example, with a solidity of 2 and a
flow coefficient of 0.08, this ratio can be estimated

to be about 12, so that the vane boundary layer

cannot be expected to remain small compared with
the normal distance between the vanes.

In addition, bending stress considerations
outlined in section 1.3.3.2 indicate that, for

inducers with relatively small hub diameters, the

number of blades must be fairly small, say 3 or 4, so

that a vane system with a solidity of 2 covers a
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substantial angular extent, often more than 7r. In

such inducers, the radii of curvature of the relative

flow along the blades, which are nearly equal to the
distances of the streamlines from the axis of

rotation, are of the same order of magnitude as the
radial extent of the blades and of the flow field next

to the blades. This fact and the large angular extent

of the vanes lead to a very significant effect of

centrifugal forces on the flow in the vane boundary
layers, as described in section 2.5.7 and figure 2-38.

Specifically the radial motion in the boundary

layers must be strong, and the resulting secondary

flow is of more than just local importance,

considering the previously mentioned thickness of

the vane boundary layers. The secondary flow,

usually confined to the relatively thin boundary

layers, must be expected to occupy in inducers
major portions, or the entire cross section, of the

flow channel between the vanes near the discharge

end of the rotor vane system. Figure 3-69 shows a

cross section of the expected vane channel flow
which has been confirmed by experimental

observations, particularly those by Lakshminara-

yana reported in reference 62. The entire outer half

of the vane channel is, as expected, occupied by

boundary-layer fluid at the inducer discharge. Only

in the region within the inner half of the vane

channel is the flow not strongly influenced by the

boundary layers. Under these circumstances,
inducers of the type described here would be

expected to have hydrodynamic characteristics

substantially different from those predicted on the

usual basis of a frictionless fluid corrected merely

for the real efficiency. The previously mentioned

investigations by Lakshminarayana had the

- _,_+ _ FlOw from inside 3 I

_--_I / of boundary layers I -x_ +

Figure 3-69.-Cross section through vane channel flow

near inducer discharge. (This drawing applies

qualitatively to any radial section between normal to

vanes and parallel to axis of rotation. )

§3.4.5

purpose of clarifying this matter, and the following

presentation is essentially an excerpt from reference

63, focusing attention on only those results that
may be of major interest for the design engineer.

Lakshminarayana's investigations were carried

out by means of a large-scale (3-ft-diam) model of

an axial-flow inducer designed for a suction specific

speed of 2.9 (50 000). The model is operated in air,

since only fluid friction effects, not the cavitation
characteristics, are under investigation. Important

data on the model are given in table 3-III. The test

inducer was originally designed (by the mean

streamline method) for radially uniform head at

radially uniform through flow velocity. A

modification was necessary to permit reasonable

fairing of the various sections, leading to a slightly
higher theoretical (i.e., ideal-flow) head in the

midsection (r/r o =0.75) than at the root and tip
sections of the vanes.

The hub and tip sections of the inducer are shown

in figure 3-70, and the axial end view of the vane as

well as the circumferential projection of radial

sections through this vane are shown in figure 3-71.
In spite of the previously mentioned minor

compromises in favor of fairing, the radial sections

are far from straight, but are still mechanically

acceptable.

The most important departures from the velocity
and momentum distributions derived by frictionless

flow considerations are obtained by velocity

measurements behind the test inducer. Figure 3-72
shows the locations of the stations at which such

measurements were made. These are the stations

referred to in figures 3-73 to 3-76, which give test
results from reference 63.

Figure 3-73 shows the measured variation of the
absolute, circumferential velocities at various

distances behind the test inducer. The dramatic

departure from the design velocity distribution is

immediately evident; the measured velocities

increase with increasing distance from the axis of

rotation rather than decreasing as assumed for the

design. The increase can only be explained by the

flow distribution at the discharge of the vane

channel, shown diagrammatically in figure 3-69.
The flow in the outer regions is under the influence

of boundary friction and, because of the high

stagger angles of the vanes (angles against the axial

direction, table 3-III and fig. 3-70), acquires

greater absolute angular momentum than it would
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TABLE 3-11I. -INDUCER CHARACTERISTICS

L[Subscript t denotes vane tip; radius ratio R = r/ro.]J

Tip diameter, in ................................... 36.5

Hub-tip ratio at outlet .................................. 0.5

Hub-tip ratio at inlet ................................. 0.25

Radial clearance, in ................................. 0.0625

Design suction specific speed, S .......................... 50 000

Flow coefficient, _p = Vz/U t ............................ 0.065

Blade chord, in.

Tip OR = 1.0) .................................... 82.96

Midspan OR - 0.75) ................................ 63.18

Hub (R = 0.5) ................................... 49.94

Solidity

Tip .......................................... 2.86

Midspan ....................................... 2.91

Hub .......................................... 3.50

Number of vanes ..................................... 4

Average angular wrap, deg ............................... 290

Lift coefficient of blade based on mean velocity

Tip ........................................ 0. 0966

Midspan ...................................... 0.1E3

Hub ......................................... 0. 307

Reynolds number based on tip radius ....................... 6.60:<105

Reynolds number based on relative velocity and chord at midradius ...... 1.75)<106

Maximum deviation of camber line from mean streamline, (_n/L)max

Hub .......................................... 0.02

Midspan ..................................... 0. 01075

Tip ........................................ 0.00637

Blade angle at inlet

Hub ......................................... 75°30'

Midspan ...................................... 83° 30'

Tip ......................................... 8¢i°15'

without friction. The effectiveness of this increase

in angular momentum is discussed later.

Somewhat startling is the apparent decrease in

angular momentum with increasing distance from

the rotor in a vaneless space of revolution. This

apparent contradiction is explained, at least partly,

by the axial velocity distribution shown in figure

3-74, since only the local mass flow (pV z x area)

times the circumferential velocity component

(Vo=V U) represents the transport in angular

momentum. It should also be considered that the

axial velocity component V z is generally a small

component of the total absolute velocity, so that its

measurement is necessarily less accurate than that

of the absolute velocity and its peripheral com-

ponent.

Figure 3-74 indicates that the axial velocity

component decreases near the hub with increasing

distance from the rotor, and this effect suggests

back flow and separation of the axial flow

component after station 5 in figure 3-72. In

reference 63, this separation is explained as being

caused by the radial flow inside the blade boundary

layers and in the blade wakes. References 62 and 64

report observations and flow measurements of this

separation which indicate that it is the same for a

stationary and a rotating hub surface behind the

inducer. (This result is surprising, because the
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( a ) Development of cylindrical tip section ( r/r t = 1.0).

(b) Development of cylindrical root section (r/r t = 0.5).

Figure 3-70. - Design of blade profiles. (Dimensions in inches. )
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Figure 3-71. -Axial view and circular projection of inducer blade. (Dimensions in inches. )
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Figure 3-72. -Locations of flow measuring stations. (Dimensions m inches. )

motion of the boundary should have a significant

influence on the boundary-layer flow.) An

alternative (or additional) explanation for the
separation of the axial flow from the hub is the

static-pressure rise along the hub (see fig. 3-76).

This pressure rise is mainly dictated by the

circumferential flow, which has, in general, much

higher velocities than the axial flow. Although this

pressure rise appears to be small according to figure

3-76, it can be estimated to be about 5V2z/2go,
which is ample to explain the separation of the axial

flow Vz.
Figure 3-75 shows the total head rise, measured

behind the impeller, as a function of the radius ratio

and of the distance behind the impeller. When these

curves are compared with those in figure 3-73, it

should be considered that in the controlling relation

2goH VoU(r) V o r (3-167)
_bT= U-_ --=2r/h U---_ =2r/h Ut rt

the local hydraulic efficiency _Thvaries very strongly

as a function of the radius ratio as well as of the

distance from the impeller. This efficiency falls off

very rapidly with increasing r/r t in the outer regions
of the flow. The local hydraulic efficiency increases

with increasing distance from the impeller; this

effect certainly deserves further scrutiny. It is
significant that the radial increase in the circum-

ferential velocity shown in figure 3-73 is confirmed

by a similar radial increase in the measured total

head (fig. 3-75). This result should be fairly

dependable in spite of the highly disturbed (un-
steady) flow conditions under which all measure-

ments of this investigation had to be taken.

Another dependable measurement is the

previously mentioned static pressure at the outer
and inner cylindrical walls of the flow field

considered. It is also useful to interpolate between

the outer and inner wall pressures at the same

station (3,4,5, etc.), because the tangents to the

p(r) curves at each end are easily calculated from

the circumferential velocity near each wall (outside

a thin boundary layer). The results of such wall
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Figure 3-73.- Radial variation of absolute tangential velocity
at various axial locations. Subscript a denotes circum-
ferential component; subscript t denotes tip of vanes.
(From ref. 63. )
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Figure 3- 74. - Radial variation of axial velocity at various axial
locations. Subscript z denotes axial or meridional
component; subscript t denotes tip of vanes. (From ref. 63. )

pressure measurements are presented in figure 3-76

in terms of a static head coefficient:

_bs = 2goh
U2 (3-168)

•6 _ Axial station
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Figure 3- 75. - Radial variation of absolute stagnation pressure
coefficient at various axial locations. Subscript T refers to
total head H in 6r=2goH/U_l; subscript t denotes tip of
vanes. (From ref. 63. )
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Figure 3-76.-Radial variation of static head coefficient at
various axial locations. Subscript s refers to static head h in
¢_s=2goh/L_t; subscript t denotes tip of vanes. (From ref.
63.)

where h is the static head.

It is of considerable interest that even the static

head coefficient is somewhat higher than its design
value, but the difference between the measured and
the design value is far less than for the total head
coefficient (fig. 3-75). Since it is not known how
much of the kinetic energy in the highly disturbed
flow represented by figure 3-75 can be recovered, it
seems reasonable to consider that the measured
static-pressure distribution (fig. 3-76) is a safe
indication of the minimum head that can be
expected from the inducer described by table 3-III
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and figures 3-70 and 3-71. By comparing the test
curves in figure 3-76 with the design curve in figure
3-75, one can conclude that the useful static head

developed by an inducer with extensive fluid

friction effects may not differ a great deal from that

calculated by the usual design methods. Of course,

the required torque is much higher than the design

torque and may be more appropriately represented

by measured values of fiT and Vo/U t (figs. 3-73
and 3-75), if these values are properly weighted for
mass flow distribution. This distribution can be

obtained by replotting the Vz/U t curves in figure

3-74 against r2/r 2, so that they represent the
annulus area.

The aforementioned estimate of the useful

inducer head is too conservative if the inducer is

used, without a diffuser, in connection with an

impeller, as shown in figures 3-56 and 3-57,

because this impeller receives the total angular

momentum leaving the inducer. It is particularly

important to estimate the true angular momentum
in the outer regions of the flow annulus between the

inducer and the impeller in order to design the inlet

to the impeller vane system properly to receive this

flow. Only a fairly crude approximation is possible

in this respect, since the actual flow leaving the

inducer is generally not known. The excess angular
momentum (over its design value) in the outer

regions of the inducer discharge may well be less

than indicated by figures 3-73 and 3-75, but some

excess angular momentum in the outer regions must

be assumed to exist. In view of the magnitude of

possible departures from the design flow (by factors
between 2 and 3), some flow measurements between

the inducer and the impeller are a necessity for good
impeller design.

The four-blade test inducer for which test results

are presented in figures 3-73 to 3-76 is shown in

table 3-1II and figures 3-70 and 3-71 to have an

extremely high solidity (2.86 at the tip). This

solidity was chosen for the early tests in order to
emphasize fluid friction effects. However, for

practical application the solidity of the four-blade

inducer tested is probably excessive and is likely to
lead to low efficiency. For this reason, the test

inducer was also investigated with three and with

two vanes of the same shape.
All inducer models were tested at the same flow

coefficient, Reynolds number, and blade angles (see
table 3-III). The test results obtained with three and

two blades are not presented here in detail, because

they do not indicate behavior or flow pattern
fundamentally different from those observed with

the four-blade test inducer. However, the most

essential effects of reducing the solidity of the test
inducer from reference 64 are given here:

(1) The performance of the inducer improves
continuously with decreasing solidity, the two-blade

inducer showing substantial improvement over the

four- and three-blade inducers. This change is to be
expected, because inducers are designed for

acceptable performance with cavitation, and this

type of design results in solidities that are much

higher than would be optimum with respect to fluid
friction.

(2) The static-pressure (or head) rise increases
continuously with decreasing solidity at all radii.

The average static head coefficient for the four-

blade inducer was 0.21 (see fig. 3-76); for the three-

and two-blade inducers, the average head

coefficients were 0.31 and 0.375, respectively.
(3) The stagnation pressure (or head) rise

coefficient also increases continuously with
decrease in blade number at all radii. The mass-

averaged values are 0.4, 0.476, and 0.584, respec-
tively, for the four-, three-, and two-blade inducers.

The radial gradient of head rise coefficient 0_bT/Or
is almost constant from hub to tip for the two-blade

inducer, unlike that at other solidities, where a steep

rise is observed near the tip.

(4) The axial velocity profile is qualitatively
similar downstream of all the inducers tested. The

steep rise in axial velocity toward the tip observed in
three- and four-blade inducers is absent in the two-

blade configuration, but the extent of the separated

zone (or back-flow region) near the hub increases
continuously with decrease in solidity. Very near

the trailing edge (at station 3 in fig. 3-72), the axial

velocity is radially uniform for the two-blade
inducer, unlike that for the three- and four-blade

inducers, where the minimum velocity occurs at
midradius. This difference indicates the dominant

influence of blade blockage, which is large for the
four-blade inducer.

(5) The tangential velocity V o distribution shows

a trend similar to the _bT distribution. But the large
values of dVo/dr observed in the four- and three-

blade inducers are reduced substantially in the two-

blade configuration.

(6) The hydraulic efficiency (local as well as

overall) increases continuously with decrease in
solidity.
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Theresultsof theinvestigationof fluid friction
effectsin inducersaresummarizedat theendof
reference63.Reference64constitutesasummaryof
theentireproject.Nosummaryof thesefindingsis
givenhere.Thereareonlya fewcommentson the
practicalapplicationof theresultsquotedin this
section:

(1)There is as yet no convincing reason why one

should depart significantly from the design

procedures outlined in sections 3.4.1 to 3.4.4,

although it is known that fluid friction influences

the flow in inducers significantly. In particular, the
consideration of fluid friction does not justify a

return to the (mechanically convenient) so-called

flat-plate inducer design (actually having helical
blades of constant pitch). Even with ideal, or

nonviscous, flow conditions, the flat-plate inducer

leads to radially increasing meridional velocity and

pump head, that is, it departs from the desired
uniform flow and head distribution in the same

direction as a well-designed inducer under the
influence of fluid friction. In other words, under

any assumption, the flat-plate inducer must be

expected to depart from the desired (uniform) flow

distribution farther than an inducer designed by the
usual methods for radially constant head (the so-

called vortex design).

(2) The actual flow leaving the inducer must be
recognized as one of radially increasing angular

momentum. The degree of this departure from

radially constant angular momentum is generally

not predictable. Before a vane system following an
inducer of the type described here is designed, it is

highly desirable to measure the velocity distribution

of the flow leaving the inducer. The departures

from radially uniform angular momentum may be

appreciable, the angular momentum always
increasing with radius.

(3) In view of the fluid friction effects outlined in
this section, one should be tempted to reduce the

solidity of the outer portions of inducer vane

systems as far as possible. Hence one should know

the minimum solidity required to insure (a) closure
of the cavitation void, (b) dissipation of the wake

behind the cavitation void, and (c) a reasonable

degree of equalization of the uneven velocity

distribution in the presence of a cavitation void.

(Items (b) and (c) are, of course, closely related.)
References 60 and 61 offer some answers to these

questions, but further experimental work would

seem necessary before the answers are dependable

under the complex, actual flow conditions in an
inducer.

A progressively increasing reduction in solidity
(vane chord) with increasing radius necessarily leads

to a substantial departure of the leading and trailing

vane edges from the radial direction. For the
leading edge, there is a combination of backward

skew and rake, called sweep, as shown in figure
3-33 and discussed in section 3.3.2. Fortunately

backward sweep is advantageous for the perfor-

mance of inducers and, if coupled with a reduction

in vane chord (or solidity) in the outer portions of

the vane, has obvious advantages regarding the

mechanical strength of the vanes (see ref. 59). For
substantial sweep (as shown, e.g., in fig. 3-33), one

should estimate its effect on the oncoming velocity
distribution as outlined in section 3.3.2. To do so,

one must make an assumption regarding the part of

the total vane vorticity that is generated by the

swept portion of the vane, since the entire blade

usually has little or no sweep. For the leading-edge

loading used in inducers, the swept part of the vane
vorticity may be in excess of one-half at the tip and

between one-quarter and one-third at the root.

(4) With proper design considerations and

experimentation, it should be possible to reduce the
large-scale secondary fluid motions in inducers by
more or less known means such as fences,

appropriately designed slots in the outer portion of

the vane (constituting high-lift devices), and

perhaps an approximately cylindrical shroud
between the hub and tip diameters. Other methods

have been suggested.
Such methods of inducer improvement should be

explored if the opportunity to do so presents itself.

However, aside from mechanical complication and

manufacturing difficulties, most methods of this

type introduce additional skin friction. It is not
certain that a reduction in large-scale secondary

motions brings significant advancements if

obtained by the addition of skin friction.

(5) High-head inducers with large discharge hub
diameters, such as shown in figure 3-59, are not

subjected to major effects of fluid friction and can

be designed for fairly high increases in head along
conventional lines, for instance, by the mean

streamline method. The inlet portion of the vanes

must be designed according to section 3.4.2
wherever the vane cavitation coefficient is suffi-

ciently low that extensive cavitation is expected.
The success frequently achieved with high-head

inducers raises the question of whether inducers
used in combination with standard centrifugal

pump impellers should not be redesigned to form a

hydrodynamic unit with the centrifugal impeller.
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Chapter 4

Hydrodynamic and Gas-Dynamic Design of Radial-
and Mixed-Flow Turbomachinery

4.1 Introduction

The theoretical principles of radial- and mixed-

flow turbomachinery are outlined in section 2.6 as

far as they are directly applicable to the design of

this type of machinery as treated in this compen-

dium. It is pointed out there that the design prin-
ciples of radial- and mixed-flow turbomachines are

to a large extent the same if the flow of the latter

can be approximated as proceeding along straight,

conical stream surfaces which can be developed into
planes (see fig. 2-41). Within these surfaces and

planes, the flow can be treated as proceeding along
radial planes normal to the axis of rotation.

In the design process, one must consider the fact

that in truly radial-flow systems the flow and the
vane shape can be assumed to be identical in

parallel, plane stream surfaces normal to the axis of

rotation (see fig. 2-40). In mixed-flow or conical-

flow systems (fig. 2-41), however, the streamlines

and the vane shapes in different conical stream sur-

faces generally cannot be identical. The flow in tru-

ly radial-flow systems may be treated as two-
dimensional, whereas flow in an entire conical-flow

system must be treated as three-dimensional,

because corresponding points in various conical
stream surfaces are at different distances from the

axis of rotation. Nevertheless the flow in each con-

ical stream surface can be treated as two-

dimensional, particularly if the various conical
stream surfaces are parallel to each other.

Furthermore, as pointed out in section 2.6, the

relative flow in a radial-flow rotor is fundamentally
different from the flow through the same vane

system at rest, because the relative flow through the
rotating system has a uniformly distributed vortici-

ty

_rel = -2_0 (4-1 )

where o_ is the absolute angular velocity of the truly

radial-flow system. The design of radial-flow stator

systems is, therefore, fundamentally different from

that of rotating, radial-flow systems. Recall that
such a difference does not exist for the individual

cylindrical flow sections of axial-flow vane systems,

although the entire axial-flow vane system is dif-
ferent for stator and rotor.

In addition to the previously mentioned

characteristics of radial- and mixed-flow systems in

contrast with axial-flow systems, mixed-flow

systems present an inherently three-dimensional
design problem as soon as the meridional stream

surfaces cannot be approximated by straight, con-
ical surfaces, that is, as soon as the meridional flow

changes within the vane system from approximately

axial to approximately radial, or vice versa, as
shown, for example, in figures 1-7 and 1-25. In this

case, the meridional stream surfaces have double

curvature and cannot be developed into a plane, so

obviously there is a special problem regarding the

description of the flow and vane shape within these
surfaces. Rotors with doubly curved meridional

stream surfaces are called Francis rotors, but vane

PRECEDING PAGE BLANK NOT FILME.O

283

J_.A__I,TI_NTIONALLY BLANI_



§4.1-4.2

systems of this type are used also as passages be-
tween successive stages of radial- or mixed-flow

pumps and compressors (see fig. 1-28, example C).

It is obvious that rotor and stator vane systems of

this type must occupy an important place in the

design of radial- and mixed-flow turbomachinery.

The general philosophy of treatment continues to
be the same as indicated in the Introduction of

chapter 3. Primary attention is given to preliminary

design in the sense of establishing the general design
form of a machine, rotor, or stator. In this for-

mative stage, the design of radial- and mixed-flow

machines is dominated by graphical procedures still

more than the design of axial-flow machines. Even

similarity considerations, beyond the calculation of
a few specific speeds, depend on the existence of a

general design form before the specific speeds can

be translated into ratios of dimensions, and the

general design forms of radial- and mixed-flow

machines vary over a much wider range than those
of axial-flow machines.

Furthermore most radial- and mixed-flow vane

systems have a higher solidity and lower aspect ratio

(vane span/vane length) than usually used in the
axial-flow field (except in inducers), characteristics

which increase the importance of real-flow effects.

Unfortunately, the empirical background of ex-

perimental cascade data, so important for axial-

flow machines, is not available in the field of radial-
and mixed-flow machines. This entire situation

makes radial- and mixed-flow machinery design still

more dependent on geometric procedures, simple

(though rational) approximations, and empirical

data than is the design of axial-flow turboma-

chinery. The practical orientation of design pro-
cedure, already used in chapter 3, is, therefore, even

more justified in this chapter.

The effects of compressibility can be taken into

account by the same principles as outlined and used

in chapters 2 and 3, specifically sections 2.4 and

3.2.7. These principles can be applied effectively

only to the inlet and discharge conditions of any

one vane system. The detailed investigations out-

lined in section 3.2.7 can apply only to stationary
vane systems, specifically to the diffusers of com-

pressors with sonic or supersonic rotor discharge

velocities. This chapter shows that an essentially

one-dimensional application of the laws of com-

pressible fluid flow is relatively simple and

straightforward.

Since the principles of compressible fluid flow

differ from those of incompressible fluids, mainly

by changes in the volume flow rate, the fluid

mechanics used in this chapter are called

hydrodynamic.

4.2 Geometry of Radial-Flow
Vane Systems

The geometry of axial-flow vane systems as seen

in the development of coaxial, cylindrical sections

through the system is essentially Cartesian, with the

axial and circumferential coordinates being (in the

development) straight and normal to each other. In

contrast, the most natural coordinate system of
radial-flow systems as seen in flow surfaces normal

to the axis of rotation, or in the development of
conical flow surfaces, is a polar coordinate system.

As a consequence, the geometries in these two types

of systems are substantially different; in particular,

the concept of what is simple in these two systems is

quite different. In the Cartesian system, the

simplest geometric construction is obviously a

straight line. In the polar system, this is true only
for radial lines. Generally a line with a constant in-

clination (angle) against the coordinate directions

(radial and circumferential) must be considered the

simplest line, and it is a logarithmic spiral. As

shown in section 2.6.2, the same curve is also the

streamline of an absolute, axisymmetric ideal flow

between two planes normal to the axis of rotation,
because the radial as well as the circumferential

components of this flow change in inverse propor-
tion to the radius, so that their ratio remains con-

stant. The equation of the logarithmic spiral is

_-_1 =tan _r in r (4-2)
rl

where _ is the angular coordinate, _¢1 is the initial

value of _,/3 r is the angle between the curve and the

radial direction (_r = constant), r is the radial coor-

dinate, and rl is the initial value of r. Figure 4-1
shows an approximate, graphical construction of a

logarithmic spiral out of circular arcs, derived in

chapter 22 of reference 14. In figure 4-1, _=
r/2-13 r is the inclination of the spiral against the cir-
cumferential direction, which is used because of its

obvious geometric relation to the radial direction of

the system shown in figure 4-2.
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Figure 4-1.- Construction of logarithmic spiral out of circular arcs•

For finite angular steps, c_, the angle of the curve
derived according to figure 4-1, is, of course, not

strictly constant. From figure 233 of reference 14,

one can derive the following relation between the

construction angle /3_ used in figure 4-1 and the

average angle of inclination B_,av of the resulting
approximation of a logarithmic spiral:

/3_ _ 1

_,av 1 + (1/4)(ct/2)2(sin B_ cos B_)/B_
(4-3)

where all the angles _, _¢,av, and o_, must be
measured in radians. (Note that eq. (4-3) is different

from the equation derived in ref. 14 because a

mistake made in that reference has been corrected.)

The results obtained from equation (4-3) are

shown in figure 4-3. There is no significant dif-

ference between B_ and /3_,av for angular steps c_
below 20*.

Because of the accumulation of errors, the con-

struction shown in figure 4-1 should not be used for

a large number of steps. For long spirals, equation

(4-2) gives more accurate coordinates. It is conve-

nient to use the equation in the form in which, if

any two points of a logarithmic spiral are given, a

third one can be found. From figure 4-4 and equa-

tion (4-2), it can be seen that, for A¢ I=A¢ 2,
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i

/
/

Figure 4-2.-Inclination of circular arc against peripheral
direction in polar system in relation to directon of its radius
against radial direction of system.

r.4/rB = rB/r C, considering that ASo can be equated

to _0-_01 in equation (4-1). Even the operation

r.4/rB=rB/rc can be carried out graphically, as

shown in figure 4-5, since the triangles AOB and

BOC in that figure are similar.

It should be evident that, by repeating the process

described, one can derive from two points of a

logarithmic spiral any number of additional points

of the same spiral.

Compared with other methods, the stepwise con-

struction of a logarithmic spiral (fig. 4-1) has the

advantage of permitting generalization to the con-

struction of spirals with moderate variation of the

spiral angle /3_, (and /3r). This construction may,

therefore, be used to draw a smooth, spiral connec-

tion between two radii where the desired curve has

prescribed angles _,l and _¢,2. The limit of this
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Figure 4-3. -Construction angle _ in figure 4-1 in relation to average angle 13_o,av of resulting logarithmic spiral.
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Figure 4-4. -Radial coordinates of logarithmic spiral.
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Figure 4-5. - Graphical solution of relation r A/r B = rB/r C.

construction by means of circular arcs is obviously
reached when successive normal lines such as ADC

and BC in figure 4-1 are parallel, so that the circular
arc degenerates into a straight line. The curvature

of the line may well change from one direction to

the other, the change suggesting that the construc-

tion by means of circular arcs may no longer be the

most practical.

A construction merely by the tangents to the

desired curve is more general for large variations in

the angle _ or/_r and is illustrated in figure 4-6 for
a linear change in 8r (designated in fig. 4-6 merely as

/3) as a function of the radial coordinate r of the

system.

The changes in r for this step-by-step construc-

tion are more or less arbitrary, conveniently chosen

from the graphical solution. Important is the fact

that a flow line (perhaps a vane centerline) with

/\

Figure 4-6. - Curve with linearly varying inclination.

strongly varying curvature results from a very sim-

ple variation of the flow angle 8, a fact which il-

lustrates the concept of so-called simple curves in a

radial-flow (polar) system. It is of interest that vane

shapes of the type shown in figure 4-6 have been us-

ed successfully in the field of radial-fiow hydraulic

turbines of fairly low specific speeds.

4.3 Hydrodynamic Design of Radial-

Flow, Rotating Vane Systems

It should be evident from the preceding section

that the description of curves in radial-flow systems

by means of circular arcs has distinct practical ad-

vantages. This method is, therefore, used in the pre-

sent section for the description of vanes in radial-

flow rotors, primarily those of centrifugal pumps.

The design forms discussed here apply also to

radial-flow compressors and turbines with vanes
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curvedin onlyonedirectionovertheentirevane
length(see,e.g.,figs.2-40and2-41),whereasvanes
withchangingdirectionof curvaturerequire,for at
leastpartof theirextent, design methods similar to

that illustrated by figure 4-6.

The methods described here apply to strictly

radial-flow rotors as well as to the development of

straight, conical stream surfaces in mixed-flow
rotors.

In the simplest case, to be discussed in this sec-
tion, the rotor vanes are to be designed entirely

from the inlet and discharge velocity diagrams of
the rotor, which can determine only the inlet and

discharge portions of the vane systems. The design

process, therefore, consists in designing these two
portions of the vane system independently of each

other and in finding a suitable, smooth connection

between these two portions.

Figure 4-7 shows the inlet portion of a radially

outward-flow pump or compressor rotor, or the

discharge portion of a radially inward-flow turbine

rotor. The subscript used in figure 4-7 appies to the

former and should be changed to 2 if applied to a

turbine. In the following, only the inlet to a pump

or compressor rotor is considered.

The vane shape shown in figure 4-7 is essentially

determined by the vane angles B¢,o and _¢,i at the

end points A and B and by the vane distance dl

measured from point A. The angles _¢,o and _¢,i

are very nearly equal to the flow angle _3¢,l, defined

by sin B¢,1 = Vm, l/wl. However, the vane distance
dl is not necessarily determined in the same manner

as for axial-flow vane systems (fig. 3-1 and eq.

(3-1)), because the relative velocity wl, 1 in section
AD (having the width dl) is not necessarily the same

as wl before entering the vane system. (The equality

sign in eq. (3-1) is obviously based on the assump-

tion wl,1 = wl.)
If the flow between the inlet and section AD is

not influenced by the vanes, wl, 1 is larger than w I in
front of the system. If it is assumed there is no rota-

tion of the absolute flow before it enters the system,

\
Wl, 1

\
\

r i

Wl Ol O1, 1

Figure 4-7.-Inlet to radially outward-flow pump rotor (or discharge from radially inward-flow turbine rotor).
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Wl, 1 can be approximated by the relation

Wl'---]l= rl'---_l (4-4)
w I r!

where the relative velocity is assumed to vary in pro-

portion to its peripheral component, which, under

the foregoing assumption of no influence of the

rotor system on the flow, is oppositely equal to the

peripheral velocities of the rotor. Under this

assumption, the inlet vane distance dl is smaller

than that expressed by equation (3-1) for axial-flow

systems and may be approximated by the relation

d I -_ r_],-Itl sin _,1 (4-5)

where t I = rl_v is the circumferential vane spacing

at the radius r 1.

If, on the other hand, the rotor system imparts a

significant positive rotation to the absolute flow

between the inlet edges and section AD, the equality

sign in equation (4-5) has to be deleted. In this case,

it is fairly customary to ignore the ratio rl/rl, l, that
is, to return to equation (3-1) in the form

->tdl _. 1 sin B_, 1 (4-6)

where the larger than and smaller than signs are

usually ignored.

The foregoing considerations determine the

pump inlet vane shape from the inlet vane angles

/3_,o and _,i and from the normal vane distance dl.
These parameters are not quite sufficient for the

design of the vanes. In particular, the vane

thickness r must be selected, usually on the basis of

strength and manufacturing considerations. As a

rule, the vane thickness is kept as small as possible

within safety limits. However, with the vane

distance dl properly determined, there is no reason

(except weight) why the vane thickness should truly

be as small as possible. The vane thickness at the

vane ends Zl, a = AB is usually less than the average
vane thickness r. Even then, this end thickness of

cast vanes is usually greater than desirable at the in-

let if cavitation or compressibility considerations

apply. A circumferential cut EF in figure 4-7 (radius

rl), is desirable to reduce the thickness r 1 of the

leading edge as far as desired.
From the critical section AD toward the outside

of the rotor, the normal vane distance d (or the

cross section between the vanes) must usually be in-

creased for hydrodynamic reasons. This can be easi-

ly accomplished by increasing the radius of cur-

§4.3

vature of the vanes, as, for example, from radius r i

to radius r[in figure 4-7. In this figure, the opposite

vane surfaces are almost parallel at section AD, but

a moderate divergence of the vane channel at its

minimum section AD would be equally acceptable.

This divergence is easily produced by a slight in-

crease in the radii r i and ro, which leads to slight

reduction in the angles _,1 and fl_,i at the leading
edge (A and B) and a slight increase in the cor-

responding vane angles at D and C. The circular-arc

construction is very convenient for executing minor

changes of the vane shape in an orderly fashion.

Figure 4-8 shows the discharge vane ends of a

standard centrifugal pump or compressor rotor

with backward-bent vanes. The layout is based on

the discharge velocity diagram shown in figure 2-45

and derived according to Euler's turbomachinery

equation (sec. 2.3), the condition of continuity, and

various other considerations given in sections
2.6.3.4 to 2.6.3.6.

The fictitious velocity w_ in figure 2-45 is related
by the condition of continuity to the cross section of

the vane channel connected with the discharge vane

distance d2. (This writer's attention was called to

this use of the vane channel cross section by O.

Dorer, of the Worthington Pump and Machinery

Corp., in 1935.) The discharge vane angle _,2 (in
this case referred to the low-pressure side of the

vane) has no direct relation to the discharge velocity
diagram, since the direction of the vane in figure

2-45 must be some average direction of the

discharge portion of the vanes. This condition has a

definite meaning only if this portion of the vane has

a constant vane angle and is infinitely thin, as

assumed in section 2.6.3.4 (i.e., for thin vanes

curved according to a logarithmic spiral). General-

ly, in pumps, the vane angle _ (measured against
the peripheral direction) decreases from E (opposite

to B) to A in figure 4-8.

The vane distance d 2 at the vane channel

discharge (point B) is shown in figure 4-8 to be

divergent by the angles 81 and 82 at the two sides of
the vane channel. For constant width normal to the

layout in figure 4-8, this divergence (which could be

a convergence) applies to the cross section between

the vanes and may, therefore, have hydrodynamic
significance regarding separation in the rotor

passages. This writer has had good results with

designing the low-pressure side of the vanes so that

the angles of divergence 61 and 6 2 are zero. The
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B

d2+T

ro ri

Figure 4-8. -Discharge vane ends of radially outward-flow pump or compressor rotor.

geometric construction which accomplishes this is

shown in figure 4-9 and should be self-explanatory

if it is understood that the triangles BCD and QOP
are geometrically equal to each other (except for

direction). It can readily be seen that the vane angle

/_ at E (measured against the peripheral direction)
is in this case significantly larger than the cor-

responding vane angle _,2 at the discharge end of
the vanes.

The design for parallel vanes at the discharge

cross section, shown in figure 4-9 for infinitely thin
vanes, applies to vanes of finite thickness if the vane

thickness is constant at point E. Such a construction

is shown in figure 4-10. This figure also shows that

the vane thickness may still be reduced from r to r 2
if the radius of the leading side of the vanes is

reduced from ro to r_ at some distance a from the
trailing edge, as long as this distance is less than the

distance AE in figure 4-9.

With the vane ends designed according to figures

4-7 to 4-10, yet to be determined is a method for
connecting these vane ends with each other in a

hydrodynamically and geometrically satisfactory

fashion. A hydrodynamic solution of this problem
is described in the next section and is, therefore, not

considered here in detail. However, in many prac-

tical cases, a simple geometric solution is accep-
table, provided this solution considers some

elementary hydrodynamic requirements. The most

important, and often sufficient, requirement of this

type is that the cross section between the vanes

should change in a simple, approximately

monotone manner from the last definitely deter-

mined cross section of the inlet portion (usually AD

in fig. 4-7 with vane distance dl) to the first well-

determined cross section of the discharge portion

(usually the cross section measured from the vane

end B having the normal vane distance d2). Such a

monotone change in cross section is approximately

satisfied by a second requirement, namely, that the

vane angle change in a simple, reasonable

monotone manner from the last (outermost) deter-

mined vane angle of the inlet portion to the first (in-

nermost) determined vane angle of the discharge
portion.

The foregoing condition of the vane angles can be
satisfied approximately by a single circular arc as il-

lustrated in the two diagrams shown in figure 4-11.
In either case, point A is the starting point of the
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IB

d2 +T

Q

Figure 4-9. - Circular arc construction of vane ends of radial-flow pump rotor to be parallel at their outer ends and at opposite

part of vane.

Centers of circular
arc vane contours

Figure 4-10.- Circular arc construction of suitable thickness
distribution over outer ends of vanes of centrifugal pump or

compressor rotors.

construction. The radii r i and ro as well as the vane

angles _i and _o at these radii (measured from the

peripheral direction) are given. The construction is

based on the symmetry of the figures OABPC (up-

per diagram) and OBAPC (lower diagram) with

respect to the broken line through C which is nor-

mal to OP. The first point to be located from point

A is point P by means of f3i, f3o, ro, or r i as in-

! ......

//_ t,,_/'-- - _ C ' O"_,

. i! +r " "\ I ',, ',I

.+Z+ _ iA /

/ J

//. t +0'_ " t
I

Figure 4-11.-Circular arc construction of curve with
prescribed angles at two given radii ri and ro in polar
coordinate system.
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dicated. The normal line OP and the line through A
under the angle /3i or _o determine the center C of
the arc AB.

Before this elementary consideration of radial-

and conical-flow rotors is closed, it is proper to call

attention to the background of the design of such

rotors previously outlined in chapter 2, particularly
section 2.6. Specifically the selection of the number

of vanes (not mentioned so far in the present sec-

tion), or the equivalent selection of the vane spacing

_v in figures 4-7 to 4-10, is described in section

2.6.3.3 as given by the lift coefficient (eq. (2-130)),

and the latter is limited by the retardation of the

relative flow w2/w 1. For radial-flow rotors, there is

no better information available than that developed

for axial-flow vane systems represented by figure

2-26 and the approximation in figure 3-17. As in

many cases, an answer regarding the number of
vanes or the angular vane spacing _v can be obtain-

ed only by successive approximations. The lift coef-

ficient CL, o0 is related to the vane spacing (t2 = _or2)

and the vane length, while the vane shape (which

determines the vane length) is given by the inlet and

discharge portions (figs. 4.7 and 4.8) with Cv as an
essential variable. Generally one estimates the vane

length from the inlet and discharge flow angles and

the inlet and discharge radii r 1 and 1"2. With an

estimated lift coefficient and vane length and the
given inlet and discharge velocity diagrams, one can

calculate the vane spacing t2=r2_ o and select a

number of vanes. From it, one can design the inlet
and discharge portions of the vanes, and from them

the whole vane. If the resulting vane length is suffi-
ciently different from the estimated vane length to

require a change in the number of vanes, the design

process has to be repeated. As a rule, the second ap-

proximation of the vane shape is adequate.

Finally it is necessary to review critically the ini-

tial three-dimensional assumptions underlying the

foregoing design considerations. Radial flow is

assumed to proceed along surfaces normal to the

axis of rotation, and mixed flow along conical sur-
faces coaxial with the axis of rotation.

Figures 2-40 and 2-41, which are typical for these
two forms of flow, indicate that the meridional

flow is likely to depart somewhat from the assumed

plane or conical flow at the inlet where the flow

direction changes from axial to radial or conical

and thus involves a velocity component normal to
the assumed plane or conical stream surface. This

departure from the assumed flow can be kept quite

small if the passage width normal to the assumed

meridional stream surface is small compared with

the distance r I of the leading vane edges from the

axis of rotation (see fig. 4-12). For radial-flow

pump or compressor rotors of low specific speed
such as shown in figure 4-12, the vane distance r 1

should be made substantially larger than half of the

axial inlet diameter D i. If this sizing is not possible

(for reasons of cavitation or compressibility con-

siderations), the inlet vane edges extend into the
region of the inlet flow curvature, as shown in

figure 4-13 (typical for a rotor of higher specific

speed). For such a rotor, the axial inlet velocity

component Va, 1 must be taken into account as il-
lustrated in figure 4-14. Figure 4-14(a) shows the

three-dimensional inlet velocity diagram under the

simplifying assumption of zero prerotation. Figure

4-14(b) presents the relation among the radial, ax-

ial, and meridional velocity components in the

meridional flow configuration. Specifically it shows

by the similarity of the triangles ABC and ADB that

-.-f_

Stream i I

surface--..IZ

I

Figure 4-12.-Radial-flow pump rotor with inlet meridional
flow close to radial direction.
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renders equation (4-8) more accurate than it is when

applied to the entire passage width. Furthermore

this refinement permits consideration of non-

uniformities of Vm, l and Vr, 1 across the meridional

flow passage, derived from the curvature of the
meridional streamlines according to section 2.2,

particularly figure 2-3. However, this consideration
would lead to some departures from the cylindrical

vane shape previously mentioned and thereby to

complications regarding the axial velocity compo-
nent. This type of problem is discussed in section

4.4.

Figure 4-13.-Radial-flow pump rotor with inlet meridional

flow departing from radial direction.

V B

Vr. 1/Vm. 1 \"_n

(a) Inlet velocity diagram. Zero prerotation.

(b ) Velocity components in meridional flow.

Figure 4-14. - Treatment of axial velocity component at inlet to

radial-flow vane system

n_ = cos or= Vr'l (4-7)
a gm, I

and

aVr, 1=nVm, 1 (4-8)

that is, that the condition of continuity is satisfied if

the product of the radial velocity component and

the axial width is multiplied by the local cir-

cumference of the meridional flow passage. Thus,

the inlet portion of the vanes (fig. 4-7) can be

designed by using the radial instead of the merid-

ional velocity component according to equation

(4-8), provided the vanes are cylindrical and parallel
to the axis of rotation so as to satisfy the axial com-

ponent Va, 1 (fig. 4-14(a)). (Obviously such cylin-
drical vanes are the simplest to manufacture.)

The two shaded curves in figure 4-14(b) are not

necessarily the solid flow boundaries of the merid-

ional flow passage, but may be considered as suc-

cessive meridional streamlines. This interpretation

While rotors of low specific speeds such as shown

in figure 4-12 rarely involve significant flow com-

ponents normal to the plane meridional flow sur-

face, as discussed previously, such narrow rotors

must be expected to be subject to major effects of
fluid friction, which may modify certain conclu-

sions regarding separation or stall in radial-flow

rotors. As previously, in the absence of good infor-
mation on real-flow effects in radial-flow rotors,

one has no choice but to use the information on

such effects developed for axial flow vane systems.

In particular, one is forced to use axial flow data on

stall limits described by the lift coefficient as a func-
tion of the ratio of retardation of the relative flow

(see figs. 2-26 and 3-17), perhaps with more conser-
vative values for radial- than for axial-flow

machines in view of the results by Johnston quoted

in section 2.6.3.7. On the other hand, lower (i.e.,

more aggressive) ratios of retardation have been
used with reasonable success for radial-flow com-

pressors.
In radial-flow rotors like that shown in figure

4-12, one must expect that shroud effects on the
flow between the vanes and shrouds (described in

sec. 2.6.3.8, particularly fig. 2-57) may assume a

dominating influence. There is probably no part of
the relative flow which is not strongly influenced by

fluid friction, whereas, in good axial-flow machines

(except inducers), fluid friction effects are strong

only within boundary layers of limited thickness

along the vanes, casing wall, and hub. Conclusions
derived under these flow conditions cannot be ex-

pected to apply to rotors (or stators) in which fluid
friction influences the entire flow. In addition, it

must be considered that the flow along rotating
shrouds moves under the influence of friction from

the high-pressure toward the low-pressure side of
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the vane channel and presumably generates on the

low-pressure side a very thick boundary layer which

has an increased pump head in rotors with
backward-bent vanes.

In view of this situation, the writer feels that the

previously mentioned limits on lift coefficient and
ratio of relative flow retardation do not apply to

radial-flow rotors of low specific speeds (less than

0.06, or 1000) and that ratios of retardation lower

than w2/w I = 0.6 may well be acceptable in this low-

specific-speed range. Furthermore, for the same

reason, one must be very careful in applying in this

range either empirically or theoretically justified

rules about the head coefficient CH = Vu,2/V_, 2
(see fig. 2-45 and secs. 2.6.3.3 to 2.6.3.8). This
situation is similar to that described in section 3.4.5

with respect to axial-flow inducers, except that no

detailed experimental investigations, such as
described there, have been carried out on radial-

flow pumps or compressors of low specific speeds.

Since the extensive experimental investigations on
axial-flow inducers have not yet led to definite

design rules considering fluid friction, one must be

somewhat pessimistic regarding the prediction of

the performance of radial-flow pumps and com-

pressors of low specific speeds (per stage). At pre-

sent, this type of pump or compressor is designed
on the basis of test results obtained with com-

parable machines of this type.

4.4 Hydrodynamic Design of
Rotating Vane Systems With
Transitions Between Axial and
Radial Flow

4.4.1 Design by Inlet and Discharge of Vane System

This section describes the design of rotating vane
systems which extend well into the regions of axial

and radial flow, so that there is a strong change of
the direction of the meridional flow within the vane

system. In this case, the meridional stream surfaces

have strong double curvature and cannot be
developed into planes. Furthermore the method of

dealing only with the radial component of the
meridional flow, described in section 4.3 in connec-

tion with figures 4-13 and 4-14, is no longer ap-

plicable, partly because the radial flow component

may approach zero and partly because cylindrical

vanes meet the outer shroud under a very un-
favorable (small) angle et, as shown in figure 4-15.

flow S

Figure 4-15. -Cylindrical vane for axial and radial flow.

The same figure also shows the unfavorable relation
between the direction of the meridional flow and

the direction of a cylindrical vane.

Both disadvantages of the cylindrical vane can be

avoided (or minimized) by twisting the inner vane

end in relation to the outer end as shown in figure

4-16. Since this twisting constitutes a major com-

plication of the vane shape and the manufacturing
methods required, one usually goes one step farther

Me ridional ._%"

flow :'

Figure 4-16. - Conical and twisted vane for axial and radial
flow.

,\\7

Meridional _\,_

fl0w :\"

Figure 4-17.-Double-curved and twisted Francis vane for
axial and radial flow.
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and gives the radial vane sections a curvature (fig.

4-17), which further improves the relation between
the vane and the meridional flow as well as the

outer shroud. This type of pump or turbine rotor is
usually referred to as a Francis rotor.

Figure 4-18 illustrates the design of a Francis

pump rotor with axial inlet and approximately

radial discharge, using primarily the inlet and

discharge portions of the vanes.

The discharge portion, shown at the left in figure

4-18, is represented by a plane section normal to the

axis of rotation, designed as described in section 4.3

in connection with figures 4-8 to 4-10. The inlet por-

tion is designed by means of a number of straight,

conical sections approximating the inlet portions of
the meridional stream surfaces. Two of these sur-

faces, AAA and BBB, are shown developed into

planes. The vane sections in these developments are
designed as described in section 4.3 in connection

with figure 4-7. Strange as it seems, very favorable

results have been obtained by assuming a uniform

meridional velocity along the inlet edges of the
vanes; this method is discussed further in sections
4.4.2 and 4.4.3.

§4.4.1

By approximating the inlet portions of a number
of stream surfaces, I, II, III, IV, and V, by conical

sections, one can determine successive radial sec-

tions 1, 2, 3, and 4 through the inlet portion of the

vanes. Of course, a process of trial and error is re-

quired before the conical sections (such as AAA

and BBB) as well as the radial sections 1, 2, 3, and 4

form smooth and simple curves.
The connection between the outer and the inner

vane portions so determined has to be established

geometrically by the continuity of the vane slope

from the inlet to the discharge portions of the

vanes. This process is illustrated in figure 4-18 only
with respect to the back-shroud contour V. The
meridional distance _ between successive radial

vane sections 1, 2, 3, 4, etc. is plotted in this case

against the distance from the axis of rotation. This
distance 8 between the radial sections should form

smooth curves along all meridional stream surfaces

I to V. Note, however, that the radial sections

through the outer and inner vane portions may have

to be rotated circumferentially relative to each other

by a finite angle; that is, beginning with the inlet

sections 1, 2, 3, and 4, the outer portion may finally

Development of section AAA

4

Stream

surface l

I II Ill

t
IV V

\

\

Development of
section BBB

\ 3
\

\ 2
1

0

Figure 4-18. - Views of Francis pump rotor showing inlet and discharge portions of uanes.
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not be described by the sections X and Y but by sec-

tions at intermediate angles and displaced cir-
cumferentially from sections X and Y.

Furthermore all radial sections containing the

axis of rotation must form smooth curves, by

changing gradually and progressively from sections

1, 2, 3, and 4 to the radial sections through the
outer portion of the vane. It should be evident that

this design process is one of trial and error and may

involve some minor changes in the radial sections 3

and 4 as well as in the radial sections through the

outer portion of the vane.

Evidently the angular spacing between vanes

must be the same for the inner and outer portions.

It must be selected by means of an estimated vane

length, the inlet and discharge velocity diagrams,
and an estimated lift coefficient based on the max-

imum retardation of the relative flow, which in

pumps nearly always occurs along the outer shroud.

It is clear that this vane design process is not very

definite. A more systematic process for the same
type of Francis rotor is described in section 4.4.2.

A somewhat different design problem exists with

radial-flow rotors having very high peripheral

velocities, more precisely, very low centrifugal

stress coefficients ac/osU2, or centrifugal stress

specific speeds in excess of 0.1 or 0.2 (see secs.

1.3.3.1 and 1.3.3.2 and fig. 1-46). In such cases, the
form of sections normal to the axis of rotation is

determined almost entirely by mechanical con-
siderations and must, therefore, be considered as

prescribed independently of the flow in the rotor.

This design problem is discussed in connection with

a fairly typical case, where the stress coefficient is

sufficiently low to demand approximately straight
radial vane sections in planes normal to the axis of

rotation (see, e.g., the lower part of fig. 1-46). This

requirement applies to radial-flow compressors

with pressure ratios per stage of 4 or higher and to
rocket pumps raising the pressure of liquid

hydrogen by more than 1000 pounds per square

inch per stage. In such cases, the inlet and discharge

portions of the rotor vane system have to be de-

signed more or less independently of each other,

and the connection between these two portions is

dictated geometrically by the mechanically pre-

scribed vane shape.

The following example is worked out under the

assumption that the retardation of the relative flow

in the rotor should stay within limits which can be

estimated to be acceptable with respect to separa-

tion or stall. Specifically the ratio of the relative

discharge velocity w2 to the maximum inlet relative

velocity wl, o should not be lower than 0.6.
This writer is well aware of the fact that this em-

pirical rule is usually not observed for radial-flow

pump or compressor rotors with radial vanes,

which are often designed under the assumption of

separated flow in the rotor passages. This practice

may be an important reason why this type of radial-

flow machine has not as yet achieved the efficien-

cies (around 90 percent) that were reached by cen-

trifugal pumps with backward-bent vanes more
than 40 years ago. It is, therefore, desirable to make

a serious attempt to keep a radial-flow, radial-vane

rotor within limits of unstalled operation, although

these limits are not really known in the radial-flow

field, the previously mentioned limit of w2/wl, o >
0.6 having been reasonably confirmed only for
axial-flow machines.

To stay within this limit, the fluid must be admit-
ted to the rotor with considerable rotation in the
direction of the rotor motion and thus reduce the

inlet relative velocity. For the reason given at the
beginning of section 2.7.2, this rotation is so-called

solid-body rotation, that is,

V U r

VU, o ro

(4-9)

as shown on the left side in figure 4-19. The

velocities shown in this figure apply to the rotor

shown in figure 4-20.

The maximum peripheral fluid velocity Vu, o at
the rotor inlet diameter (cylindrical section O) is

determined by a series of successive approximations

from the relative discharge velocity w2 (fig. 4-19) so

that w2/wl, o > 0.6. The final value of this ratio is
0.62, because of previously neglecting the effect of

vane thickness, which tends to increase this ratio.

The inlet and discharge cross sections

(D_/-D_h)_r/4 and D2rcb2 are made equal so that for a

practically incompressible fluid the mean, merid-

ional inlet and discharge velocities are equal. (To

maintain the last relation for a compressible fluid,

one would have to reduce b2 proportionally to the

reduction in specific volume, as described later.)

The meridional inlet velocity distribution in sec-

tion A-A is determined according to the laws of
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j;_ Relativerotor
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w2 Vm,2
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Figure 4-19. - Velocities approaching radial-flow pump rotor with radial vanes.

flow with vorticity presented in sections 2.7.2 and

2.7.3. An attempt to do so by the graphical method

described in section 2.7.2 (figs. 2-63 and 2-64) was

not successful, because the radial steps required to

obtain acceptable accuracy were impractically

small. On the other hand, the analytical solution

given in section 2.7.3 turned out to be quite simple.

If an irrotational inlet velocity distribution of the

stationary inlet guide-vane system is assumed, the

left side of equation (2-173) is zero when applied to
this system. Thus the right side of the same equa-

tion, describing the velocity distribution in section

A-A (fig.4-20), reduces (with the angle _ = 0 and the

subscript 2 dropped) to the form

,_\_ m\ _ Vm) =0 (4-10)

Since the coordinate n in equation (2-173) is

equivalent to r in section A-A, r is the only indepen-
dent variable in equation (4-10), and it justifies the

total derivatives in this equation. In this equation, r
is the distance from the axis of rotation, and R is
the local radius of curvature of the meridional

streamlines. It so happens that over a large portion

of section A-A these streamlines are, in a radial sec-

tion, concentric to one center C, and this approx-

imation is used in the solution of equation (4-10).

For solid-body rotation, obviously dVu/dr=

Vu/r, so that equation (4-10) assumes the form

vb v (armmk, Vm) (4-11)

or

Vb_dVmr r

2 V2m dr Vm + R

dVmr _V2 r
dr Vm Z + k

(4-12)

The last expression is evaluated in figure 4-19 by a

horizontal line at an arbitrary distance L above r.

Obviously
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DeveIopments of
cylindrical sections

Section

t o

Rotor end view
(section A-A)

D2 A

C
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\\

Di

Figure 4-20. -Radial-flow pump rotor with radial vanes.

dVmldr _ r
Vm/r - 2 + k (4-13)

m

Starting, as usual, at an estimated point where

Vm= Vi, au is determined by the one-dimensional

condition of continuity, one can construct a Vm, r

curve from its tangents as indicated in figure 4-19.

Successive tangents should intersect about halfway

between the r values to which they apply.
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The Vm, r curve is constructed beginning at the

midradius rm, which divides the area of the merid-

ional flow section A-A into two equal parts. The

value of Vm at that radius is estimated, after some

trial and error, to be about 3 percent higher than the

average meridional velocity Vi,av in section A-A (as
well as at the discharge of the rotor).

The inlet velocity vector diagrams corresponding

to the V m values so determined as well as to the V U

values of the assumed solid-body prerotation are

also shown in figure 4-19. In the upper part of

figure 4-20 are shown a number of cylindrical vane

sections of which the high-pressure sides at the

leading vane edge are tangential to the relative

velocity vectors shown in figure 4-19. The vane sec-

tions at various radii are related to each other by be-

ing located and deformed circumferentially, so that
vane sections normal to the axis of rotation are

radial. To satisfy the vane directions prescribed by

the inlet velocity diagrams, the leading edges of the

vane depart from this law of a helical surface by _M

at the midsection M and by/_H at the hub section H.

These departures from the helical vane shape
(defined by radial sections normal to the axis of

rotation) are very small and can hardly be expected
to jeopardize the mechanical quality of the vanes

with respect to centrifugal forces. The vane

thickness increases from the vane tips toward the

center of rotation approximately according to

figure 1-32 and suggests a centrifugal stress coeffi-
cient of about psU212ac = 2.

The number of vanes is determined from the vane

lift coefficient:

C ,_Vu2?( Vu, lrl)L_=Z. -'- 1
' woo VU,2 r2

(2-130)

which, if one chooses the ratio of retardation to be

w2/Wi,o=0.62, should be about unity when axial-
flow data are used as previously. From the velocity

diagram in figure 4-21 and from the ratio of

discharge to inlet diameter of 1.625, one can scale

Vu,2/wo,=3.34, Vu, I/Vu,2=0.284, and rl/r2

= 0.615 along the outer shroud. With CL, o, = 1, one
finds

1
- =2×3.34×0.825=5.51
t2

which leads to between 42 and 43 vanes when the

full vane length along the outer shroud is used. Ac-

tually a 40-vane rotor is shown in figure 4-20.

Such numbers would result in an extremely close

vane spacing at the rotor inlet unless one reduces

the length of every second vane as shown in figure

4-20. The average vane length-spacing ratio is

thereby reduced to l/t2= 3.9. On the other hand,

the mean relative velocity w® is larger than assumed
from the effect of the finite vane thickness and

leads to Vu,2/woo = 3.087, so that

0.825
CL'°_=2×3"O87x 3.9 -1.306

wSA

(fig. 4-19)

_ 2

I
Vu, 1 = VU, o {fig. 4-191-------_ j

$ t.I1" Ui (fig4-19) l =-
Vu.2 ---I

u2

Figure 4-21.-Discharge and inlet velocity diagrams at outer shroud of radial-flow rotor shown in figure 4-20.
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which can still be considered acceptable until ex-

perimental results for rotors of this type give a bet-

ter foundation for their design.

Beyond the previously stated consideration, the

vane shape of the rotor having radial blade elements
is determined by any one cylindrical section through

the vane system. One usually uses for this purpose

the section having the inlet diameter D i (section O in

fig. 4-20) because the relative inlet velocity is a max-

imum in this section, and it is, thus, dynamically or

hydrodynamically the most critical section. The

design principles at the inlet to this section are ap-

proximately those of axial-flow pumps and com-

pressors. For example, the initial radius of cur-
vature of the vanes can be chosen in relation to the

vane spacing to by some approximate consideration

of a local (inlet) lift coefficient in relation to a local
retardation of the relative flow. In section O of

figure 4-20, this radius of vane curvature is chosen
to be constant from the inlet to the point where the

vane reaches the axial direction, since there is no

reason for departing from this simple shape. In

other cylindrical sections (X, M, Y, and H), the
vane shape becomes elliptic by the law of a helical

surface, except very near the leading edge, where

the pressure side is made parallel to the relative

velocity as described previously. Thus, for one

cylindrical section, such as O, the law of a helical

surface (radial sections normal to the axis of rota-

tion), the direction of the vane near its leading edge,

and the vane thickness distribution determined by

the stress coefficient psU2/2ac, together with the
minimum thickness at the vane tip, determine the

entire vane shape between the bounding surfaces of

revolution. Under these conditions, no independent

design consideration can be given to the flow in the

rotor passages between the inlet and the discharge,

although the frictionless flow in these passages can
be determined as outlined in section 2.7.6.

It should be mentioned that a strictly radial vane

shape in sections normal to the axis of rotation is

not the mechanically most desirable vane shape if

the density of the fluid is sufficient to generate

significant bending stresses in the vanes, as would

be true with liquid hydrogen. In this case, one can

advantageously incline the vanes backward against

the radial direction, so that the resulting centrifugal

bending forces cancel the hydrodynamic bending
forces to some extent.

The rotor form shown in figure 4-20 was first

used for centrifugal compressors. Although more

recently this rotor received serious consideration in

connection with pumps for liquid hydrogen, it is,

nevertheless, appropriate to describe briefly how
the effects of compressibility of the fluid can be

taken into account in a simple manner. These con-

siderations are here limited to gases which can be

treated by the laws applicable to air, as outlined in

section 2.4.

Since the flow in the passages between the inlet

and the discharge of the rotor is not considered in
detail for the design of this rotor, it is sufficient for

the consideration of compressibility effects to deter-

mine the change in specific volume and volume flow

from the rotor inlet to the rotor discharge only and
to take care of the transition between these two sta-

tions geometrically, that is, by gradual changes in
the lateral flow boundaries of the rotor.

The velocities are the same as previously assumed

for an incompressible fluid and shown in figure

4-19, except that for compressible flow the
velocities must be given as thermodynamically

dimensionless, definite values (Mach numbers or

ratios to V o as defined by eq. (2-21)).
Since the meridional streamline picture is not re-

quired for the design process considered here, it is

sufficient to carry out the intended compressibility
considerations on a one-dimensional basis, that is,

to use only average values of the meridional velocity

in any one cross section, provided this velocity does
not come close to the local acoustic velocity, which

is to be avoided in any event because of the danger

of choking. (On the other hand, it is of interest to
note that the inlet vane design shown in figure 4-20

has been used successfully up to a Mach number of

1 of the relative inlet velocity w l,o, when the leading

vane edges have been thin and sharp.)
The determination of the inlet cross section

(D_-D_I)Tr/4 for a given average meridional inlet

velocity Vi, av/V o (notation of sec. 2.4) and a given
mass or weight flow is straightforward, since the

specific volume can be read from figure 2-7, where

V o is derived from the given inlet stagnation en-

thalpy of the absolute flow. If the inlet cross section

is prescribed, the inlet velocity Vi,av is obtained by
successive approximations as described in section
2.4.
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Asassumedpreviously,themeridionaldischarge
velocityVm,2 is assumed to be equal to the average

inlet velocity Vi, av. The discharge stagnation en-
thalpy of the absolute discharge flow is

1-1/_ (4-19)
71r= l-l/n

This relation can readily be converted into

1 (4-20)
ho,2=ho, i+ Hr (4-14) n= l_(l/_lr)(l_l/.y )

where ho, i is the stagnation enthalpy of the absolute
flow entering the rotor, and H r is the rotor head
determined by Euler's turbomachinery equation

(2-18).

By the definitions for the enthalpy introduced in

section 2.4, one can use for the absolute inlet

stagnation conditions the simple (although fic-

titious) relation

ho, i = CpTo, i (4-15)

where the specific heat at constant pressure Cp is
assumed to be constant at all temperatures up to

To, i. (This assumption is valid for air up to

To, i=600* R and is approximately correct up to
about To, i = 800* R.) By the same definitions, for

the discharge stagnation conditions (of the absolute

flow),

To, 2 - h°,2 (4-16)
Cp

where To, 2 is subject to the same limitations as

previously stated for To, i. A useful approximation

of Cp for To, 2 slightly larger than 800* R is describ-
ed later.

The compression in the rotor is, of course,

polytropic, so that the isentropic equations (2-28) to

(2-30) must be replaced by the corresponding

polytropic relations. In particular, the specific

volume at the discharge stagnation conditions Vo,2
is related to the specific volume at the inlet stagna-

tion conditions Vo, i by the polytropic equation

Tl/.(n-l)Vo,2 = - o.I

Vo, i TI/(n'l)0,2

(4-17)

The polytropic exponent in the equation

pvn = constant (4-18)

is related to the polytropic efficiency, which for

compression assumes the form

where r/r is the polytropic efficiency of the rotor
alone. Thus equation (4-17) can be solved to obtain

the ratio of the stagnation specific volumes from

the inlet to the discharge of the compressor rotor.

However, for the rotor design, one needs the actual

specific volumes vi and v2, not their stagnation

values. The relation between the actual specific

volume and the stagnation volume is given (for air

at temperatures below 800* R) by figure 2-7 and can

be expressed as

vi _f( Vi, av_

Vo,i \ Vo,i /

0o,2

(4-21)

Values of these quantities can be read from figure

2-7 as soon as Vi,av/Vo, i and V2/Vo, 2 are known.

The value of Vi,av/Vo, i is either assumed or derived
as mentioned previously from the inlet cross section

(D_-_/4, the inlet gas condition (since Voa
= _/2goho, i), and the mass or weight flow rate.

The absolute discharge velocity V2 can be scaled

from the rotor discharge velocity diagram (fig.

4-21), where the quantities U 2, I'm, 2, and WSA are
calculated from

U2 D2

Ui Di

Vm, 2 = Vi, av

t2 7r
WsA = U2 -_-2 =U2/_

in which N is the number of vanes. Finally

Vo,2=_,2, where ho, 2 is given by equation
(4-14).

From the foregoing information, one can

evaluate equations (4-21) by means of figure 2-7.

What is ultimately needed is the ratio of the
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discharge to inlet volume flow rate QE/Q1, which is

proportional to the corresponding ratio of specific
volumes:

Q2 _ v2 _ ( V2Vo, i_ Vo,__2

Q1 vi \ Vo,2Vi,] Vo, i
(4-22)

where the prime designates the compressible flow

rate and the term in parentheses is determined from

equations (4-21) and the last multiplier by equation

(4-17).

Since the discharge width bE (fig. 4-20) was deter-
mined by Q2 = Qi, the new width b_ for compressi-
ble flow is given by

b, Qi
2= v2QII (4-23)

because it is still assumed that Vm, 2 = Vi,av , as for
incompressible flow.

To illustrate the foregoing considerations, we

assume that the rotor shown in figure 4-20 handles

air at an inlet stagnation temperature To, i of 80* F
(539.7* R). The rotor peripheral velocities are

U2 = 1700 feet per second and U i = 1046 feet per se-

cond. The specific heat of air at the assumed

temperature is Cp= 186.8 foot-pounds per *R, so
that ho, i = 186.8 × 539.7 = 100 816 foot-pounds per
pound.

The discharge velocity diagram in figure 4-21 is

assumed to apply to the mean, meridional stream
surface. The rotor head is

Hr = U2 VU'2-UI VU'M (4-24)
go

Scaling from the velocity diagrams in figures 4-19
and 4-21, one finds

(1700 × 1568)-(762 x 326)
Hr= 32.2 = 75 069 ft-lb/Ib

It might be mentioned in passing that the maximum

relative inlet velocity (scaling from fig. 4-19) is

wl, o = 640 feet per second, which corresponds to a
Mach number of about 0.57, and the absolute rotor

discharge velocity (scaling from fig. 4-21) is

V2 = 1612 feet per second, which corresponds to a
Mach number of about 1.17.

According to equation (4-14), ho,2=100816
+ 75 069 = 175 885 foot-pounds per pound, and the

corresponding discharge stagnation temperature is

To,2 = 175 885/188=936" R, where Cp is approx-
imated by an average value between 0* R (fictitious)
and 1000* R.

From equation (4-17), one obtains the stagnation
specific volume ratio

Vo,2_(539.7_ l/(n-l)
Vo, i 9--9_-- / = 0"57661/(n-D

Assuming a polytropic rotor efficiency of 93 per-
cent (as doubtlessly more than half of the total

losses occur in the diffuser after the rotor), one ob-
tains from equation (4-20)

l 1

n = 1-(1/0.93)(1-1/1.39) 1--0.302 = 1.433

l 1
- 2.3095

n-1 - 0.433

and, according to equation (4-17),

Vo,2 = 0.57662.3095 = 0.2804
OO, i

Furthermore, with scaling from

diagrams,

Vi, av = 369 ft/sec

V 2 = 1612 ft/sec

Vo, i=_/2golO0 816 =2548 ft/sec

Vo, 2 = x/2go175 885 = 3365.6 ft/sec

the velocity

Hence

Vi, av - 369
-0.1448

Vo, i 2548

and, from figure 2-7,

vi _ 1.05
Vo, i
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V 2 1612- -- = 0.479
Vo, z 3365.6

Therefore, according to equation (4-22),

t

Q2_v2_ 1.92

QI vi 1.05
x 0.2804 =0.5127

that is, in this example, the volume flow rate is

reduced from the inlet to the discharge of the rotor

to slightly more than one-half. The same velocities

as in the preceding case of an incompressible fluid
can be maintained by reducing the discharge width

of the rotor from b2 to b_, where b_=0.505 b2.

Figure 4-20 shows, in dashed lines, this change in
rotor width and the required gradual transition

from the rotor discharge to its inlet, where there is

no change in volume.

It is interesting to observe that in the rotor for an

incompressible fluid the axial width changes in the

radial part of the rotor in inverse proportion to the
distance from the axis of rotation in order to main-

tain a constant average meridional velocity as far as

possible on the simple basis of this design. Ac-

complishing the same thing for a compressible fluid

would require increasing the width of the rotor

from the discharge diameter toward the inlet very

much faster than in inverse proportion to the
distance from the axis of rotation.

It should be observed that the specific speed of

the rotor shown in figure 4-20 is the same whether

the rotor is handling an incompressible or a com-
pressible fluid if the specific speed is calculated for
the inlet rate of volume flow. On the other hand,

when calculated for the discharge volume flow of

the rotor, the specific speed of the rotor for a com-

pressible fluid is (for the particular conditions con-
sidered here) lower by a factor of x/_-.5127 = 0.716

than the specific speed of the corresponding rotor
for an incompressible fluid. The specific speed for a

compressible fluid is still lower when referred to the

discharge volume of the entire compressor stage,

since the volume flow is further reduced by the

compression in the stationary diffuser passages of

the stage (or single-stage machine).

It is also of interest to determine the stagnation

pressure ratio of the entire stagepo,3/po, i, where the
subscript 3 denotes the final discharge condition of

that stage. This ratio is found as follows:

Hr=ho 2-ho, i=ho i( h°'2 -1)=ho, i( T°'2 -1)• .

where ho, 2= ho, 3 and To, 2 = To, 3.
For isentropic changes, the relation between the

stagnation temperature ratio and the stagnation

pressure ratio is given by equation (2-30). The cor-

responding relation for polytropic changes is ob-

viously

\n/(n-i)
To,3 _ = Po,._._._3
To, i/I Po, i

or

(4-25)

Hence

l]nr=ho, i Po,3

/t "_ (l-l/n)

Hr + 1 = {Po,3)
ho--5, \Uo.,/

( h_o,/ )1/(H/n)Po,3 = Hr + 1
Po, i

If one is interested in the pressure ratio of the entire

stage or single-stage machine, one must determine n

from the estimated polytropic efficiency of the en-

tire stage. Assuming this efficiency to be 83 percent,

one finds from equation (4-20) with r/=0.83 in

place of 7/r

1
n = = 1.51067

1-(1/0.83)(1-1/1.39)

so that 1/(1 -l/n) =2.9582 and

Po,3_(75069 )2.9582Po, i 100 816 + 1 =5.188 (4-26)
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The corresponding overall volume ratio is, accord-

ing to equation (4-18),

_ l/nVo,3 _ Po, i = 0.19280.662 = 0.3363 (4-27)
1;o,i \Po,3 /

which can be compared with the previously deter-
mined volume ratio of the rotor alone,

Vo,2/Vo, i = 0.2804.

The foregoing calculations of volume and

pressure changes in the machine can be greatly

simplified by the use of a suitable diagram showing

the relation among the principal variables:

temperature, specific volume, and pressure. This

writer found that the logarithmic temperature-

volume diagram described in chapter 18 (sec. 89) of
reference 14 is particularly useful, because thermal

changes appear in this diagram as practically
straight lines with slopes proportional to 3'-1 for

isentropic changes and n - l for polytropic changes.

Lines of constant pressure are also straight, and the

enthalpy can be read from a scale almost propor-

tional to T, instead of requiring the determination

of an area. However, the presentation of this
method of calculation does not fall within the in-

tended scope of this compendium.

4.4.2 Design of Francis Rotor Vane Systems by

Conformal Mapping

In order to consider the entire vane surface in the

design of Francis rotor vane systems (figs. 4-17 and

4-18), one must represent the intersection of the
vanes with the meridional stream surfaces in a man-

ner permitting the design of the vane sections from

the prescribed or desired directions of flow. To do

so by means of three-dimensional models of the

stream surfaces would be quite complicated and

costly. It is, therefore, necessary to represent the in-
tersections of the vane with the meridional stream

surfaces in a plane.
The meridional stream surface between an axial

inflow and an approximately radial discharge forms

a doubly curved surface which cannot be developed

into a plane without significant changes in its local
linear dimensions. The most widely known

transformation of a doubly curved surface into a

plane is the Mercator projection of the Earth's sur-
face. It is conformal insofar as small areas are

represented in a geometrically similar manner to the

actual geometry on the globe. On the other hand,

there are major changes in the scale of projection,

so that Greenland appears on the Mercator map

disproportionately large compared wth equatorial
regions, and the polar regions appear, indeed, in-

finitely large.

The same principle of conformal mapping was

first applied to Francis type turbomachinery by

Prasil (refs. 65 and 66). The basic principle used in

this application is purely geometric and may be
described as follows:

First, the surface of revolution to be represented

conformally on a plane is intersected by radial

planes containing the axis of revolution and having

a constant angular distance za_ofrom each other (see

fig. 4-22). In the turbomachinery field, A_ is

preferably a simple fraction (1/2, 1/3, 1/4, 1/5,
etc.) of the angular distance between succcessive

vanes, that is,

27r
A_ = -- (4-28)

AN

where A is preferably an integer, and N must be an
integer, since it is the number of vanes.

The circumferential distance between successive

radial planes along the surface of revolution is

b (r) = r A¢ (4-29)

where r is the mean local distance from the axis of

revolution. The intersections of the radial planes
with a surface of revolution mark meridional lines
on that surface.

Second, one can draw on the surface of revolu-

tion coaxial circles spaced by the variable distances

b(r) along that surface, this distance b(r) between
the coaxial circles being equal to the circumferential

distances b(r) between the radial planes at the same

distance r from the axis of rotation, given by equa-
tion (4-29). The distance r from the axis is measured

from the middle of every step b(r) as shown in

figure 4-22. The graphical determination of the

points 1, 2, 3, 4, 5, and 6, establishing the circles of

the same numbers on the surface of revolution, in-

volves a brief process of trial and error, or a
graphical procedure described later.

The circles so determined and the meridional

lines of intersection between the surface of revolu-

tion and the radial planes establish on the surface of

revolution a network of orthogonal lines with

equal, mean distances b(r) in both orthogonal

directions. This network approaches a network of
squares as z_ approaches zero.
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Figure 4-22. - Coordinate lines on surface of revolution for con formal mapping.

The network of lines so established may be cor-

related with a network of orthogonal lines on a

plane surface called the plane of representation.

This plane could be, for example, a network of con-

centric circles and radial lines with the radial spac-
ing between the circles and the circumferential spac-

ing between the radial lines being locally equal to

each other (see, e.g., the lower part of fig. 2-42).

However, it is simpler to choose in the plane of

representation a chessboardlike system of straight,

orthogonal, parallel lines with a constant spacing a.
Such a system is used in the following considera-
tions.

Since the line spacing b(r) on the surface of

revolution varies proportionally to r, it should be

possible to find or select a particular distance r 1

from the axis of rotation where b(r) =a, so that

b(r) a

r r I

or

b(r) r

a r1

(4-30)

The second expression is obviously the local scale

ratio of the surface of revolution to the plane of

representation and applies also to any pair of cor-

related parts Ab and Aa of the line spacings b(r)
and a, so that

/Xb r
- (4-31)

z_ r I

By means of this relation, one can transform any

figure drawn in the plane of representation into a
corresponding figure on the surface of revolution,

and vice versa, since zab and Aa may be distances of

any point in the figure from a nearby coordinate

line. The distance r from the axis of rotation is, of
course, measured from the center of Ab as illus-

trated in figure 4-22 with respect to the line spacing
b(r).

It is easy to show that corresponding figures on

the surface of revolution and in the plane of
representation are conformal to each other, that is,

that they have the same angles, by proving that

angles against one of the coordinate directions are

the same for corresponding figures.

Designate the meridional coordinate on the sur-

face of revolution by m and the corresponding

coordinate in the plane of representation by y.

Designate the circumferential coordinate on the sur-

face of revolution by r_o (with r=constant so that

d(r_)=r&o) and the corresponding coordinate in
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the plane of representation by x. Designate the

angle of any line against the circumferential direc-

tion by /3¢ and against the x-direction by /3x.
Evidently

tan/3¢ =

dy !
tan/3x = _-_ .J

(4-32)

Furthermore, at any one point on the surface of
revoluton, r = constant, so that, according to equa-

tion (4-31),

dm_ r _ r d_o (4-33)
dy r 1 dx

Hence

dm _ dy (4-34)
rd¢ dx

and, therefore, according to equation (4-32),

/3¢ =/3x (4-35)

which proves that angles at corresponding points
are the same on the surface of revolution and in the

plane of representation, that is, that corresponding

figures in these two surfaces are conformal.
If the foregoing conformal transformation is ap-

plied to Francis rotors, it has purely geometric, not

hydrodynamic, significance, that is, it does not app-

ly to relative flow pictures in the two surfaces con-
sidered, since even a frictionless relative flow of an

incompressible fluid is neither irrotational nor two-
dimensional. The laws of fluid motion must,

therefore, be satisfied in the actual flow field along
the surface of revolution. The conformal represen-

tation of the vane sections in a plane can be used

hydrodynamically only for one-dimensional con-

siderations, and then only with reservations.

The foregoing design principles are applied in the

following example to the design of a Francis pump

rotor having characteristics of practical significance
and a basic specific speed with which in the past

overall efficienices of about 90 percent have been

obtained. While to some extent typical, the design

presented here does not correspond to any existing

pump rotor, and its actual performance is,

therefore, not known. The design merely represents

the best design methods available to this writer, and

more than half of the pump rotors designed by this
method have been successful.

It is assumed that the basic specific speed of the

single-suction pump to be designed is ns=0.12

(2064, with Q in gal/min) and its suction specific

speed is S=0.58 (9976). The suction specific speed

corrected for Dh/Di=0.35 is So=0.61916 (10 649).

From figure 1-18, we select Vm, i/Ui=0.35 with

2goHsv/V _ i=2.85. Choosing tentatively
_b=2goH/U_'=l.0, one derives from equation
(1-24) the outside to inlet diameter ratio:

D _ 3/2 _ 1

D//,] ns×2.1078 2 \3/4/ \\--O7//

1/2

(4-36)

=3.9536× 1 x0.59161 x0.93675 =2.19105

D2 - 2.191052/3 = 1.68695
Di

which establishes the major diameters of the rotor,

Di, D2, and D h as ratios. It should be recognized

that ¢=2goH/U2=l is an arbitrary (empirical)
choice, so that the ratio D2/D i may yet have to be

altered in order to have an acceptable ratio of retar-

dation W2/W i along the outer shroud.
Still to be determined is the change in the average

meridional velocity from the inlet to the discharge

of the rotor. For an incompressible fluid, a constant

meridional velocity (as assumed in sec. 4.4.1) would
lead to the relation

where the vane thickness blockage is ignored. This
relation leads to

b2 _ D 2 I -D2 / D 2

D2 D 2 4
2
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b2 = 0.3514 × 0.8775 - 0.07709 (4-37)
D 2 4

However, there is no reason for keeping the merid-

ional velocity constant, since only the retardation

(if any) of the relative flow between the vanes has a

recognized significance regarding the real-flow ef-

fects in the vane passages.

A low meridional velocity at the impeller (rotor)

discharge may have advantages regarding the volute

or diffuser passages following the rotor (see sec.
4.5). Assuming arbitrarily that the meridional

velocity is reduced from rotor inlet to discharge to

one-half (Vm,2/Vm, i = 1/2 ) results in

b2 _ 0.1542 (4-38)
D2

Empirically it can be assumed that the impeller width
or retardation of the meridional flow lies between the

values given by equations (4-37) and (4-38). A
somewhat arbitrary choice is required. Assume

b2 -0.13
D2

so that

Vm, 2 _ 0.0771

Vm, i 0.13
=0.593

or

Vm'2 =0.6
Vm, i

which leads to

b2 0.0771
=0.1285

D 2 0.6

In view of the approximate character of the forego-

ing considerations,

b2 - 0.13
D2

and

Vm'2 =0.6

Vm, i .,

(4-39)

are selected for the following considerations.

Equations (4-39), the result of equation (4-36),

and the foregoing assumption Dh/Di=0.35 deter-

mine the profile of the rotor as far as possible on

the basis of the simple considerations used here (see

fig. 4-23).
It is assumed that the fluid enters the rotor

without rotation about the axis, so that Vu, i = 0. As
a consequence,

xb- 2g°H VU'2 (4-40)
U_2 -2r/h U2

The so-called hydraulic efficiency r/h covers only

losses which reduce the pump head, not losses

which merely increase the required torque, and is,

therefore, higher than the overall efficiency. The

hydraulic efficiency is conservatively assumed to be

r/h =0.90. Using, furthermore, the earlier assump-
tion that 2goH/U2= 1, one finds, from equation

(4-40),

VU, 2 _ 1 -0.5556
U2 2_7h

Scaling from the velocity vector diagrams in figure

4-24, one finds the retardation ratio of the relative

flow along the outer shroud is w2/w i = 0.736, which

is acceptable if the lift coefficient is selected accord-

ingly to be fairly low. A conservative value

CL,_ = 1.0 is selected tentatively in order to deter-
mine the number of vanes.

The profile of the rotor shown in figure 4-23 is

developed to a large extent empirically. Its axial

length is made as small as possible in order to ease

the mechanical problems connected with the ap-

plication of this rotor. On the other hand, the

radius of curvature R i of the outer shroud at the
rotor inlet should be as large as possible in order to

minimize the inlet cavitation problem. (An attempt

to make R i not much smaller than the radial width

(Di-DD/2 of the passage at the inlet resulted in

Ri=0.923 (Di-Dh)/2.) The axial extent of the
rotor is minimized by reducing the radius of the

shroud curvature below R i between the inlet and the

radial portion. This change should be acceptable

since the relative flow in the rotor passages has a

strong circumferential component and is, therefore,

subjected to far less curvature than visible in the

rotor profile.
The circumferential cross section 27rrb measured

normal to the two boundaries of the axially sym-

metric flow passage is previously described to be in-
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creasing toward the discharge of the rotor. All that

is required is that it increase along a smooth curve

as shown in figure 4-25. This curve is derived by
trial and error in connection with the inner contour

of the back shroud of the rotor.

To determine the number of vanes from the lift

coefficient, one must estimate the length of the

vane. For the estimate along the outer shroud, it is

necessary to obtain an average vane angle along

that contour. The inlet vane angle is given by the in-

let velocity diagram. The discharge vane angle is

estimated from the discharge velocity diagram as in-

dicated in sections 2.6.3.4 to 2.6.3.6 and figure 2-45

and as shown in figure 4-24. The discharge flow

angle measured against the meridional direction is

_m,2 = 66*. The mean vane angle must be smaller to
account for the vane blockage, which increases the

meridional velocity.

Let sm be the meridional vane length measured

along a meridional flow line in the section shown in
figure 4-23. Evidently the vane length is approx-

imately

1= Sm (4-41)
COS _m, av

Scaling Sm from figure 4-23, one finds sm/O 2
= 0.286 measured along the outer shroud from the
maximum to the minimum diameter. Furthermore

one can estimate from existing rotor designs that

E

_o

Cylindrical area between two planes

normal to axis with axial distance i/

b2 andaradius r ,_ //

//

/

iiiii /

Cylindrical area between, /
two planes normal /

to axis with axial // [ .- Meridional
distance I)2 and / /_ii_w"a_'a'

a radius r_ //

,,' / j

Figure 4-25.-Meridionalflow area distribution.

[Jrn,av = 63*. Hence equation (4-41) gives the follow-
ing result:

l 0.286
=0.63

D 2 0.4540

Estimating woo to be (wi+ w2)/2 =0.547 U2 and us-

ing the previously determined ratio Vu,2/U 2
=0.5556, one calculates from equation (2-130),

with CL, oo= 1.0 and VU, 1=0,

l = 2 Vu'-----_2_ 0.5556
t2 woo =2 _ =2.0314

and, with I/D 2 = 0.63,

D 2 1 _D 2_ 2.0314

1 t2 t2 0.63
= 3.2245

so that the number of vanes is

N= r x 3.2245 = 10.13

Using N= 10, one obtains CL, oo= 1.013, which is
acceptable but not final, since the actual vane

length is likely to be different from that given by

equation (4-41) with an estimated value of fJm,av.

Before the vane is laid out by conformal map-

ping, it is desirable to design the discharge end of

the vane in a preliminary fashion described in sec-

tion 4.3 in connection with figures 4-8 to 4-10,

because the simple design method given there is ap-

plicable to the discharge portion of the presently

considered impeller and, therefore, offers a good
check of the part of the design developed by confor-

mal mappling.

The discharge vane distance dE is determined by
the condition of continuity, with a uniform, fic-

titious velocity assumed in this cross section (see

figs. 2-45 and 4-24). This distance is easily deter-
mined by comparison with the inlet cross section
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O = k,I-
l

so that

d2 _ Vm, iDir(1-D_h/D_)

D i w_ 4b2N

= w_b2d2 N

(4-42)

Using the diameter ratios from figure 4-23 and the

velocity ratios from the diagrams in figure 4-24, one
finds

7r 0.8875 -0.211
d2 -0.6692x4.572× _ × 10
Di

The outer vane end is designed according to

figures 4-9 and 4-10 and is shown in figure 4-24.
The vane thickness r n is chosen to be 2 percent of
the outside rotor diameter, with a slight reduction

toward the discharge vane end.

For the vane layout by means of conformal map-

ping, it is necessary to determine the stream sur-
faces of the meridional flow. The objective is to
establish the intersections between the vanes and

these surfaces, since these intersections can be
assumed to determine the vane action on the flow.

For this impeller layout, three meridional stream

surfaces, I, II, and III, are considered (fig. 4-23), I

and III coinciding with the inner surfaces of the
outer and inner shrouds and II located halfway be-

tween surfaces I and III according to the local cir-

cumferential cross sections of the meridional flow.

The central stream surface II is, therefore,

established under the assumption that the merid-

ional velocity Vm is constant over any one cross sec-
tion of this flow. This assumption is sufficiently

close for the establishment of flow surface II and is

discussed further later.

The dimensionless scale of the orthogonal net-
work of meridional lines and coaxial circles on the

meridional stream surfaces of revolution is

established by the angular spacing A¢ between the

radial and axial planes. This scale was chosen to be

one-third of the vane spacing, that is, 12" for 10
vanes. Successive radial sections are marked a, b, c,

d, etc. for each vane, the sequence beginning at the

discharge edge and proceeding in the direction of

rotation (against the relative flow). Since figure
4-24 shows two vanes, it must show two scales a, b,

c, d, etc.
The next step is to establish on surfaces I, II, and

III coaxial circles 0, 1, 2, 3, etc. spaced at intervals

meridionally equal to the circumferential spacing

between the radial planes a, b, c, etc. at the mean

radius (distance from the axis of rotation) of each

meridional step. The principle involved is outlined

previously and illustrated in figure 4-22. It is rather

simple to satisfy this principle graphically by the

operation suggested by Victor Potondy (formerly of
Goulds Pumps Inc., Seneca Falls, N.Y.) and il-

lustrated in figure 4-23 for the step from 0 (outside

periphery) to 1. In a diagram such as figure 4-23

showing the spacing between the circles as a func-
tion of the distance r from the axis of rotation

(shown to the right of the impeller profile), one
draws a line under 45" (as shown). The intersection

of this line with the dashed line showing one-half of

the spacing as a function of r gives the radial posi-
tion of the center of the first step from 0 to 1. This

solution is, of course, valid only if the surface of

revolution is a plane normal to the axis, as it is be-

tween stations 0 and 1 in figure 4-23. An extension

of the method to a general surface of revolution

such as shown in figure 4-22 and figure 4-23 below

station 1 is shown in figure 4-26.

The meridional spacing between successive circles
on the surface of revolution is x(r) =r A_, where r

is the distance of the center of x(r) from the axis of

rotation. The diagram x(r)=r A_ is shown in

figure 4-23 to the right of the rotor profile and at

the left side in figure 4-26 at an enlarged scale. The

meridional spacing between circles 1 and 2 is

designated x12, and the spacing is assumed to be

sufficiently small to neglect the difference between
the chord length 12 and the length measured along
the curved surface of revolution in the meridional

direction.

In the x(r) diagram (at the right in fig. 4-23 and

at the left in fig. 4-26), one draws through point A

(corresponding to point 1) a line parallel to the
estimated direction of the chord 12 on the surface

of revolution. Along this line, one marks from

point A an arbitrary length L ending at D. (The

length is preferably somewhat larger than the ex-

pected one-half chord length, in order to obtain

good accuracy.) Along a line through D paralled to
the axis of rotation, one plots the same length L,

from E to B. A straight line from A to B intersects
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x(r)

Surface of

revolution /
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x12 y /24"

r2

Figure 4-26. - Construction of spacing between coaxial circles on surface of revolution for con formal mapping," sin a = tan 1_.

the broken x(r)/2 line at C, which marks the chord

center of the desired chord x12 and thereby deter-

mines the magnitude of x12/2 from the x(r)

diagram, as shown in figure 4-26.
If the initial estimate of the direction of the chord

12 and thereby of the line AD is significantly

wrong, one can reiterate, but, with a little ex-

perience in estimating the step x12, this reiteration is

rarely required.
The same construction is shown in figure 4-23,

only for three steps, one from 1 to 2 and one from 2
to 3 along stream surface I and another from 3 to 4

along stream surface II. The same method is used

for all steps to which it applies. (It does not apply to

nearly cylindrical parts of the stream surface.)

With the network of orthogonal lines so
established on all stream surfaces I, II, and III

(circles 1, 2, 3, etc. and meridional lines along the

radial planes a, b, c, etc. in figs. 4-24 and 4-27), one
is ready for the design process by conformal map-

ping.

To begin, one selects more or less arbitrarily a

radius r, at which the scales of the impeller drawing

and of the plane of conformal representation are

the same. The radius of the three points marked 1 in

figure 4-23 is selected to be r 1, which gives a conve-

nient size for the conformal representations of the

intersections of the vanes with the three surfaces I,

II, and III. The constant spacing a of the straight,

orthogonal lines in the plane of representation (fig.

4-27) is, therefore,

27rr 1 2rr 1
a = - (4-43)

AN 30

according to equation (4-28) and the choice of
N= 10 and A = 3.

The design method consists in designing the vane

sections I, II, and III in the plane of representation.

Since this representation is conformal, the direction
of the vane section is known from the inlet and

discharge velocity diagrams, by using at the
discharge the direction of the fictitious relative

velocity vector w_ (see figs. 2-45 and 4-24) deter-

mined according to sections 2.6.3.4 to 2.6.3.6. The

inlet vane angle is very nearly equal to the angle of

the inlet relative velocity (see figs. 3-1 and 4-7). The

real problem in this case is the determination of the

meridional velocity component at the inlet. The

peripheral component of the absolute inlet flow is
here assumed to be zero to avoid unnecessary com-

plication of the overall problem.
It would be natural to assume at the inlet a poten-

tial meridional velocity distribution determined
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from the radii of curvature at the inner and outer

flow boundaries as outlined in section 2.2. This ap-

proximation of the potential inlet velocity distribu-

tion is shown in figure 4-23 as curve OH, plotted

from the baseline AA' to the right of the impeller

inlet. This meridional velocity distribution could

also be assumed to exist along the inlet edges BB of

the vanes. Strange as it seems, vanes designed ac-

cording to this assumption have usually shown

poorer results than vanes designed according to the

more elementary (one-dimensional) assumption of
a uniform meridional velocity distribution along the

inlet edges of the vanes. In the next section, an at-

tempt is made to explain this result by theoretical

approximations. At present, the empirical rule

Vm,i=constant is used as the primary design
criterion, however, with some attention to the

potential velocity distribution of the meridional in-
flow. The meridional flow area distribution shown

in figure 4-25 indicates that it is justified to assume

the mean meridional velocity distribution to be the
same at the vane inlet edge BB as in the so-called eye

cross section with an outside diameter D i and an

inside diameter Dh.

With the inlet and discharge vane angles so deter-

mined, it must still be considered that these direc-

tions of flow (particularly at the inlet) do not con-
sider the blockage effect of the finite vane

thickness, which increases the meridional velocity

component in the central portions of the vanes
more than at the vane ends. In other words, in their

central portions, the vanes must be steeper than at
their ends.

In the conformal map, centerlines of the vanes

are drawn parallel to wi at the inlet, parallel to w_ at

the discharge, and somewhat steeper than either end
in the central portions of the vane to account for

blockage. It should be recognized that the dif-

ference between w_. and the true relative velocity w2

takes the vorticity of the relative flow into account.

The vertical location of the vane inlet edges is deter-

mined by the empirically assumed vane inlet edge as
shown in figure 4-23 (subject to revision, if

necessary), so that only the horizontal extent of

each vane section in the conformal map (i.e., the

circumferential extent of the actual vane section)

needs to be determined by the smooth connection

between the inlet and discharge portions and the

previously mentioned requirement that the vane

must be somewhat steeper in its central portion than
at the vane ends.

In the present case, the process outlined previous-

ly is greatly facilitated by the existence of a

preliminary layout of the outer vane portion

according to the geometric principles described in
connection with figures 4-9 and 4-10. The result of
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such a layout is shown in figure 4-24. The transfer

of this layout into the conformal map (fig. 4-27) is

illustrated for two points in the radial and axial sec-

tion b removed from the discharge edge by
z_=2r/30. The transformation of the radial

distances ,aro and zar I from the nearest coordinate

circles 0 and 1 into the corresponding distances z_yo
and 2ty I in the conformal map is shown in the

x(r),r diagram in figure 4-23 and should be self-

explanatory. Furthermore the conformai nature of

this transformation permits the transfer of all vane

angles from the physical layout (fig. 4-24) to cor-

responding points on the conformal map. This

transfer is facilitated by the fact that the physical
layout of the outer vane end was constructed out of

circular arcs, so that the vane angle against the

peripheral direction is directly given by the angle

between radial lines, as shown in figures 4-2 and

4-24. The conformal representation of the outer

vane end is, therefore, given by points along the

curve and its tangents. This method is a very
reliable determination of a curve.

It should be noted that the outer vane end so

designed agrees in direction very satisfactorily with
the fictitious velocity w_ shown in figure 4-24 and

transferred to figure 4-27.
The outer vane end so determined establishes the

vane centerline (dash-dot line) in that region (fig.

4-27), which can then be continued smoothly
toward the leading edge, where its direction is given

by the relative velocity of the oncoming flow. The

construction of the outer vane end according to

figure 4-9 automatically leads to the steepening of
the vanes in the central portions of the vane, which

is previously described as dictated by the blockage
effect of vanes with finite thickness.

The complete vane section shape is determined by
placing the half-vane thickness symmetrically
around the vane centerline. A constant vane

thickness in the physical system obviously leads to

an increase in the apparent vane thickness toward

the leading end of the conformal vane layout (fig.

4-27). This apparent thickness is inversely propor-
tional to the local distance r from the axis of rota-

tion. Its construction is shown at the right in figure
4-23, and it can be used directly in the conformal

map. The actual vane thickness remains, of course,
not constant to the vane ends. The reduction in

thickness toward the discharge end is included in

the geometric construction used (see fig. 4-10), and

toward the leading edge the change in thickness is
best accomplished graphically in the conformal

map.

The vane section I (outer shroud, fig. 4-23) shows
in its conformal representation (fig. 4-27) two

leading-edge shapes. The shape developed first en-

tirely on the basis of the relative velocity associated

with a uniform meridional approach velocity Vm, i
= constant is shown in dashed lines, and the relative

velocity is represented by solid velocity vectors wi, 1.
Figure 4-23 also shows a potential meridional

velocity Vm, o whose radial distribution is rep-

resented by the solid curve HO. Experience has

shown that this departure from the uniform me-

ridional velocity distribution is too large and that a

meridional velocity distribution halfway between

the uniform Vm, i and the potential Vm, o distribu-
tion in figure 4-23 gives better results, particularly
with respect to cavitation. This intermediate merid-

ional velocity distribution is shown in figure 4-23 by
the dashed line H'O'. Its upper end O' is used in

the conformal map (fig. 4-27) for the construction

of a revised vane section I, shown in solid lines,

which is used in this design example. The normal in-

let vane distance d_ increases approximately in pro-
portion to the intermediate meridional velocity

(with end point O') along flow section I. While this

criterion, derived from equation (3-1)and figure 3-1

(of ch. 3), does not apply exactly to the conformal

map (fig. 4-27), it does constitute a reasonable ap-
proximation and thus confirms the vane section I

shown in solid lines in figure 4-27. In the next sec-

tion 4.4.3, an attempt is made to improve the
halfway approximation used here for the merid-

ional inlet velocity along flow section I.
The difference between the uniform meridional

inflow velocity and the potential meridional veloci-

ty distribution I'm, o is shown in figure 4-23 to be
practically zero at the central flow surface II, so

that no halfway velocity approximation is required.

However, along the inner stream surface III, a

design compromise similar to that along the outer
surface I is required, with point H' (fig. 4-23) used

as the end point for the local meridional velocity.

The difference between this compromise velocity

and the uniform velocity Vm, i, of course, runs along
stream surface III in the opposite direction from

that along stream surface I, so that the dashed,

potential velocity vector Vm, i along surface III (in
figs. 4-23 and 4-27) is flatter than the solid velocity

vector corresponding to Vm, i=constant. Figure
4-27 shows only one vane section for stream surface

III, designed for inflow about halfway between the

solid and the dashed velocity vectors wi, in.
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ThethreevanesectionsI, II, andIII shownin the
conformalmap(fig.4-27)establishthevaneshape
alongthethreesurfacesof revolutionI, II, andIII
showninfigure4-23.It remainstotransformthein-
formationcontainedin theconformalmapbackin-
to thephysicallayoutof therotorvanesandto fill
in thethree-dimensionalvaneshapebetweenthe
streamsurfacesI, II, andIII. Bothobjectivescan
beaccomplishedbyconstructingoutof theconfor-
realrepresentationsa sufficientnumberof plane,
radialandaxialsectionsthroughthevanestodefine
theirshape.

Radialandaxialsectionsarerepresentedin the
planeof conformalrepresentation(fig.4-27)bythe
verticallinesa, b, c,etc.Thepointsof intersection
betweentheselinesandtheconformalvanecon-
tours,whentransferredinto the rotor profilein
figure4-23,determinethreepointsof aradial(and
axial)sectionthrougheachside(orsurface)of the
vane.Byjudiciouslydrawingsmoothfairingcurves
througheverysetof threepoints,onefills in the
vanesurfacebetweenthethreestreamsurfacesI, II,
andIII. Thefairingcurvescanbedrawnin sucha
mannerasto achieveafavorableanglebetweenthe
bladeandshroudsurfaces,whichisanimportant
objectivewhendesigningFrancisvanesfor tur-
bomachineryrotors(seefigs.4-15to 4-17).

Figure4-28showsthe radial fairing sections
throughthevanesoderivedfromfigure4-27.Also
shownarethecurvesof meridionaldistancesbe-
tweensuccessiveradial sectionspreviouslyin-
troducedin connectionwith figure4-18.Plotted
alongtheprojectionsof thecentersof eachmerid-
ionalvanesurfacesteparesolidcurveswhichrepre-
sentthemeridionaldistancesbetweentheupperor
leadingvanesurfacesand dottedcurveswhich
representthosebetweenthe lowervanesurfaces.
OnlyalongtheoutershroudsectionI hasaminor
adjustmentbeenmade,primarilyinsectiond. The
changeis sosmallthatit couldhavebeenignored
for practicalpurposes.Thisaccuracyindicatesthat
theprocessof conformalmapping,if carriedout
carefully,isa practicallyusefulmethodof Francis
vanedesign.

Theradialsectionsshownin figure4-28maybe
useddirectlyforthemanufacturingof rotorblades.
However,othersectionsmaybemoreappropriate
for specificmanufacturingmethods.Sections1,2,
3,etc.,normalto theaxisof rotation,arerequired
for productionof aso-calledcoreboxinwoodand
are,therefore,termed"boardsections"(seefigs.
4-28and4-29).Thepressureor leadingsideof the

Stream Board
surface section

II] I II 2 1 3 4 5
I Radial Radiiof wall

section

/jo

1 3 4 55.5

Figure 4-28. -Radial sections through Francis rotor.

vanes is shown by dashed lines in figure 4-29. The
identification of the board sections by numbers 1,

2, 3, etc. should not be confused with the same

numbering of the coaxial circles on the stream sur-

faces of revolution used in figures 4-23 and 4-27.
For reasons of clarity, a fairly small number of

board sections is used in this presentation. A

somewhat larger number of board sections is usual-

ly required.
The design method described in this section has

been used successfully since the second half of the

1930's. Figures 4-30 to 4-32 show one of the best

impellers developed toward the end of that period.
In connection with a twin-volute casing of the type

shown in figure 4-54 (section 4.5.2), this impeller

led to overall pump efficiencies between 90 and 92

percent (depending on the quality of the surface

finish) with an impeller diameter of about 12.5
inches. Also the cavitation performance was highly

satisfactory. However, other considerations such as

those presented in section 4.4.4 are necessary to give

this method of design the required level of depend-

ability.
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Figure 4-29. - Vane layout with board sections of Francis pump rotor.
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Figure 4-30. - Views of Francis impeller designed and tested in late thirties showing coaxial circles and radial sections for
con formal mapping.
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Figure 4-31.-Con formal vane layout of Francis

designed and tested in late thirties.

impeller

4.4.3 Approximation of Effect of Vane Vorticity on

Meridional Flow

The principles of the effect of bound vane vortici-

ty on the meridional flow are outlined in section

2.7.6. In the example treated there, this effect of

vane vorticity is unfavorable insofar as the merid-

ional velocity distribution across the flow space of

revolution is, under the influence of vane vorticity,

less uniform than its distribution for irrotational

meridional flow. However, it is pointed out at the
end of section 2.7.6 that, for vanes whose shape is

not dictated by centrifugal stress considerations, it

may well be possible to achieve a favorable effect of
the vanes on the meridional velocity distribution.

Specifically one can shape the vanes in such a man-

ner that they aid in deflecting the meridional flow
from the axial toward the radially outward direc-

tion. This is accomplished by taking radial sections

through the vane shapes as shown in figure 4-28,

with the upper (outer) sides of the vane sections b to

h considered to be the leading and, therefore, the

high-pressure sides of backward-bent vanes such as

shown in figure 4-29. It is evident that, without
vane action and without rotation of the fluid about

the axis of symmetry, the outer boundary I of the

meridional flow passage shown in figures 4-23 and

4-28 would be the low-pressure, high-velocity side
of the meridional flow. With the high-pressure sides

of the vanes facing this low-pressure side of the

meridional flow passage (fig. 4-28), the vane action

tends to reduce the pressure and velocity differences
across the meridional stream. These differences are

ordinarily associated with the deflection of a flow,

b d

"],e

rB, i

Board
section

Stream
surface Radial
I section IV

_d c _

Figure 4-32. - Layout of Francis impeller designed and tested in late thirties sho wing contour and one board section (left) and

radial sections (right ).
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in this case the deflection from the axial to the

radial direction. A reduction in these cross-stream

pressure and velocity differences is an advantage in

accomplishing a certain deflection of the flow,

which is, therefore, aided by action of vanes of this

shape (fig. 4-28). This aid by the vanes does not ex-

ist with vanes having radial blade elements, such as

shown in figure 4-20, where radial sections through

the vanes are straight and normal to the axis of
rotation and, therefore, have no force action

toward the outer boundary of the meridional flow

passage.

The empirical assumption of a uniform merid-

ional velocity across the meridional flow, used in

section 4.4.2, indeed implies that the vanes are
assumed to have such a favorable effect. To derive

the vane action on the meridional flow in detail

would be quite complicated and would exceed the

general scope of the present treatment. However, it
is in order to seek a general indication of whether

the vane shape derived under the assumption of

uniform meridional flow tends to justify this

assumption. An attempt to find such an indication
is now made by analyzing the bound vane vortex

lines used in section 2.7.6.

As in section 2.7.6, the vane vortex lines are

determined by the lines or surfaces of constant
rotor head. These lines or surfaces are determined

under the one-dimensional assumption that the

relative flow in the rotor passages is parallel to the
centerlines of the vanes.

Figure 4-33 shows the relative velocity diagrams

derived under this assumption for the stations

(coaxial circles) 1, 2, 3, etc. along the stream sur-

faces I, II, and III. The meridional velocities V m are

derived by the one-dimensional condition of con-

tinuity from the cross section 27rrb of the space of

revolution (figs. 4-23 and 4-25) and from the vane

blockage (fig. 4-27) and are plotted in figure 4-34.
Drawing the one-dimensional relative velocity vec-

tors w' parallel to the vane centerline at the stations
(1, 2, 3, etc.) concerned, one obtains the local ab-

solute velocity component V*U. Its product with the

local peripheral velocity V'uU is proportional to the

local head increase over the inlet head, with the ap-

proximation that the head coefficient Vu/V'u= C H

is constant over a local region of the meridional

flow. The product V*uU is plotted in figure 4-34

against the meridional extent of the flow, stations l,

2, 3, etc. Horizontal lines through this plot locate

points of constant head V'uU--goHr as a function
of the meridional extent 1, 2, 3, etc. of the flow

along each of the meridional stream surfaces.
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Figure 4-33.-One-dimensional relative velocity diagrams in

Francis pump rotor.
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Figure 4-34.- Meridional velocity and one-dimensional rotor-
head distribution in Francis pump rotor.

The corresponding lines of constant head are

plotted first in the conformal map, figure 4-27. The
line closest to the leading edge BB is marked CDE

and is transferred to figures 4-24 and 4-35. In both

figures, a dash-dot line FGH is drawn halfway be-

tween the leading edge and the first constant-head

line (CDE). The line FGH may be considered the
first bound vortex line of the vane, and its inclina-

tion against the radial direction k may be con-

sidered to determine the circumferential vorticity

component _'u, that is, the vorticity of the merid-

ional flow. (See the development of the conical sec-
tion IGF in fig. 4-35. This section agrees with the
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Figure 4-35.-Bound vortex line near leading edge.

vortex line mainly in its outer part FG, because this

part is of greatest importance.)

Here it is necessary to identify the direction of the

meridional velocity Vm, _ induced by the vorticity _"

of the bound vane vortex line HGF.

The impeller end view shown in figure 4-24 in-

dicates that the direction of the angular momentum

generated is clockwise; that is, in figures 4-23 and

4-35, the peripheral fluid velocity V U as well as its

increase A V U from the leading edge toward line
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CDE point away from the observer. This orienta-

tion determines the direction of the vorticity vectors

_'c, _', and _'u shown in figure 4-35 by the rule used

herein that the vorticity direction is counter-

clockwise when looking in the direction of the vor-

ticity vector. Specifically the direction of g'u can be

derived directly from the geometric fact that the
outer end F of the bound vortex line HGF trails cir-

cumferentially behind its inner end H, as shown at

the lower right in figure 4-24.

Since the development of the conical section IGF

is viewed in figure 4-35 from the suction side, or in-

side, it follows that the vorticity vector _'u of the
meridional flow points in the radial (and axial) sec-

tions through the impeller shown in figures 4-23 and

4-35 toward the observer; that is, the vorticity of the

meridional flow (expressed by _u) is in the

clockwise direction. This means that the velocity

Vm, r induced by _u at the outer shroud (diameter
D i in fig. 4-23) is directed counter to the incoming

flow with the velocity Vm,i, o and at the hub

(diameter Dh) in the direction of the incoming flow.
As outlined in chapter 11 of reference 14, it is

desirable to divide the meridional flow into two

parts: an irrotational part Vm, o and another part
having the vorticity _'u. Evidently

_'u = fc tan X (4-44)

where _'c is the vane vorticity component in a merid-

ional plane (see figs. 2-70 and 4-35). Designating the

velocity representing the vorticity _'u by Vm, _ ob-
viously satisfies the equation

+ _ = _'U (4-45)
R ab

where R is the radius of curvature of the meridional

streamlines, and b is the coordinate across and nor-
mal to the meridional flow as used in section 2.2.

According to equation (2-181), the vane vorticity

component _'c is

1 A(r VU) _ V U Ar A VU (4-46)
fC= r An r An + An

where An is the normal distance between two vane

vortex lines representing a difference in angular

momentum A(r Vu) such as seen in a radial and axial
plane (see fig. 4-35).

Using finite differences in equation (4-45) also

and combining equations (4-44) to (4-46) lead to

Vm____m_,_d,+ AVm, f ( Vu Ar
R Ab = -A-nr

(4-47)

The velocity distribution Vm, _ must not have a
finite flow rate over the cross section considered,

since the condition of continuity should be satisfied

by the irrotational velocity distribution Vm, o and in
addition must obey the equation

Vm o dVm o
' + ' =0 (4-48)

R db

The following considerations apply primarily to the

Vm,_-distribution between G and F in figure 4-35, as

an attempt is made to approximate the Vm,_value at

F (Vm,_,F), although the same reasoning can also be
used for the part HG of the same curve. For a sim-

ple (approximately linear) Vm, _ distribution be-
F

tween G and F and with fnVm,_r db =0, it can be

assumed that Vm, _ at G(Vm, f,G) is quite small.

Hence IVm, f,F - Vm,r,d=lz_v,.,rl>lVm, rl between
G and F. Furthermore it can be seen from figures

4-23 and 4-35 that R >Ab. Hence, to obtain a first

approximation, one is justified in neglecting in

equation (4-47) Vm, r/R in comparison with

AVm, JAb.
Furthermore, for a linear increase in VU from the

leading edge BB to the constant-head line CDE, it is

easy to see that on the average between the leading

edge and the line CDE

Vu _ 1 A VU
An 2 An

In addition, it can be seen from figure 4-35 that

Ar/r is quite small, since Ar__<An. One is, therefore,

justified in neglecting in equation (4-47) for the first

approximation (Vu/An)(Ar/r) in comparison with
A Vu/An. Equation (4-47) may, therefore, be re-

duced (by the first approximation) to

AVm,_ _ AVu- -- tan X
Ab An

or

Ab
AVm, f=AVu_ tan X (4-49)
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In this equation Ab/An as well as tan X can be

scaled from figure 4-35, and A V U is obtained by in-

terpolation between the values given in figure 4-33.

The resulting A Vm,_ is plotted in figure 4-23 from
the baseline A-A', by using point L as the zero

point and obtaining two straight lines SL and LM

approximating the curve for the outer and inner

portions separately. The smooth, solid curve KM

shown tends to average these two straight lines,
which are not tangents to this curve. The curve is an

estimate of Vm, _ as a function of the coordinate
across the section B-B'.

At the upper point B, the normal section B-B'

meets the leading edges of the vanes along the outer

shroud. At this point, it is justified to assume that

the velocity departure from the irrotational velocity

distribution (Vm, o described by line OH in fig. 4-23)

is A Vm, _-/2, since the vane vorticity covers only half
of the flow field adjacent to this point B. The same

assumption is applied to other points of this veloci-
ty distribution, since all meridional velocities of sec-

tion B-B' are to be applied to the leading edges of
the vanes (BB in figs. 4-23 and 4-35), for which this

reasoning is correct. The resulting meridional

velocity distribution in section B-B' and approxi-

imately along the leading edge BB is shown as the

dashed curve O'H' in figure 4-23.

The new velocity distribution curve O'H' is ap-

preciably closer to the previously assumed uniform

velocity distribution Vm, i=constant than the
potential velocity distribution OH. At the same
time, it is clear from the sketch of the vane inlet

region shown in figure 4-24 that the inclination of

the bound vortex line HGF is largely due to the in-
clination of the leading edge BB against a meridion-

al plane. Thus a favorable effect of the vanes on the

meridional inlet velocity distribution depends

primarily on the inclination of the leading vane
edge, as shown in figures 4-24 and 4-29, with the

vane edge at the inner shroud leading circumferen-
tially relative to the vane edge at the outer shroud.

One can draw the conclusion that the meridional

velocity at the inlet to a Francis rotor vane system
can be made almost uniform by an inclination of

the leading vane edge. This conclusion supports the
previously mentioned empirical justification for us-

ing a uniform meridional velocity distribution in the

design of this type of rotor. Nevertheless some

recognition of departures from the uniform velocity
distribution is desirable.

4.4.4 Design of Radial-Flow, Rotating Vane

Systems by Mean Streamline Method

As pointed out in chapter 27 of reference 14, the

mean streamline method is in principle also ap-

plicable to radial-flow vane systems. However, the

problems associated with this application are not
described in that reference.

It is stated in reference 14 that the equilibrium

between the circumferential momentum change and
the vane force, previously described in section 2.5.5

(eqs. (2-77) and (2-78)), assumes in radial-flow

systems the form of the equilibrium between the

moment of the vane force and the change in the mo-

ment of momentum (angular momentum) of the
flow. For radial-flow vane systems, it is advan-

tageous to express this relation in terms of the ab-

solute rather than the relative flow. By analogy to
equations (2-77) and (2-78), this reasoning leads to
the expression

p AQ O(rVu)
N ar dr = AbxAPx r dy (4-50)

where the axial coordinatey in equations (2-77) and
(2-78) has been replaced by the meridional

distances, also designated by y. As previously, AQ
is the volume flow rate between two adjacent merid-

ional stream surfaces with the normal distance Ab x.

The subscript x is an index, designating any station
8, 7, 6, etc. along the meridional flow, as shown in

figure 4-36; N is the number of vanes; and Ap is the
vane pressure difference.

Since, by the condition of continuity, p AQ/N=

constant, one may write equation (4-50) in the form

Vudr + r dV U = constant AbxAPxr dy (4-51)

considering that the radius r is in this investigation
the only independent variable.

As in the case of axial-flow vane systems, the in-
tegration of equation (4-51) is carried out in a

limited number of finite steps, and equation (4-51)
may, therefore, be written in the form

V Arx
U,x--_x + A VU, x = constant AbxAPx_y x (4-52)

where x varies through the finite steps 8 to 7 to 6
etc. to 0.
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The solution of equation (4-52) is described in

connection with a definite design example. The ex-

ample chosen is a single suction pump with a basic
specific speed of 0.086 (1480). The impeller is

overhung, so that the shaft or hub diameter D h at

the impeller inlet is zero. The flow is assumed to

enter the impeller without angular momentum. On

this basis, the suction specific speed is assumed to

be 0.52 (8940), which leads to a Thoma head ratio

oH=Hsv/H of slightly less than 1/10, so that this

example is a convenient reference case. By extreme-
ly careful design and experimental development,

such a pump can be made very nearly free from

cavitation. This writer is acquainted with the design

characteristics of one such pump which has 90 per-

cent efficiency when used with a single-volute cas-

ing. This value is close to the maximum achievable

efficiency of centrifugal pumps (see also fig. 1-12 of

ch. 1). Some empirically confirmed design char-
acteristics are available for this example.

The aforementioned estimate of the suction

specific speed is, according to figure 1-18 and the

corresponding equations, associated with a flow

coefficient Vm,i/Ui=0.38 and a blade cavitation

number ap = 0.26 which is probably the lowest with
which cavitation-free operation is achievable. The

flow coefficient Vm,i/Ui is chosen to be slightly
higher than its optimum value with respect to the

suction specific speed S and ap in order to minimize
the inlet relative velocity as far as possible without

reducing S substantially.
The most familiar relation between the basic

specific speed and the design characteristics of the

impeller is

nQ 1/2 1 U2o
ns= (gH)3/4 - 21/47rl/2 \_/

/ \ 1/2/ X3/2

(4-53)

where the subscript o refers to the outlet diameter,

and the subscript i refers to the inlet diameter of the

impeller (see ch. 1, sec. 1.2.1). With ns=0.086 and

Vm,i/Ui=0.38, one finds

\3/4/ \3/2

U2o ) (Oi) - 0.086×21/4× .xl/2
2gH/ \Do� - 0.381/2

= 0.29406 (4-54)

The aforementioned existing pump of the same

basic specific speed with an efficiency of 90 percent

has a head coefficient 2gH/U2 o of approximately
1.085 with satisfactory, stable operation. This value
of the head coefficient is, therefore, chosen for the

pump to be designed here and, according to equa-

tion (4-54), leads to

Di
Do = (0.29406 × 1.0853/4) 2/3 = 0.46063

Furthermore the impeller discharge width bo is em-
pirically chosen to be slightly over one-tenth of the

outlet diameter D O (actually bo = 0.104 Do).
The inside contours of the outer shroud and of

the inner or back shroud of the impeller, resulting

from the previously mentioned dimensions, are

shown in figure 4-36. The numbered points marked
on the shroud contours I and III, and on the central

stream surface II, have the same significance with

respect to the conformal representation of these
surfaces as in figures 4-22 and 4-23 (explained in

sec. 4.4.2). Furthermore figures 4-36 and 4-37 show

without a definite scale the changes in the merid-
ional flow cross sections between the shroud con-

tours I and III, given by the products Rr of the

circles inscribed between the shroud contours. Only
two of these circles are shown.
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Station along stream surface 1

Figure 4-37.-Meridional area Am and relative rotor fluid
velocity w" with blockage correction as functions of
meridional flow station along outer shroud contour L
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Figure 4-38.- Pump vane pressure distribution designed to meet pressure coefficient Op =0.263.

The velocity distributions in the cross sections of

the meridional flow are approximated according to
equation (2-6) with the assumption of irrotational

meridional flow (_'m =0). An exception is made at

the inlet cross section (fig. 4-36), where the actual

meridional velocity distribution (dashed line) is

assumed to be about halfway between the irrota-

tional velocity distribution and a uniform velocity

distribution. This assumption is intended to ap-
proximate the influence of the swept vane inlet on

the meridional velocity distribution (see sec. 4.4.3).

It also considers the transition from a straight inlet

duct to the curved impeller passage.

The next step constitutes the only element by

which the design method outlined in this section dif-

fers fundamentally from the methods used

previously. As indicated previously, this step aims

to design the impeller vanes so that a prescribed or
assumed pressure distribution is generated along the

vanes. This pressure distribution must satisfy the re-

quirements established by the cavitation conditions

under which the pump is expected to operate.

Specifically the absolute pressure drop at the vane

inlet must not be greater than ot_ow]/2, where the

cavitation parameter ap should in this example not
be higher than 0.26, the value previously derived

from the suction specific speed by means of the

diagram in figure 1-18. An attempt to satisfy this re-

quirement is shown in figure 4-38. The present con-

siderations are restricted to the flow along the

outermost shroud contour I (fig. 4-36), because the
pressure reduction leading to cavitation is likely to

be most severe at this stream surface, where the in-

let relative velocity is the highest.

The ordinate in figure 4-38 is the meridional

length or distance y along the stream surface I, and
the stations from 8 to 0 are the same as those mark-

ed in figure 4-36 along this stream surface. In figure

4-38, pressures are plotted in the horizontal direc-

tion, and the line 0-0 signifies the static pressure at

the leading edge of the vane. It can be seen in figure
4-36 that the leading-edge line meets the stream sur-

face I between stations 7 and 8, and the pressure

curves in figure 4-38 start at a point between the
same stations.

The pressure-velocity relation which governs the

pressure curves in figure 4-38 is equation (2-108) in
section 2.6. The subscript 1 in that equation refers

here to the station at the leading edge of the vane

and can, therefore, be replaced by i. The subscript 2

refers here to any station along the flow through the

vane system of the rotor and may, therefore, be

omitted. With this understanding, and since we are

considering here static pressures rather than head

values, equation (2-108) should be written in the
form
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P 2 2 P ( W 2_ W2)pst-pst, i= _ (u - u;) + (4-55)

Two pressure diagrams are shown in figure 4-38:

one representing only the second part of the right

side of equation 4-55 (i.e., Co/2)(w_-w2)), which

gives the vane pressures without the pressure rise

due to the centrifugal force field, and one represent-

ing the entire equation (4-55). The difference
between these two diagrams is obviously

(p/2)(U "2- U_, represented by a curve so marked.

The vane pressures representing only o(w_- w2)/2
are marked "High vane pressure" and "Vane suc-

tion pressure." According to equation 4-52, the

partial vane force is approximated by the mean

vane pressure difference APx acting over a certain

part of the vane length AYx, in this presentation the

distance between successive stations (8 to 0) along

the stream surface I, and over a certain width Abx

normal to the stream surface. In this case, Abx is

assumed to be proportional to the normal distance
between the stream surfaces I and II.

A preliminary check of the general shape of the

pressure distribution assumed shows that it does,

with some margin, satisfy the cavitation require-

ment Op= 0.26 after p(U 2- Ui2)/2 is added. It also
has to be established whether this pressure distribu-

tion would generate a vane lift coefficient compati-

ble with reasonable requirements for the overall

design of the impeller.

In the arbitrary scale used in the original impeller

layout and in the pressure diagram in figure 4-38,

E_E2hO Ay Ab=48.361

and the lift coefficient referred to the inlet relative

velocity w i is

Ct, i = F,OLEAp Ay Ab 48.361
(pw_2)EZE&y &b - 69.4 =0.698 (4-56)

where the subscript LE denotes the leading edge.

The average relative velocity is woo/Uo

=(wi+Wo)/2Uo=0.46, whereas the inlet relative

velocity on the same dimensionless basis is 0.493,

where w i and wo are taken from the velocity

diagrams in figure 4-39, derived from the assumed
head coefficient 1.085 and from the previously

assumed dimensionless impeller dimensions.

Therefore the lift coefficient referred to woo is

CL, oo= " -- _0.698=0.80
W-"_ t"L' I -- .

(4-57)

From the inlet and discharge velocity vector

diagrams at the meridional stream surface I and the

length of this meridional streamline as scaled from

figure 4-36, one can estimate the vane length / to be

0.89 D O. From this estimate and equation (2-116)

with Vu, 1= 0, it is easy to obtain an approximation
for the number of vanes, which is between 11 and

12. This number is higher than suggested on em-

pirical grounds and raises the question of whether
the vanes could not be somewhat more highly load-

ed than indicated by the curve marked "Initial

assumption" shown in figure 4-38.

The vane pressure distribution marked "Second

assumption" (fig. 4-38) represents a nearly propor-
tional increase of the pressure differences generated

by the vanes. By this increase in vane loading, the

number of vanes can be reduced to 10. Adding to

the second assumption of the vane pressures the

centrifugal pressure p(U-U'_)/2 indicates that the

resulting pressure distribution including the cen-
trifugal pressure has a minimum still slightly above

the critical pressure (0.26 pw_2), and thus the
cavitation requirements are met, although perhaps

with not quite the margin of safety that might be
desired to compensate for the inaccuracies

necessarily associated with the approximate design

process presented here.

With the second assumption of the vane pressure

distribution accepted, it remains to show the effect

of this pressure distribution on the change in

angular momentum generated by the vanes.

Since the flow is assumed to enter the impeller

without any angular momentum, Euler's tur-
bomachinery equation appears here in the form

PNQ rVu=Err, i(AP Ay Ab r) (4-58)

In comparison with the discharge moment of

momentum previously derived from the assumed

rotor head coefficient _r=2gHr/U2 o= 1.085/r/h,
equation (4-58), which applies to any distance r
from the axis of rotation, can be made dimen-

sionless as follows:
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Figure 4-39. - Vane end layout and velocity distribution through impeller.

rV u T.rn(Ap Ay Ab r) (4-59)

roVu, o _,rr°(ApAy Ab r)

From equation (4-59), it is easy to plot V U as a
function of the distance r from the axis of rotation.

This has been done in figure 4-39, by using

Vu, o=0.59 Uo, from fir = 1.085/r/h, and rth=0.92.
In the same figure is shown the meridional veloci-

ty Vm, first, as derived by the condition of continui-
ty from the meridional cross sections in the form Rr
in figure 4-36, second, as corrected for the cur-
vature of the meridional flow on the basis of equa-
tion (2-6) (irrotational flow (_'m= 0) except for the
inlet section), and, third, as corrected for curvature
and also for blockage by the vanes and the boun-
dary layers. This method of presentation permits
plotting the velocity vector diagrams along stream
surface I as a function of the distance r from the

axis of rotation, as done in figure 4-33. In other

words, the angles of the relative velocities in the ira-

peller are now known as a function of the distance
from the axis of rotation and, thereby, as a function
of the stations (LE to 0) along the meridional
stream surface I.

The angles of the relative flow, corrected for cur-
vature and blockage, are assumed to be essentially
the same as the vane angles from the impeller inlet
to station 3. From there on, the fictitious peripheral
velocity component V_, which determines the
(equally fictitious) relative velocity w* defined to be
parallel to the vanes, departs from the actual VU
values along an approximately straight line as a
function of r, as shown in figure 4-39. This straight
line is drawn so as to end at the outer periphery of

the impeller at V_, o, derived from the desired Vu.o
value by the theoretical and empirical relations
given in sections 2.6.3.4 to 2.6.3.6. This process
establishes the vane shape as a function of the
pressure distribution along the vane for stream sur-
face I.
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The same process could be carried out for stream

surfaces II and III. However, since the pressure
distribution along these stream surfaces is with

respect to cavitation not as important as for stream

surface I, this writer feels that the vane angles along
the additional stream surfaces II and III should

rather be determined by geometric considerations,

as outlined in the following part of this section.

At the left side in figure 4-39 is shown a design of
the discharge ends of the vanes which was used suc-

cessfully by this writer during the lively develop-
ment period in the thirties. The principal idea of

this design is to end the rotor vane passage at the

discharge without divergence. The geometric
method of accomplishing this objective is shown

diagrammatically in figure 4-9, which applies
primarily to the low-pressure side of the vane. The

comparison between this vane shape and that de-

rived from the vane pressure distribution is dis-
cussed briefly at the end of this section.

By the nature of conformal mapping, it is evident
that the vane angles given in figure 4-39 determine

directly the shape of the vane centerline along sec-
tion I in the conformal representation shown in

figure 4-40. The vane angle (measured from the cir-

cumferential direction) increases near the inlet to

compensate for the vane blockage and then

decreases very slowly. It does not show strongly the

previously mentioned characteristic of being a max-
imum along the central portion of the vane and

diminishing toward both vane ends (for comparison

see fig. 4-27).

If the physical vane thickness were approximately

constant along the vane (except at the vane ends)

the thickness appearing in the conformal map

would increase toward the inlet in inverse propor-
tion to the distance from the centerline of the im-

peller. This is true for impellers with small or

moderate dimensions, where the physical vane

thickness is determined by foundry considerations
and is essentially constant. In the case of a rather

large impeller or advanced manufacturing techni-

ques, the physical vane thickness can be permitted
to decrease toward the inlet, so that the thicknesses

appearing in the conformal map increase only

slightly toward the inlet and decrease only very near
the leading edge.

As mentioned previously, this writer suggests

selecting the vane shapes along stream surfaces II
and III from geometric considerations rather than

according to a prescribed pressure distribution. The
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principal geometric consideration is the shape of the

radial vane sections (see figs. 4-18 and 4-28), deter-

mined by the requirement that the vanes must meet

the side shroud under a reasonable angle. The loca-
tions of the leading edges of the vanes in the confor-

mal map are given by the place where the leading
edge meets the meridional stream surfaces II and III

(fig. 4-36), and the direction of the vane at this

point is determined in the conformal map by the

direction of the relative velocities at the inlet (w i in
fig. 4-39). The discharge end of the vane has in the

present case the same shape in all three stream sur-

faces, because near the discharge the vane has an

axially cylindrical shape. In order to obtain satisfac-

tory shapes for the radial vane sections, one must

draw the conformal representations of vane sec-
tions II and III closer to each other than those of

sections I and II. With these restrictions in mind, it

is not too difficult to draw the conformal represen-

tations of vane sections II and III as shown in figure

4-40. The vane thickness appearing in the confor-

mal map can be derived from those of section I by

the law of conformal mapping (eqs. (4-30) and

(4-31)), so that the physical thickness is approx-

imatey constant along each radial section. Thus the

vane blockage along stream surfaces II and III is

larger than along stream surface I, a difference

which should not be too serious since the inner parts

of the vane passages, where this increased blockage
exists, have basically lower relative velocities than

prevailing along stream surface I.

From this stage of design on, the design process is
essentially the same as described in section 4.4.2.

The resulting radial vane sections are shown in

figure 4-41. For clarity, in this illustration only

every second radial section, a, c, e, etc., is shown

except in the immediate vicinity of the leading edge,

where all radial sections, o, p, and q, are shown in

order to define this vane end adequately.

For most manufacturing processes, it is necessary
to develop also an end view of the vane, such as

shown in figure 4-42. Here again the number of
board sections, 1, 2, 3, 4, and 5, is not sufficient,

but at the scale of this drawing it is impossible to

show a practically adequate number of board sec-

tions without making the figure unreadable. It

should be mentioned that deriving the curved lines

in figure 4-42 accurately from the radial sections in

figure 4-41 would require a larger number of radial

sections than shown in figure 4-41.
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Figure 4-41. -Radial vane sections.

The end view (fig. 4-42) permits making a com-

parison between the vane shape derived from the

assumed vane pressure distribution (fig. 4-38) and
an older design for the discharge end of the vane

shown in figures 4-39 and 4-9. For this purpose, the
logarithmic spiral, curve AB, shown as a dotted

curve in figure 4-39, is also drawn in figure 4-42,

where it is very close to the centerline of the vane

derived from the pressure distribution. Yet the ac-

tual vane shape shown in figure 4-39 differs

significantly from that indicated by the dotted

logarithmic spiral. No conclusion can as yet be
drawn from this comparison.

Some attention must be paid to the maximum

vane pressure near station 2 in figure 4-38, appear-
ing in the diagram to the right of the stagnation

pressure Po, which does not show the pressure rise
due to the centrifugal force field. If this maximum

vane pressure were to approach the inlet stagnation
pressure Po, the corresponding relative velocity

Wmi n would approach zero at that part of the high-
pressure side of the vanes. This situation could

hardly be acceptable in view of the condition of

continuity of the relative flow, which is tacitly
assumed to be satisfied in the mean streamline
method.
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4.4.5 Manufacturing Considerations of Three-

Dimensional Vane Design

The design forms described in the preceding sec-

tion are fairly complicated, since they have been

developed on the basis of hydrodynamic principles

with only little or no attention to geometric or

mechanical considerations. An exception is the

design shown in figure 4-20, a vane shape deter-

mined by the centrifugal forces.

As soon as manufacturing principles enter into

the design problem, it is desirable to consider the

vane shape not only by its intersection with the
meridional stream surfaces of revolution, but also

by its overall geometric characteristics in space. The

most obvious, and perhaps the simplest, example of

such a surface in space is a straight, helical surface,

shown diagrammatically in figure 4-43. It
represents correctly the vane surface of an axial-

flow rotor near its inlet from a body of fluid with

uniform axial velocity and zero absolute rotation,

so that its circumferential velocity relative to a

rotating vane system is proportional to the distance

from the axis of rotation (see fig. 4-44). In the mo-

ment the absolute flow acquires significant angular

momentum, the flow follows the pattern depicted in

figure 4-45, which involves a significant departure

from that for a straight helical surface of constant

pitch (angle _ in fig. 4-43). The realities of tur-
bomachinery flow, therefore, involve variations in

the pitch angle which are not governed by the law of
a helical curve of constant inclination against the
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axial direction. Actual hydrodynamic rotors de-

mand not only variations of the pitch angle B at the

same radius, but also variations of the angle T, the

inclination of the generating line against the axial

direction (see fig. 4-46).

Under these conditions, it is well to consider the

somewhat extreme case depicted in figure 4-47.

Here the Francis rotor vane design derived in sec-

tion 4.4.2 is converted to straight fairing sections,

VU,A h-_-----
I \

w

_/ _-Vu'D"_A .....

I UD

UA t

Figure 4-45. - General vector velocity diagram departing from

straight helical surface.

intersecting with the meridional stream surfaces I

and II at the same points (or diameters) as in the

previously developed radial section shown in figure

4-28. Thus the flow sections along the meriodional
stream surfaces I and II are the same as assumed

previously, whereas the intersection with stream
surface III is different. It can be shown that this

deviation is not of major hydrodynamic

significance, whereas the intersection of the radial

329



§4.4.5

I
l

A C A

_ Horizontal section H- H

Direction of

circular projection

\_ -t_C°_/f_JT"_ ""Generating_.... .. line in ,/C

,'_ highest //
\ _ i_\ position

HI' !_ _"

/'

t_lGen eirnaI ionwgp_t \'k //
e n Jowest \ /

position /

\

Figure 4-46. - Conical helical surface.

\\

sections b, c, d, etc. with the outer shroud is less

favorable than that in figure 4-28. The intersection

of the radial sections b, c, d, etc. with the back
shroud turns out to be somewhat more favorable

than that in figure 4-28, but the flow conditions
near the outer shroud, surface I, are less favorable

and probably of greater significance because of the

higher relative velocities involved there.

The vane layout shown in figure 4-47 can be in-

terpreted as a greatly generalized helical surface,

with varying pitch angle/3 as well as inclination 3, of
the generating lines against the axial direction. The

resulting departures from a conical, helical surface

in figure 4-46 have a somewhat complicated relation

to the path of the tool needed to generate this sur-

face (here assumed to be a slightly conical end mill).

The tool diameter dt must be sufficiently small to
accommodate the minimum vane distance at the in-

let of a pump rotor, and the path of the tool is
related to the desired vane surface as shown in

figure 4-47 (approximate development of conical

section A-O). Thus the tool-path design is by no

means simple, but is reasonably well defined. (The

radial sections shown in fig. 4-47 are not exactly

straight for a conical milling cutter with straight
sides.)

Even the straight helical vane surface (i.e., a sur-

face with a right angle between the generating line

and the axis of rotation) (fig. 4-43) has important

practical applications if the pitch angle/3 alone is

varied as shown in figure 4-20. The relation between
the (essentially radial) position of the tool and the

vane surface is determined by considerations similar

to those illustrated in figure 4-47, by section A-O. It

may be of interest to mention that the generation of

a vane surface such as shown in figure 4-20 has been
used successfully, including the generation of the

vanes of reduced length shown in that illustration.
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Figure 4-47. -Mechanical simplification of Francis rotor.

There is an additional modification of Francis

pump impeller vanes that deserves to be mentioned,

although it does not seem to have general,

geometric interpretation.

During the past 10 or 20 years, it has been found

in the commercial pump industry that Francis pump

vanes can be withdrawn from a foundry core by a
turning or roiling motion, as shown diagram-

matically in figure 4-48. This withdrawal is possible

if a set of paraUel sections through the vane form

approximately concentric circles about a common
axis. Minor deviations from this law are required to

provide the vane with a certain draft in the direction

of rotating withdrawal from the core.
Figure 4-48 illustrates this process. One begins by

selecting a direction of the parallel, equally spaced
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Figure 4-48. -Modification of Francis rotor vane for rollout. (CenterE" falls beyond limits of this figure. )

sections A, B, C, etc. along which the circular
withdrawal lines are to be established. These sec-

tions should be approximately parallel to the cylin-

drical discharge vane end, to avoid major changes

in that part of the vane. Then the parallel sections

A, B, C, etc. are derived from an existing Francis

vane layout such as that shown in figure 4-29. All

points so obtained for the sections are for each sec-
tion approximated by circular arcs about one center

A', B', C', etc., as shown in figure 4-48. (The

center E' actually falls somewhat beyond the limits

of this figure.)
To permit rollout, all these points should really

coincide and form an axis normal to the planes of

the sections A, B, C, etc. It was in this form that the

method was first introduced to this writer through

Victor Potondy. This strict requirment is quite

restrictive and demands considerable departure of

the final vane shape from that originally derived

(fig. 4-29). This writer suggests relaxing this re-

quirement by permitting the axis of rollout to be not
exactly normal to the planes of the rollout sections

A, B, C, etc. With this relaxation, the rollout

centers do not need to coincide exactly in the planes

of sections A, B, C, etc., but must be equally spaced

along a straight line so as to fall along a straight axis
in space. This shift of the original centers A', B',

C', etc. is shown in figure 4-48, with the new

centers being equally spaced along the line AF. (The
new center A is assumed to coincide with the

original center A'.)
With the assumed inclination of the rollout axis

against the direction normal to the sections A, B, C,

etc., the rollout sections are not strictly circular but
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elliptic.Foronlyslightinclinationsof thisaxis,the
departurefromthecirculararcrolloutsectionscan
beneglected.

Thenewrolloutcenters,equallyspacedalongthe
lineA(A')F, applyprimarilyto thecenterlinesof
therolloutsections.Whenthesidesof thesesec-
tionsarealsoapproximatedby circulararcs,the
centersof onesidemustall fall ononesideof the
lineAF,andthecentersof theothersideontheop-
positesideof thelineAF(seefig.4-48).Theslightly
irregularspacingof thesesidecenterspermitsan
improvedapproximationof thevanesidesoriginal-
ly derivedfrom figure4-29,withoutviolatingthe
rulesof rollout.

Therolloutsectionssoestablisheddeterminea
vaneshapeslightlydifferentfrom that originally
derived,suchaspresentedin figure4-29.However,
theagreementbetweenfigures4-29and4-48isnear-
ly withinmanufacturingaccuracyof sandcastings.

Therolloutsectionsmaynowbereconvertedinto
a newsetof boardsections,alsoshownin figure
4-48.However,therolloutsectionsthemselvescan
beusedfor manufacturingpurposesorastemplates
for thevanesurfaceformedby thenewlydeter-
minedboardsections.

Evidentlythe procedurejust describedcanbe
greatlyimprovedandfacilitatedby moderncom-
puter techniques(calledlofting). However,for
completelynewdevelopments,it isadvisablefirstto
usegraphicalmethods(suchasdescribed)in order
to obtaina test impellerby whichrollout and
hydrodynamiccharacteristicscanbedeterminedex-
perimentallybeforeprogrammingfor automatic
computation.

4.5 Hydrodynamic Design of
Stationary Radial- and
Mixed-Flow Vane and
Duct Systems

4.5.1 Hydrodynamic Design of Stationary Radial-

Flow Vane Systems

Stationary radial-flow vane systems are found

either as radially inward-flow nozzle systems of

hydraulic turbines, or radial-flow gas turbines, or

as diffusers following radially outward-flow pump

or compressor rotors. The inward-flow vane

systems of turbines are usually fairly easy to design

on a one-dimensional basis, partly because of the

accelerated flow in such systems and partly because

such systems have in most practical cases a rather

high solidity. For these reasons, this section deals

primarily with radially outward-flow vane diffusers

as used on the outside of radial-flow pump or com-

pressor rotors. However, the principles described

apply also to other stationary radial-flow vane

systems.

The effect of compressibility of the fluid can be

taken into account for such systems in a one-
dimensional manner as outlined in section 2.4. All

design considerations described in the following ap-

ply also to compressible fluids provided one makes

the required corrections for changes in the volume

flow rate given in section 2.4. Therefore no further

attention is given here to the case of compressible
fluids.

For incompressible, frictionless fluids, radial-

flow vane systems between parallel walls (normal to

the axis of rotation) can be derived from straight

systems of parallel vanes (secs. 2.5 and 3.2) by the

process of conformal mapping, described for this
case in section 2.6.2. By this method, the ideal flow

characteristics of stationary radial-flow vane

systems are given by those of straight systems of

parallel vanes which have been extensively in-

vestigated by theoretical as well as experimental
methods.

As pointed out in section 2.6.2, this theoretical

background of stationary radial-flow vane systems

does not apply to the real flow characteristics of

such systems. In particular, the retardation of the

flow, which is decisive for the separation or stall of

the flow, is not the same in a radial-flow system and

in its conformal representation by a straight system

of parallel vanes. The separation or stall

characteristics must, therefore, be explored in the

actual radial-flow system, and the resulting flow

limitations must be transformed into the straight
system by the laws of conformal mapping (sec.

2.6.2). In other words, the experimentally deter-

mined real-flow characteristics of straight systems

of parallel vanes (separation or stall) do not apply

to a conformal radial-flow system. Obviously this

fact reduces the practical value of the conformal

relation between radial and straight parallel systems

considerably.

In view of the foregoing considerations, the

design of radial-flow vane systems is here pursued

directly, by using the mean streamline method

described in sections 2.5.5 and 3.2.4. Figures 4-49

and 4-50 show this design process for two cases

which differ from each other primarily by the angle
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Figure 4-49. - Radial-flow vane diffuser with moderate wall divergence," 12 vanes.
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Figure 4-50.-Radial-flow vane diffuser with high wall divergence; nine vanes.

of the incoming flow against the circumferential or

radial direction and by the divergence of the lateral

walls expressed by the ratio bz/bl. The change in

the circumferential velocity component is the same

in both cases, with Vu,2/Pu, 1 =0.55, this change

being divided into four steps, 22, 28, 28, and 22 per-

cent. The reason for the low ratio of retardation is

explained later.

With the aforementioned changes in the

peripheral velocity component, the prescribed

changes in the channel width b give the variation in

the meridional velocity and in the absolute velocity
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from the inlet to the discharge without considering

vane and boundary-layer blockage. This variation is

shown in figures 4-49 and 4-50 by the curve AB. In
figure 4-49, above this curve is shown a second

curve representing an estimated effect of the

boundary layers on the meridional (radial) velocity,

and above the second curve a third curve represen-

ting an estimated effect of the finite vane thickness.

The resulting mean velocity vectors are drawn to the
successive stations on the third curve. This entire

process is the same as that described in section 2.5.5

and by figure 2-31 with respect to straight systems

of parallel vanes.

The velocity vectors so derived give the direction
of the mean flow at the successive flow stations

through the system. From it, one can construct the
mean streamline in the same manner as described in

section 4.2 in connection with figure 4-1, except

that the angle 3_, is in the present case not constant,
since it varies with the direction of the mean flow

velocity vectors. In figure 4-49, the mean streamline
so derived is shown by a dashed line coinciding

partly with the pressure surface of the vane,
whereas, in figure 4-50, the mean streamline is well

separated from the vane and can, therefore, be

marked clearly.
The deviation of the mean camber line of the

vane from the mean streamline is determined by the
lift coefficient

VU,2 t2 (1 VU,1 rl)
CL' °°= 2--_ 7 VU,2 r2

(4-60)

which is derived from the equations (2-127) and

(2-128) in the same manner as equation (2-130) in

section 2.6.3.3 except for replacing woo by Vs.
Since the vane systems considered here reduce the

angular momentum, so that Vu, lr 1> Vu,2r2, the lift
coefficient turns out to be negative. From figure

4-49, one finds

tcL, = -0.54o

CL, _ = - 0.446

(4-61)

and, from figure 4-50,

l

CL,_F2 = -0.555

CL, _ = -- 0.4205

(4-62)

For the relation between the maximum normal

deviation of the camber line from the mean

streamline and the vane chord angle, one has no in-

formation other than that given in figure 2-33 for

straight systems of parallel vanes. For 3v larger than
60* (measured from the radial direction), one finds

for figure 4-49

( / )max = - 0.05 x 0.446 = 0.0223 (4-63)

and for figure 4-50

An ] = 0.05 x 0.4205 = 0.021 (4-64)
T / max

These values are used in figures 4-49 and 4-50. The

distribution of the normal deviation An along the

vane has to be estimated and should be qualitatively

similar to that given by figure 2-34. The thickness

distribution is derived from the previously assumed

vane blockage as indicated in sections 2.5.5 and
3.2.4.

It remains to discuss the choice of an abnormally

low ratio of retardation, VU,2/VU, 1 = 0.55, and the
corresponding choice of the lift coefficient or of the

solidity l/t2 according to equations (4-61) and

(4-62).
The low ratio of retardation can be justified

qualitatively by the fact that in a radial-flow vane

diffuser the low-pressure side of the vane, which is

usually expected to be subject to separation (stall),
is in most cases the concave side of the vane, in con-

trast to conditions in straight systems of parallel
vanes. It is shown in section 3.2.3 that the flow

along a concave wall is unstable (i.e., it tends

toward increased turbulence) and is, therefore,

more resistant to separation than the flow along a
convex wall. Thus a radial diffuser should be more

resistant to separation than an axial-flow diffuser,
and a diffuser such as shown in figure 4-50 more so

than the diffuser shown in figure 4-49. However, no

quantitative prediction can as yet be made regard-

ing this difference between radial and axial dif-
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fusers, so that the choice of VU,2/VU, I =0.55 is at

present hypothetical only.
The design of radial-flow vane diffusers, as

described previously in connection with the mean
streamline method, has not yet been verified ex-

perimentally. The only accurate record of depend-
able tests of radial-flow vane diffusers available to

this writer dates back to the late thirties, when

models of large twin-volute and diffuser pumps
were tested at the California Institute of

Technology. Figure 4-51 shows a diffuser design of

the Worthington Pump and Machinery Corpora-

tion which produced overall pump efficiencies of

89.8 and 89.9 percent at 8 and 7 cubic feet per sec-

ond, respectively, both at the same speed of rota-
tion and, of course, at favorable basic specific

speeds (0.12 and 0.11, respectively; see fig. 1-12).

Figure 4-52 shows the mean velocities in this old

diffuser at the two rates of flow just given, in the

same form as used in figures 4-49 and 4-50. This

form is similar to the velocity diagrams developed
in sections 2.5.5 and 3.2.4 in connection with the

mean streamline method, except that in figure 4-52

the displacement thickness of the boundary layers
was not taken into account. The ratios of retarda-

tion in the old, but successful, diffuser were as low
as or lower than those assumed and discussed in the

previous design examples (figs. 4-49 and 4-50).
Furthermore the mean ratio of the radial velocity

component to the mean peripheral velocity was
about 0.2 in the old diffuser (fig. 4-52), whereas in

figure 4-49 it is about 0.36 and in figure 4-50 about
0.24.

The vane lift coefficients of the old diffuser were

0.29 and 0.49 at 8 and 7 cubic feet per second,

respectively, that is, in the same range as those

derived from figures 4-49 and 4-50 (see eqs. (4-61)

and (4-62)).

The solidity of the diffuser with 11 vanes was

l/t 2 = 1.576. It is very informative that the old dif-

\\\\\\\\\\\\\\\\\_

\_'_ Radialsectionof __
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._\\\\\\\\\\\\\\\\\\\\\\\\_
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Figure 4-51.-Centrifugal pump vane diffuser designed and tested in late thirties; I1 vanes.
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fuser form shown in figure 4-51 was also tested with

9 instead of 11 vanes, with the same impeller and no

change in the diffuser vane shape. At 8 cubic feet

per second (and the same speed of rotation), the
performance was essentially unchanged, while the

lift coefficient was, of course, increased from 0.29

to 0.29 x 11/9 =0.355. However, in the vicinity of 7

cubic feet per second and a lift coefficient of

0.49 × 11/9 = 0.60, there were unmistakable signs of

separation or stall by a strong, downward departure

of the head and efficiency curves from those ob-
tained with 11 diffuser vanes. This means that at a

total ratio of retardation from the impeller to the

diffuser discharge of 0.49 (see fig. 4-52) a vane lift
coefficient of 0.60 is sufficient to cause stall,

whereas test results obtained with straight cascades

of parallel vanes (fig. 2-26) indicate that the same or

somewhat higher lift coefficients are generally safe

with respect to stall provided the ratio of mean flow

retardation is above 0.6. The generally assumed

dependence of the maximum allowable lift coeffi-
cient on the mean flow retardation is, therefore,

confirmed by this old observation with a well

designed radial-flow vane diffuser.
It is evident that systematic experimentation with

radial-flow diffusers is necessary before such dif-

fusers can be designed with confidence. Until then,

fairly low lift coefficients and solidities well in ex-

cess of unity seem to be indicated. While it is possi-

ble that the solidity of l/t2= 1.32 shown in figure

4-50 is adequate at the lift coefficient given in equa-
tion (4-62), the solidity of 1.21 shown in figure 4-49

may well be too low for the suggested lift coeffi-

cient. It is comforting to know that the 11-vane dif-

fuser shown in figure 4-51 was satisfactory under

the flow conditions shown in figure 4-52, so that

this design can be used as a proven design example.

4.5.2 Hydrodynamic Design of Volute Casings

The volute or spiral casing is the most efficient

form of collector of the flow leaving a radial or

mixed-flow pump or compressor rotor, or a radial-

flow vane diffuser, provided the circumferential

velocity component of the flow is substantially

larger than the radial or meridional velocity compo-

nent. In turbines, the volute or spiral casing leads

the flow to the radially inward-flow nozzle ring or

vane system, in order to supply this nozzle or vane

system with a circumferentially uniform flow at its
inlet.
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Figure1-28showsasexampleA avolutecasing
surroundingaradial-flowrotordirectly,whileex-
ampleB showsthesametypeof casingarounda
radial-flowdiffuseror nozzlevanesystemsur-
roundingtherotor. Thetangentialnozzleleading
thefluid to or fromthevoluteis includedin the
followingdescriptionof volutecasingdesign.

A so-calledsinglevolutesuchasshownin figure
4-53extendsover360*asa singlepassage,sur-
roundingtherotorandstationaryvanesystem(if
used)completely,andhasonlyonepassageleading
to or fromit to asingle,usuallystraight,discharge
or supplyduct.

Theso-calleddoublevoluteor twinvolutecom-
prisestwo passages,eachextendingover 180"
aroundthe rotor or stationaryvanesystem(if
used),and has two tangentialpassages,cir-
cumferentially180"apart,leadingto or fromit to
thedischargeor supplyduct(s).If theductsareto

bejoined,oneisusuallyplacedaroundoneof the
two volutepassagesas shownin figure 4-54,
whereas,if theyareto beseparated,theyarear-
rangedasshownin figure4-55.

Whenthetwin-volutedesignshownin figure4-54
isusedfor apump(orcompressor),almosttheen-
tireretardationof theflowfromtherotordischarge
to thedischargefromthecasingtakesplacewithin
oneof thedischargepassagesbetweenA andE.
This nearlystraight-lineretardationis discussed
later.Theflow from theothervoluteis retarded
fromsectionA'B' to sectionCD, with little or no

retardation from section CD to the discharge sec-

tion FG. This writer had good results with

somewhat faster retardation in the beginning of the

loop from A'B' to CD than in its later portion. The

radial dimension of this loop remains almost con-

stant, so that the axial width of this passage is in-

creased very gradually. This design tends to

minimize the radial dimension of this passage and

should be favorable for this curved flow (see its sec-
tion CD in fig. 4-54). The cross section from CD to

vii
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Figure 4-53. - Single-volute layout.

338



§4.5.2

i
!

Section A'B'

_.CI Section_ -- _)

____.D GCO _

Figure 4-54. -Double or twin volute with joining discharge (or

supply) ducts.
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Figure 4-55. -Double or twin volute with separated discharge
(or supply) ducts.

FG in figure 4-54 remains almost constant. While

the extension of the central splitter from B and C to

F involves some foundry difficulties, this extension

seems, nevertheless, necessary for good perfor-
mance.

Triple volutes, quadruple volutes, etc. comprise

three, four, or more passages, each extending over
120", 90", or smaller fractions of 360* around the

rotor and stationary vane system (if used). Such

multiple volutes have of course three, four, or more
tangential passages 120", 90", or smaller fractions

of 360* displaced from each other (see fig. 4-56).

These passages are but rarely joined into a single

discharge or supply duct except quite far away from

the machine. Evidently multiple volutes can be
regarded as vane (or duct) diffusers with the

number of volutes being the number of vanes in the
diffuser.

Figure 4-56. - Quadruple volute (or four-vane diffuser) with

separate discharges.

The hydrodynamically simplest form of a volute

is one between two parallel walls normal to the axis

of rotation. The frictionless and incompressible
flow between these walls is a vortex source or vortex

sink, with its streamlines forming logarithmic

spirals as described in section 2.6.2. The outer wall

of this type of a volute casing should, therefore,

have the form of a logarithmic spiral with the same

angle against the peripheral or radial directions as

the flow at the inner circular section of the volute,

that is, at the outer periphery of the rotor or sta-

tionary vane system surrounded by the volute. The

peripheral component of the flow in the volute ob-

viously follows the law of constant angular momen-
tum, and the radial component satisfies the condi-

tion of continuity for radial flow between parallel

walls, that is, both components are inversely pro-

portional to the distance from the axis of rotation.

The ideal flow in the volute is, therefore, the same

as that in a vaneless space of revolution. A more

rapid change in the flow velocity (diffusion in the

case of a pump or compressor) can take place only

after the flow has left (or before it enters) the volute

proper, that is, in the passage leading tangentially
away from or toward the volute.

The foregoing characteristics of volute flow can

be taken as valid also if the volute is not designed as

confined axially by parallel end walls. A form of

volute design frequently used or approximated is
that shown in figure 4-53. Here the axial end walls

are coaxial, conical surfaces with the apexes

meeting along the axis of rotation. In this case, the

increase in the area of radial sections through the

volute is proportional to the distance from the axis

of rotation provided this distance increases by con-

stant steps ,_r. Applying this relation along any
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stream surface in the volute, but in particular along

the outer contour of the volute, one finds that a

constant value of increase in radius Ar = constant is

associated by the condition of continuity with a

constant change in the angular coordinate ¢. Pro-

portionality between the angular coordinate _oand
the radial coordinate r leads to an Archimedian

spiral; its graphical construction is depicted in

figure 4-57. The application of this construction is

shown in figure 4-53. Also included is a departure
from this construction to be used when approaching

the discharge (or inlet) cross section AB of the

volute casing. (The continuation of the Archime-

dian spiral leads to point A, whereas the volute con-

tour must run through point A' to account for the
finite thickness t of the tongue or splitter.)

Since the most important portion of the diffusion

in volute pumps or compressors without vane dif-

fusers occurs in the tangential discharge nozzle (or

nozzles) of the casing, the design of this part of a

volute casing deserves particular attention.

For centrifugal pumps, the highest efficiencies
have been achieved with volute casings surrounding

the rotor without a stationary guide vane system

(see fig. 1-28, example A). The rotor discharge
width is usually made substantially smaller than the

axial width of the casing without detrimental effects

A

!

x _#_'_ Radius of

"_\ curvature"

-_ _o

6 _

Centers of

spiral contour

Ar
Ar

Figure 4-57.-Archimedian spiral approximated by circular

arcs.

on efficiency (the rotor width usually being between

65 and 85 percent of the casing width, this ratio in-

creasing with the basic specific speed). In this case,

radial sections through the volute are usually not

circular. Rather these sections have a shape such as

shown in figure 1-28, example A, and in figure 4-53.

For the discharge nozzle of the volute, this shape re-

quires a transition from a noncircular section to a

(usually) circular section of the final discharge duct,
as shown in figure 4-58. A favorable transition is

designed by means of a number of sections A, B, C,

etc. radial and parallel to the duct and by a number
of cross sections 0, 1, 2, 3, etc. normal to the

centerline of the duct. The longitudinal sections A,

B, C, etc. must, of course, be free of unnecessary

changes in direction. The angle between these sec-
tions and the centerline of the duct usually varies

between 3* and 8*; that is, its average value is

somewhat larger than the customary 3V2" for

straight ducts with circular cross section, particular-

ly if the duct following the diffusing nozzle is

straight for a considerable length. (Such angles of

divergence can be justified by a high degree of

large-scale turbulence in the volute.)
Volute casings located radially outside of vane

diffusers of pumps or of nozzle rings of turbines

usually have approximately circular radial sections

with the exception of the inner portion where the

volute joins the stationary vane system (see fig.

1-28, example B). In this case, the transition to a
duct with circular cross section constitutes no

significant design problem. For pumps or com-

pressors, this transition is a straight, conical duct
with an enclosed angle of divergence usually equal

to, or slightly smaller than, 7*. For turbines, one

usually makes the maximum cross section of the

volute about equal to that of the approaching duct
in order to minimize skin-friction losses in the

volute. The greatest part of the acceleration toward

the rotor takes place in the stationary guide vane

system inside the volute.

The flow rate through a volute casing is deter-

mined by the so-called throat area A'B' in figure

4-53. For an open volute of a centrifugal pump,

that is, a volute without a stationary vane system,

the relation between the throat area Ath = A' B' and

the volume flow rate Q is

Q = txNA thVth (4-65)
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Figure 4-58. - Layout of discharge from pump volute casing.

where _ is a correction factor for the boundary-

layer displacement area in the throat, which may be
estimated to be in the vicinity of 0.9; N is the

number of volutes (N= 1 for a single volute, N= 2

for a double volute, etc.); and Vth is the mean

velocity in the throat.
The throat velocity Vth is related to other

velocities in the system by the law of constant

angular momentum, for example, to the peripheral

component Vu, o of the absolute velocity at the
outer periphery of the rotor by the relation

Vthrth = Vu, oro (4-66)

where rth is the distance of the center of gravity of
the throat section from the axis of rotation, and ro

is the radius of the rotor where Vu, o is assumed to

exist. The relations (4-65) and (4-66) are very

generally valid not only for volute casings, but also
for vane diffusers, where Ath and rth can be defined

analogously to their definitions with respect to a

volute by the inlet area, adjacent to the inlet vane

edge of a radially outward-flow vane diffuser. In

the application to diffusers, the correction factor ct

may well be somewhere between 0.9 and unity and

should increase generally with the number of volute

passages.
For volutes with stationary vane systems, the

radius ro and the circumferential velocity Vu, o in
equations (4-65) and (4-66) apply, of course, to the
outside diameter of the stationary vane system.

The actual radial velocity distribution in volute

casings does not conform uniformly to the law of

constant angular momentum, probably because of

secondary motions, which must be expected to be

radially outward in the center and radially inward
near the side walls of the volute. Nevertheless the

law of constant angular momentum holds closely

for the mean velocity in any complete radial section

through the volute. This relation is expressed by

equation (4-66); it is compatible with equation

(4-65) only under the design flow conditions with
some allowance c_ for the effects of skin friction.

For volute pumps without stationary vane

systems, the flow rate determined by equations

(4-65) and (4-66) is usually that of maximum effi-

ciency, particularly if the average velocity in the
throat section of the volute is the highest mean
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velocity in confined cross sections of the machine.

This is generally true for single-suction pumps with

specific speeds of 0.10 or less (and for double-

suction pumps with specific speeds of 0.14 or less).

For substantially higher specific speeds, the max-

imum mean velocities usually occur at the rotor in-

let, so that this part of the pump determines the

flow rate of best efficiency. For specific speeds be-
tween 0.10 and 0.18 for single-suction pumps, both

the casing throat and the rotor inlet passage must be

expected to influence the point of best efficiency.

Theoretically, of course, there is an influence for a

much wider range of specific speeds.

If the flow departs significantly from the condi-

tion expressed by equations (4-65) and (4-66), the

flow conditions along the open part of the volute

casing (the part directly exposed to the rotor) can-
not be uniform in the circumferential direction

since they involve variations in momentum and

pressure. With a single volute, this nonuniformity

leads to a significant unbalanced radial force acting

on the rotor, whereas, for multiple volutes, these

forces should be balanced as long as the flow condi-

tions in every volute are equal to those in all other

volutes of the same system. Thus the ducting con-

nected with all volutes of one machine, as well as

their discharge pressures, must be exactly the same.

While this condition is apparently not completely

satisfied in practice (see, e.g., fig. 4-54), it is, never-
theless, true that twin and other multiple volute cas-

ings (as well as vane diffusers) lead to substantially

lower force actions on the rotor than a single-volute

casing at substantially off-design conditions.

The unbalanced forces acting on the impeller of a

volute pump have been expressed by a simple

similarity consideration. It is assumed that the un-

balanced force per unit area is proportional to the

pump head H times the fluid weight per unit volume

and that this unbalanced pressure acts on an area

equal to the discharge diameter D O times the

discharge width bo of the impeller. The resulting
relation is obviously

F= kFgoOHDob o (4-67)

where k F is a coefficient of proportionality to be
determined theoretically or by test. So far, only its

experimental determination has led to practically
useful results.

For single-volute pumps, the highest values of k F

occur near the zero-flow (shutoff) conditions and

cover the range 0.3_kF_<0.65. The unbalanced

force does not go to zero at the design operating

conditions, where k F is about 0.1, but may be
somewhat higher. Double- and multiple-volute

pumps have a more nearly constant value of kFover

the entire operating range of positive flow rates and

positive rotation, this value being in the same range

as that of single-volute pumps at design conditions.

This characteristic is an important reason for using

double and multiple volutes or vane diffusers.

The foregoing values of k F apply only to time-

averaged values of the unbalanced radial forces ac-

ting on the impeller of centrifugal pumps. All tur-

bomachinery rotors are also subjected to unsteady
forces which are considerable and sometimes

destructive if the machine is operated beyond its

stall point (for pumps and compressors, at reduced

flow rates) or with high degrees of cavitation.

As mentioned previously, the highest efficiencies

of centrifugal pumps have been achieved with

single- and double-volute casings without a sta-

tionary vane system (values between 90 and 92 per-

cent under very exacting laboratory conditions). In-

vestigations of the discharge velocity distribution of

efficient centrifugal pump impellers indicate that

the volute casing with greater width than the im-
peller discharge is not very sensitive to the actual

velocity distribution at the impeller discharge, a fact

which may be one of the reasons for the high effi-

ciencies obtained. This empirical fact may be con-

sidered to be in conflict with the equally empirical

observation that vaneless diffusers (vaneless, radial-

ly extending spaces of revolution with more or less

parallel side walls) have so far never led to excep-

tionally high efficiencies.
There are several reasons for the difficulties en-

countered with vaneless diffusers:

(1) The side-wall boundary layer of the cir-

cumferential flow cannot be expected to sustain the

higher radial pressure gradient of the flow with

higher circumferential velocity in the axially central

parts of the diffuser. One may, therefore, expect
radial backflow near the side walls, that is, major

axial nonuniformities of the radial velocity compo-

nent. One accidental observation seems to suggest

that the flow at the side walls is exactly circumferen-

tial, but this observation was made with a slightly

conical (mixed-flow) vaneless diffuser (about 15" or

20* from the radial direction) and may, therefore,

not generally be valid.
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(2) An experiment with a radially deep vaneless

diffuser (D2/D t between 1.5 and 2) revealed with a

good impeller with radial vanes (see fig. 4-20) the

existence of major circumferential irregularities of

the flow at the outer discharge of the diffuser (there

were regions of zero discharge). These irregularities

disappeared when a screen was wrapped around the
periphery of the impeller (rotating with the im-

peller); evidently a vaneless diffuser greatly in-

creases nonuniformities of the flow leaving the im-

peller. With the screen, the flow irregularities at the

impeller discharge (diffuser inlet) were apparently

sufficiently reduced to prevent their amplification

in the vaneless diffuser. In this respect, the vaneless

diffuser has the opposite characteristic to that of

the volute (without stationary vanes), which is

rather insensitive to flow irregularities at the im-

peller discharge.

(3) The flow in a vaneless diffuser is probably
unstable, because skin friction on the side walls

causes the flow to have radially decreasing angular

momentum (Prandtl's stability criterion, see also

sec. 3.2.3). This instability agrees with the observa-
tions under item (2) and makes the vaneless diffuser

particularly sensitive to flow reductions below the
design conditions. Under such reduced flow, any

vane system (or volute) at the outer periphery of the
vaneless diffuser must act as a brake on the cir-

cumferential flow component and thus further

reduces the angular momentum in the outer portion

of the diffuser; this reduction increases the

aforementioned instability of the diffuser flow.

(4) The observations in items (1) to (3) explain

why the losses in efficiency connected with vaneless

diffusers are hardly measurable in the diffuser
itself, but become apparent in the vane or duct

system following the diffuser.

The foregoing comments are not intended to

discourage further investigations of vaneless dif-

fusers. On the contrary, such investigations are

necessary to permit the use of vaneless diffusers in

some cases and to improve our understanding of the

favorable characteristics of volute casings. The in-

stability of the flow in a vaneless space of revolu-
tion may be the reason why optimum efficiencies
have been achieved with small radial distances be-

tween the impeller discharge and the tongue (or

splitter) of a volute or between the impeller and the
vanes of a vane diffuser. In this connection, it

should be mentioned that volute pumps (without

stationary vanes) are advantageously designed with

a very small ratio of the radial to the peripheral

component of the absolute flow at the impeller

discharge. (This relation may be one reason why an

axial gap between the impeller and the side walls of

a volute casing is not harmful.)

4.5.3 Hydrodynamic Design of Passages Between

Successive Stages of Radial-Flow Pumps on the

Same Shaft

The design of passages between the successive

stages of radial-flow, multistage pumps may well be

considered one of the major problems of radial-

flow pump design. Usually there exists a con-

siderable reduction in efficiency as soon as radial-

flow pumps have to be arranged in several stages on
the same shaft. This reduction indicates that the

hydrodynamic connection between such stages con-
stitutes, at best, an incompletely solved problem.

The most reliable, and so far the most efficient,

solution of this problem consists in carrying the

flow outside the casing (by a straight discharge

from the volute), curving the flow back toward the
centerline of the pump as efficiently as possible,

and turning the flow to the axial direction to enter

the impeller of the next stage. A design form satis-

fying these requirements is shown in figure 4-59.
The radial dimension of the elbow cross section out-

side the casing is smaller than the axial dimension,
and the cross section of the duct changes subse-

quently to a smaller axial and a larger circumferen-
tial dimension in order to accommodate the turn in-

to the impeller of the next stage; thus the axial
distance between successive stages is minimized.

The radial return to the next stage is characteristic

for entering any axial inlet to a pump by a duct

essentially normal to the axis of rotation. The

necessarily sharp turn into the axial direction does

constitute a significant flow problem, and it is com-
mon to many pumps with a side inlet. This problem

can be solved by giving the flow a substantial ac-
celeration when it turns from radial to axial at the

impeller inlet. Thus, for a return passage such as
shown in figure 4-59, the flow must be retarded in

this passage to a substantially lower velocity than

required at the inlet to the next stage. This require-

ment is the reason why the fairly great length of the

loop shown in figure 4-59 is important for favorable

hydrodynamic performance of this design form.

The flow can and should be retarded quite rapid-

ly in the straight, tangential diffuser leaving the

volute casing, where the total cone angle of an

equivalent diffuser with circular cross section
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Figure 4-59. -Crossover from twin volute to following stage on same shaft.

should not be less than the familiar 7" and may be as

large as 10" because of the high degree of tur-

bulence in this passage. In the following elbow and
return passage, the total rate of diffusion must be

much less, perhaps equivalent to a cone angle of 2*

to 3" for most of this passage. The rate of diffusion

should approach zero just before the flow turns to
the axial direction, where it must be accelerated.

The wall radius of curvature in this last turn is less

than normally desired in order to minimize the axial

stage distance and thereby the bearing span.

A crossover such as shown in figure 4-59 is par-

ticularly advantageous when connecting two suc-

cessive stages with back-to-back impellers. In this
case, the external elbow or loop crosses over the

second-stage impeller and casing, yet there is ample
circumferential space between the external loops for

the discharge passage(s) of the second-stage casing.

The external crossover design shown in figure

4-59 is obviously not usable if the outside dimen-

sions of the pump casing are severely restricted for

some practical reason. In that case, the external
loop can be placed tightly around the volute casing,

as shown in figure 4-60 for a quadruple volute. This

drawing indicates only the hydrodynamic design in

principle and ignores the mechanical arrangement

necessary to solve the assembly problem. This prob-

lem has to be solved separately in relation to the

chosen casing construction, horizontally or vertical-

ly split (fig. 1-40).

For the same impeller size, the crossover passages

shown in figure 4-60 are not nearly as long as those

of the external loop design shown in figure 4-59.
The rate of diffusion is, therefore, limited for the

tight crossover design (fig. 4-60), and it dictates

higher velocities in the crossover passages (com-

pared with the impeller discharge velocity Vo) than
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Figure 4-60. - Crossover from quadruple volute.

for the external loop design, particularly as the flow
approaches the inlet to the next impeller. These

higher velocities are almost certain to lead to in-

creased hydrodynamic losses due to flow distortion

at the inlet to the second-stage impeller shown in

figure 4-60. A design of this type has been used for

many years in connection with twin volutes in the

field of high-pressure boiler feed pumps, with only

moderate success regarding efficiency. In this case,

a quadruple-volute (or four-vane diffuser) design
can be expected to be more efficient than a single-

or a twin-volute design, because the cross sectional

dimensions of the casing passages decrease with in-

creasing number of volutes, so that the ratio of

crossover length to the cross-sectional dimension

(i.e., a dimensionless length of these passages) in-

creases with increasing number of volutes.

For the design indicated in figure 4-60, the

distribution of the rate of diffusion along the
crossover passage should follow a law similar to

that previously described in connection with the ex-

ternal loop design, that is, the rate of diffusion

should be a maximum at the beginning of that

passage and a minimum at its end. Whether one can

achieve, with the rates of diffusion suggested
previously, velocities lower than the mean inlet

velocities of the second impeller remains to be

determined for individual cases. To improve the
likelihood of this achievement, one should select

high meridional impeller inlet velocites, that is, high

inlet flow coefficients Vm.i/Ui for all except the first
radial-flow stage. This choice should be possible

since all these stages have, as a rule, very low suc-

tion specific speeds.

The design process consists here in wrapping the

discharge vane system of one stage as tightly as

possible around the volute system of the same stage

and diverting it around that system so as to enter

the impeller of the next stage within a minimum of

axial distance between the stages. It is hoped that
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figure 4-60 illustrates this geometric design process.
From the foregoing remarks, it should be evident

that this solution of this design problem is more

successful the larger the number of volutes or dif-

fuser vanes. Hence a multivane diffuser leading

along a curved passage from one stage to the next

(see fig. 1-28, example C) might offer a hydro-

dynamically and geometrically satisfactory solu-
tion.

The connection between successive stages shown

diagrammatically in figure 1-28, example C, sug-

gests that a three dimensionally curved vane system

may serve this purpose. Figures 4-61 to 4-63 il-

lustrate the design of such a vane system by the

method of conformal mapping previously discussed

in section 4.4.2 with respect to Francis pump rotors.
Details of this method were developed especially for

this publication in order to illustrate the application

of conformal mapping of the curved stream sur-

faces to the design of vane systems of this type.
There are no test results available on the

hydrodynamic qualities of this design form.
First, an impeller profile is assumed which, in an

actual case, would be derived from the prescribed

I

Di, m

C

/

/

Figure 4-61. - Vane diffuser between successive radial-flow stages. (0 to 8 denote coaxial circles spaced by law of conformal
mapping," b to h denote radial sections through vanes obtained by conformal mapping (fig. 4-63 ). )
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Figure 4-62.- Vane of diffuser between successive radia/-flow

stages; nine vanes.

operating conditions in the form of the basic

specific speed. Second, a curved space of revolution
is developed that provides for continous passages

from the impeller discharge to the inlet of the next

impeller. In the present case, this space is assumed

to diverge for a short distance after the impeller

discharge and then to continue at constant width

(normal to the walls of the space) until shortly
ahead of the next impeller inlet.

Next, one establishes a mean meridional stream

surface midway between the two shroud surfaces of

the space of revolution so established. This mean

meridional stream surface is shown by a dash-dot

line in figure 4-61.

Along the two shroud surfaces and the mean

stream surface, one establishes a network of coaxial

circles and meridional lines, I, 2, 3, etc. in figure

4-61 and a, b, c, etc. in figure 4-62, in exactly the

same manner as described in section 4.4.2, by using

figures 4-22, 4-23, and 4-26, with the local spacings
between successive meridional lines and coaxial

circles being equal. Circles of the same number on
the shroud and mean surfaces are connected in

figure 4-61 by dash-dot lines. A network of straight,

equally spaced, orthogonal lines corresponding to
the circles and meridional lines on the three curved

surfaces of revolution is given in the plane of con-
formal representation, shown in figure 4-63.

Instead of drawing centerlines of the vane sec-

tions in the plane of representation, as described in

section 4.4.2, it is in the present case preferable to

start the design process in the plane of representa-
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Figure 4-63. - Conformal map of vane between successive radial-flow stages.
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tion with a centerline A, B, C, D, E of the space be-

tween the vanes, because with the very high solidity

of the vane system to be designed here the one-

dimensional design process to be used is concerned

primarily with the space (channel) between the
vanes.

The centerline of the vane channel has at its start-

ing point A the direction of the absolute flow leav-
ing the impeller (see fig. 4-62). If the flow is to leave

this vane in the meridional direction, that is,

without any circumferential component (as assum-

ed here), the geometric centerline of the vane chan-
nel should overturn by an estimated amount, since

the flow cannot be expected to follow the geometric

centerline of the channel exactly. This overturning

is shown between points D and E of the centerline in

figure 4-63.
To determine the width of the vane channel d

normal to its centerline, one must first determine

the number of vanes or vane channels. Considering

that the peripheral velocity component at the

discharge from this vane system is zero, the lift
coefficient of every vane in that system is, accord-

ing to equation (2-130),

CL oo= 2 VU'° to (4-68)
' Voo l

where

D°Tr (4-69)
to- N

in which N is the number of vanes.

From the foregoing equations, and with

estimated values of l/Do=l.17 and VU, o/V_

= 1.56, one obtains CL,_=0.93 with an assumed
number of vanes N= 9.

The vane distance varies from do= toVm, o/VU, o

to di, m=Di, mTr/N, and this variation is plotted in
dashed lines to the left of the plane of representa-

tion (fig. 4-63) as a function of the meridional

distance in the conformal representation. This vane
distance is assumed to increase first linearly with the
meridional distance and then to remain constant for

a moderate stretch. This variation in vane distance

implies a more rapid increase in vane channel area

at the beginning of the passage, where the distance
between the shroud walls first increases and then re-

mains constant. This rapid increase in vane channel

area agrees with the design philosophy of the

previously described examples.

The actual channel width plotted to the left of the

conformal map in figure 4-63 can readily be

transformed into the normal channel widths ap-

pearing in the conformal map by the law of confor-
real transformation:

d = d o _ (4-70)

This process is carried out for the mean stream

surface in figure 4-61, and the results are again

represented by dash-dot lines in the plane of
representation (fig. 4-63) to give the vane contours

in the conformal representation along the mean
meridional stream surface.

The condition considered controlling for the en-
tire vane and channel surfaces is that the vane and

channel walls must meet the outer and inner shroud

surfaces approximately at right angles. In the first

part of the vane channel, with predominantly cir-
cumferential flow, this condition is satisfied if the

radial vane and channel wall sections, appearing in

figure 4-61, meet the shroud contours at right
angles.

The vane contour along the mean stream surface,
derived from the channel centerline and the channel

width (transformed to the conformal map as

described previously), is transferred to the physical

mean stream surface appearing in figure 4-61.

Through the points so obtained along the dash-dot

mean streamline, lines are drawn normal to the

outer and inner contours of this flow space to mark
points along the shroud surfaces which can be

transferred conformally to the plane of representa-
tion (fig. 4-63). The outer shroud vane contours are

represented there by solid lines, and the inner

shroud vane contours by dashed lines.

From the point where the radial vane sections

become axial (180" from the inlet section 0 in a

radial plane, figure 4-61), the radial section lines re-

main axial. While this is a more or less arbitrary
rule, it leads to a reasonable overall vane and chan-

nel shape.

The points transferred by this rule from the mean
stream surface to the outer and inner shroud sur-

faces, when transferred to the conformal map (by

the laws outlined in sec. 4.4.2), form on this map

reasonable and continuously curving contours and,

therefore, are acceptable. The total channel cross
sections arrived at in this manner must be checked

in some simple manner. In this example, these cross
sections are found to be quite reasonable.
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Thevanecontourssoobtainedalongtheouter
andinnershroudsurfacesaretransferredto theax-
ial endviewshownin figure4-62.Therethevane
contourspresentageometricallyconsistentpicture.
It is, of course,possibleto derivefromtheradial
vanesections(fig.4-61)andfromthevanecontours
in figure4-62alsoboardsections,thatis,planesec-
tionsnormalto theaxisof rotation,andfor that
matteranyothersectionsthatwouldbehelpfulfor
themanufacturingprocess.

Theactualchannelwidthshownat the left in
figure4-63isverynearlyproportionalto thecross-
sectionalchannelarea,becausethechannelwidth
normalto it andshownin figure4-61is approx-
imatelyconstant.Thisrelationindicates(byscaling)
an increaseinchannelcrosssectionbya factorof
approximately3,firstrapidandlaterslow,asazero
rateof diffusionis approached.Thischangein
crosssectionmustbeconsideredahydrodynamical-
ly very severetotal retardationof the flow.
However,thisretardationis dictatedbytheinlet
anddischargeflow conditionsprescribedfor this
system,thatis, theretardationfrom theabsolute
velocityleavingtheimpellertotheabsolutevelocity
enteringasimilarimpellerundersimilarflowcondi-
tions.Thisretardationis, therefore,thesamefor
any duct systemconnectingsuccessivestages;
specificallyit is thesamefor thethreedifferent
crossoversystemsshownin figures4-59to 4-63.
Whichof thesearrangementsishydrodynamically
mostadvantageouscanatpresentbeansweredonly
by experiment.As mentionedin thebeginningof
thissection,thearrangementshownin figure4-59
has an efficiencyadvantageover other ar-
rangementsbecauseof thehighretardationthatis
possiblein a straightdischargefromavolutecas-
ing. A multivanediffuser form usingstraight
(tangential)diffuserpassagesisquiteefficient.It is,
of course,verysimilarto a multiplevolute,as
shown,for example,in figure4-56.

In closing,wemustanswerthequestionof why
thevelocitiesenteringadischargeorcrossoverduct
systemfroma radial-flowimpellermustberather
highincomparisonwiththetotalheadof thestage.

It isawell-supportedempiricalfactthatfor stan-
dardcentrifugalpumpimpellers(havingbackward-
bentvanesandzerorotationof theincomingflow)
the headcoefficient_b=2goH/U2oshouldhave
valuesnearunityinordertoachieveacceptableeffi-
ciencies.(Actually_ is a functionof the basic
specificspeed,and_b= 1appliesto specificspeeds
between0.1and0.12.Forlowerspecificspeeds,_b
shouldbegreaterthan1,butusuallynotover1.1,
becausewithhigher_bvaluesthepumpperformance
maybecomeunstable.For specificspeedshigher
than0.12,theheadcoefficientshouldbelessthan
unity.Forns=0.2, the head coefficient is usually

about 0.9.)

For _ = 1, the peripheral component of the ab-

solute impeller discharge velocity is Vu, o

=d/Uo/2Oh=0.56 U o for r_h=0.9, and it is cor-

respondingly higher for lower efficiencies. Thus

V2,o/2go = 0.31 H, that is, the kinetic energy at the
impeller discharge is about one-third of the net

pump head, a proportion which illustrates the im-

portance of the hydrodynamic quality of the sta-

tionary vane or duct system following the impeller.
The situation is still more severe for pumps or com-

pressors with radial impeller vanes (see fig. 4-20),

where Vu, o is at least 0.8 U o, so that VZ, o/2go is at
least 0.4 H.

The empirical fact that for basic specific speeds

around 0.1 head coefficients _ below unity usually

lead to poor efficiencies is commonly attributed to

disk friction losses on the outside of the impeller

shroud(s) and on the stationary shroud whenever an

open impeller is used (see fig. 4-20). It is easy to
show that the disk friction torque increases for a

given angular velocity with the rotor diameter rais-
ed to a power of 5 and, therefore, with _b-5/2. Thus

a reduction in _b from unity to 0.9 increases the disk

fricton losses by 30 percent. Moreover it is not cer-

tain that disk friction is the only reason for the ef-

fect of _bon the efficiency, so that this effect could

be greater.
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Chapter 5

Some Mechanical Design Considerations of
Turbomachinery

5.1 Introduction

Some mechanical design characteristics are

discussed in sections 1.2.3 and 1.3.3 of chapter 1 on

the basis of simple similarity considerations. None

of these considerations are repeated in this chapter,
but, in many cases, the results form the basis for

this chapter.

The mechanical design of turbomachinery con-

stitutes a very broad subject, particularly if rotor

dynamics is considered. This chapter is not intended

to cover all of this extensive field, nor to give a

detailed stress analysis of stationary and rotating
parts of turbomachines.

Instead the considerations of sections 1.2.3 and

1.3.3 are extended as far as possible by consid-

erations of sufficient simplicity to permit their

application in the early phases of preliminary

design. This approach excludes, for example, the

type of stress considerations employed by
departments of stress analysis after the design

forms of the machine and its parts have been

established in a general manner. The only con-
siderations presented are those which are usable for
the initial establishment of a stress-determined

design form and do not depend on extensive use of

computers, because in the formative phase of

design, the design engineer must be able to decide

quickly which design form has a reasonable chance

of meeting the requirements of the prescribed

operating conditions. This approach to, and

limitation of, the subject is the same as that used in

the preceding chapters with respect to hydro-

dynamic design, although, in many cases, the latter

has been carried to greater detail than is done in this

chapter with respect to mechanical design
problems.

Even with the limitations just mentioned, this

chapter cannot make any claim to completeness. It

simply covers a limited number of design problems
which have come to the attention of this writer. No

doubt there are numerous other design problems

which should be treated, or at least mentioned, but
with which this writer did not have sufficient

contact to permit their treatment. The reason for

this somewhat unsatisfactory situation is probably

that the hydrodynamic (or gas-dynamic) design of
turbomachines permits a fairly systematic

approach, whereas there is no equivalent system for

treatment of the mechanical design of turbo-

machines. This may partly be due to the fact that

the overall design form of turbomachines is mainly

determined by hydrodynamic considerations,

although not entirely, as demonstrated in section
1.3.5 of chapter 1.

5.2 Stress Design of Rotating Parts

5.2.1 Elastic Stresses in Flat, Rotating Disks

The design of coaxially rotating disks is discussed

in section 1.3.3.1, under the assumption of equal
and uniformly distributed circumferential and

radial stresses. In this case, the thickness distri-
bution is a function of the stress coefficient

Ps U2/2ac, where the subscript l refers to a radius

r I with a circumferential and radial stress oc (see
figs. 1-31 and 1-33).
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Generallycircumferentialandradialstressesin
rotatingdisksare neitherequalnor uniformly
distributed.Equalityis, in fact, impossibleif the
diskhasaholeatitscenter,wheretheradialstressis
eitherzerooracompressivestress,asin thecaseof
apressorshrinkfit onashaft.

Theelasticstressdistributionin rotatingdisksis
treatedcompetentlyin references2 and67andis
not treatedin detailin thiscompendium.Onlya
fundamentaldifferentialequationgoverningthe
stressesinarotatingdiskof uniformtemperatureis
derived,sinceit is thebasisfor otherworkin this
field.Thisderivationislimitedtotheequilibriumof
forcesand neglectsthe compatibilityof defor-
mations(seethebeginningof Sec.5,ref. 58).

Figure5-1showstworadialsectionsthroughan
axiallysymmetricdisk, onenormalto andone
parallelto theaxisof rotation.Thisfiguredefines
thenotationusedin theequationsthatfollow.It is
evidentfromthisfigurethat

orbr dO+ aob dr dO= (a r + dor)

× (b + db)(r + dr)dO + Ps b dr r dO ro_2 (5-1)

where the left side expresses the radially inward

forces acting on the element shown, and the right

side the radially outward forces. This equation can

be reduced algebraically to the form

(o 0 -ar)b dr-a r db r-do r br=psb dr r2co2

and further to

b(ar-OO)+arr_r +br_r +psbr2o_2=O (5-2)

°r.o °r,O
2. °0P \'t /,"

dO I Or÷ __r dr dr, P

/ , ri -- bi -

Figure 5-1. - Derivation of elastic" stresses in rotating disks.

which is completely equivalent to equation (k) on

page 72 of reference 67. From this equation, one

can derive by various methods of integration the

elastic stress distribution of a rotating disk with

given dimensions. In all cases, the stresses are

assumed to be uniform in the axial direction (i.e.,
the thickness-radius ratio is assumed to be

reasonably small), and the disk is assumed to be flat

(i.e., symmetrical to a plane normal to the axis of

rotation, not dished). References 2, 58, and 67

present various methods of integrating equation

(5-2). The integration must start with a prescribed

radial stress at either the inside or (usually) the

outside perimeter of the disk. The circumferential

stress at this perimeter is usually not given, but must

be assumed, and the assumption must be changed

until the given boundary condition at the other
perimeter is satisfied.

This process of trial and error can be eliminated

by making use of the fact that elastic stress fields

can be superimposed on each other. The method of
solution is as follows: assume the aforementioned

integration is started at the outer (peripheral)

boundary with a prescribed radial stress ar, p (e.g., a
centrifugal blade pull, averaged over the circum-
ference of the disk) and an assumed circumferential

stress oo,p, which is generally of the same order of

magnitude as psU2/2 (in consistent units), where
the subscript p refers to the outer (peripheral)

boundary of the disk.
Assume furthermore that at the end of the

integration there appears at the inside boundary

(r=ri) a radial stress Or,i, 1 which violates the
physical boundary condition at r i since there the

radial stress is usually ar, i=O (or a fairly low
compressive stress).

Next integrate equation (5-2) for the same disk at

rest (i.e., for w = 0) with Or,p assumed to be 0 and

crO,p assumed to have any convenient value, say 1,
100, or the like. This second integration yields again

a certain radial stress Or,i,2 at the inner boundary

r=r i.
All stresses so obtained for the disk at rest may

now be changed by the ratio Or,i, 1/ar, i,2, so that at

r=r i the radial stress of the disk at rest is now Or,i, l .
This new stress distribution is subtracted from the

stresses obtained by the first integration of equation

(5-2) for the rotating disk, and thus the unac-

ceptable radial stress tTr, i, 1 obtained by the first
integration is canceled. The stresses obtained by this

subtraction, therefore, satisfy the boundary condi-

tions at r=rp and r=ri, because the stresses
calculated for the disk at rest are obtained for zero
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radial stress at the outer periphery of the disk, so
that the subtraction of these stresses from those

obtained by the first integration does not change the

prescribed radial stress Or,p at the outer periphery.

The solution of equation (5-2) described

previously gives the elastic stress distribution for a

rotating disk with a given thickness distribution b(r)
and db/dr. Thereby equation (5-2) can be

integrated numerically in finite radial steps. Other
methods of integration are described in references

2, 58, and 67. All these methods solve the familiar

direct problem of finding the stresses in a disk of

given shape rotating at a given speed with given

inner and outer boundary conditions.

The indirect problem, that is, the design problem

of finding the shape (thickness distribution) of that

disk for a given stress distribution is solved by the
familiar method using a disk of constant stress (see

sec. 1.3.3.1), but only for the case of equal and

uniformly distributed radial and circumferential
stresses. Obviously this solution is particularly

simple in this case since the first and third terms in

equation (5-2) vanish. However, this solution
excludes the possibility of a hole in the center of the

disk (or anywhere else) because the stress normal to

the periphery of a hole must vanish.

At first glance, equation (5-2) seems solvable

(numerically) for the thickness distribution b(r) if
one assumes certain stress distributions or(r) and

oo(r ). However, not every stress distribution
assumed leads to a usable thickness distribution. As

noted previously the most desirable stress distri-
bution, crr =a 0 =constant throughout the disk, is

incompatible with any hole through the disk.
In order to solve equation (5-2) for the thickness

distribution b(r) in the general case of a hole

through the center of the disk, one would have to
first assume a practically useful thickness

distribution b(r), in particular, one that justifies the

earlier assumption of a uniform stress distribution

in the axial direction (i.e., across the disk) and then
solve for the stress distribution as outlined pre-

viously. With a hole in the center of the disk, this
stress distribution invariably shows a very rapid
increase in the circumferential stress toward the

inner boundary (i.e., the circumference of the

central hole).

If the general stress level is unsatisfactory, say

too high, one can try to solve for the thickness
distribution with a lower stress distribution, a

§5.2.1

distribution which retains the same general form, in

particular, the rapid rise of the circumferential
stress toward the central hole. The assumed stress

distribution should be kept somewhat flexible to

correct for incompatibilities between the radial and
the circumferential stresses during the process of

integration. This writer is not aware of any attempts

at form design of rotating disks by this method, so
that its feasibility is not yet assured; successful use

is almost certain to depend heavily on the

experience and skill of the engineer carrying out this

process. The assumption of a different thickness

distribution with a lower thickness ratio bp/bi and
solution for the stress distribution may be a more

practical procedure.

In closing the discussion of elastic stresses in

rotating disks, we reduce the governing differential

equation (5-2) to dimensionless form and, thus,

maintain the general practice of this compendium in

this respect.

Dividing equation (5-2) by psr2o_2bp and
rearranging leads to the following dimensionless

equation:

b or-oO + Or db rp r

p,r o 2 p,r o 2dr rp

b r_.r_do r rp b r2

2
+ bp rp dr ,s_o_2 + bp rp

=0 (5-3)

Introducing the dimensionless variables

b= B
bp

r -R
rp

(_r _ Sr
2 2

Psr_Co

aO = S O
2 2

psrpw

(5-4)

reduces equation (5-3) to the form

dB dS r
B(S r - So) + SrR _ + BR _ + BR 2 = 0 (5-5)
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which is the same as equation (5-2) except that it is

expressed in dimensionless variables. The variables

Sr and So are obviously equivalent to the
reciprocals of the stress coefficient used in section
1.3.3.1. The dimensionless disk thickness B shows

that all disks of the same thickness distribution

referred to the thickness bp at the outside radius rp
(see fig. 5-1) have the same stress distribution irre-

spective of the thickness-radius ratio. This result

was obtained under the assumption of a uniform

stress distribution in the axial direction (across the

disk). This assumption limits the validity of the
result to low thickness-radius ratios (i.e., to fairly

thin disks).

Furthermore, as mentioned previously, the

results apply only to disks which are symmetrical

with respect to a plane normal to the axis of
rotation.

5.2.2 Mean Stress Design of Flat, Rotating Disks

A relatively very simple approximation for the

stresses in rotating disks is that based on the

assumption of a uniformly distributed circum-

ferential stress, called the mean stress. (The

importance of the mean stress in the design of

rotating disks was brought to the attention of this

writer by Ronald B. Smith.) On the basis of what is

said in section 5.2.1, this assumption would seem to
be a very poor approximation for disks with a

central hole, since the elastic circumferential stress

rises rapidly toward the circumference of the central

hole. In reality, the mean-stress approximation is

not that bad, if the high elastic stress near the hole,

or at some other places, exceeds the yield stress of

the disk material. With ductile materials, since

deformations after the yield stress is passed can be a

multiple of the elastic deformations, the yielding
portions of the disk do not accept more than the

yield stress and pass part of their load on to the

surrounding portions of the disk which are still in

the elastic state. Thus, while the yielding portions

are limited to the constant yield stress, the less

stressed elastic portions are more highly stressed

than according to the elastic stress analysis, so that
the entire stress distribution becomes more

uniform. Therefore it approaches that of the mean-

stress assumption, which should, in fact, be

completely satisfied when the entire disk has

reached the yield stress. This hypothesis is

reasonably well supported by tests of rotating disks

to failure, which takes place at approximately the

same mean stress almost independently of the form
of the disk, for example, the presence or absence of

a central hole (ref. 68).

Furthermore, after limited portions of the disk

have yielded, the disk at rest would be expected to

be prestressed, with the yielded portions in

compression and the remaining portions in tension.

If the deformation in yielding does not exceed the

maximum elastic deformation of the material,

repeated stressing does not necessarily involve

major repeated yielding, so that the initial local

yielding does not necessarily lead to a significant
reliability risk (associated with fatigue failure).

The foregoing reasoning can be only approx-
imately accurate. Nevertheless it seems to have

sufficient practical value to warrant developing the
mean-stress method in sufficient detail to be used

for preliminary design.

In order to develop the mean-stress method, one

considers the disk to be divided into two equal parts

separated by a plane containing the axis of rotation.
The centrifugal forces tend to separate these two

parts along this plane, and the separating force F

generates in the plane of separation a mean stress

oo.m, so that

F= aO,mA (5-6)

If A is the radial and axial section through the disk

shown in figure 5-2, F must be the component of

the centrifugal force of the one-quarter of the disk

which is normal to the separating radial and axial
plane OB in figure 5-2.

L
or

o 6F//

• jS

", _ bp _ ,'

II

o
B

Figure 5-2.-Approximation of circumferential stress in
rotating disk as hoop stress.
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In order to determine the separating force F,

divide the disk into a large number of rings of

radius r, axial width b, and radial thickness dr. The

centrifugal force acting on an element of this ring is

dC--ps r dO b dr rco2

Therefore its component 6F normal to the plane of

separation OB is

6F= dC sin 0 = Ps _°2r2 dr b sin 0 dO (5-7)

and the force dF acting on section OB is

f7r/2dF=ps_Er 2 drb sin 0 dO=ps_o2r 2 drb (5-8)
"10

This force is resisted by the hoop stress according to
the familiar relation

dF--b dr a0 =psw2r 2 dr b

so that the hoop stress is

oo = Ps w2r2 = Ps U2 (5-9)

a relation which is presented in subsection 1.3.3.1.

This hoop stress is, of course, not constant as a
function of the radius. It is related to the mean

circumferential stress ao, m by the equation

ao,mA= frP aobdr=psO:2 Irp br2 dr (5-10)
r i ri

where the last integral is obviously the area moment

of inertia I of section OB (area A) with respect to
the axis of rotation.

From equation (5-10), it follows that

rp br 2 dr 2 IIr,
°O,m=PsW2 --Ps6° _1 =Ps°jEr2 (5-11)

A

where rl is the radius of gyration of section OB

(with area A), and, therefore,

§5.2.2

I
r2= ._

or

r I = (5-12)

Figure 5-3 shows graphically the determination of

I/A by showing the distribution of b at a greatly

enlarged scale and by dividing r by rp. Evidently,
from equation (5-11),

r) = fr_ b(r2/4)dr= Ii7 b(r2/r2p)dr/rp

4 A IrrP bdr/rp

(5-13)

so that the radius of gyration rt divided by rp
appears as the square root of the ratio of the two

areas, marked in figure 5-3 as ABCD and AECD.

The br2/r 2 curve AE can be derived from the b(r)
curve AB either numerically or graphically by the

lines UVWXY and the ratio given by equation

(5-13) by planimetric or numerical determination of
the areas ABCD and AECD.

For the example shown in figure 5-3, ri/rp2 2

=0.3059 and rl/rp =0.553. The stress coefficient
osU2/2o (introduced in sec. 1.3.3.1) is, according

to equation (5-11), psU2/2OO, m =0.5, that is, the
same as for a freely rotating, thin hoop. The stress

coefficient referred to the outside radius rp is

2 0.5Ps U2 _ Ps U2 ru__

2ao, m 20o, m r2i 0.3059
- 1.6345 (5-14)

which characterizes the stress in the disk as

described in sections 1.2.3 and 1.3.3.1 and permits,

for example, the determination of the stress specific

speed or a comparison with a stress specific speed

given by the operating conditions, including the

properties ps and ao, m of the disk material.

The ratio of the mean stress oo,m used here to the

yield stress ay of the material aO,m/ay < 1 may well

be considered the factor of safety because OO,m = Oy
leads to unlimited yielding and thereby to failure.

Furthermore attention must be paid to the question

of whether at the opzrating temperature the

material is still sufficiently ductile to justify the
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Figure 5-3. - Determination of radius of gyration of radial section through disk.

assumptions connected with the use of the mean
stress.

The indirect or design problem of rotating disks
calls for the determination of the disk thickness

distribution b(r) from a given stress coefficient. For
the mean-stress method, equation (5-14) shows that

the ratio of the radius of gyration r I to the outer

radius rp is determined by the stress coefficient

Ps U2/2°O,m • Equation (5-13) shows that this ratio
of radii determines the ratio of area ABCD to area

AECD in figure 5-3. This area ratio does not
determine the thickness distribution uniquely, but

limits the choice of this distribution considerably

for a given outer disk thickness bp, which is usually
prescribed by the vane system, the axial spacing
between successive vane systems, and the like. In

particular, the ratio bi/bp, while not uniquely
determined by the stress coefficient and the

resulting area ratio in figure 5-3, does increase with
the stress coefficient, so that, if one design form

fails to satisfy the required stress coefficient

(psU2/2trO, m), a profile having a higher bi/b p is
likely to meet the requirements of a higher stress
coefficient. However, no simple relation between

bi/bp and the stress coefficient is as yet available.

Before the discussion on rotating disks is closed,

it is necessary to define the rp of the outer periphery

of the disk somewhat more closely than done by the

foregoing illustrations. From figure 1-33, it is

evident that rp has a different meaning than either
r I or ro used in chapter 1.

The radius rp and all other variables with the
subscript p refer to the maximum diameter of the

disk which is capable of sustaining a circumferential

tensile stress a 0. That this is not necessarily the
maximum diameter of the disk is illustrated in

figure 5-4, which shows the so-called fir-tree

fastening of blades at the periphery of the disk.
Obviously no circumferential tensile stress can be

carried across the fir trees, so rp must be the root
radius of the fir trees. There are other forms of

blade fastening where the determination of rp is not

\

' rip

rp /

/ / i

/

Figure 5-4. - Definition of rp for rotating disk.
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as simple as in figure 5-4, but useful approx-

imations of rp can always be found on the basis of
the foregoing general definition. It should be

obvious that parts of the disk extending outside rp
must be included with the blades when calculating

the radial stress Or,p at the perimeter with radius rp.

5.2.3 Remarks on Thin-Walled, Hollow Bodies of

Revolution in Bending

Hollow bodies of revolution which are subject to

a bending moment are used in turbomachinery

design primarily in connection with rotors of

relatively large diameter, as shown, for example, in

figure 1-39. No particular problem arises if, as
shown in that figure, the wall thickness is sufficient

to prevent deformation of the cross sections of the

body from their original circular shape. In this case,

the bending stiffness of the body can be based on
the area moment of inertia of its circular, ring-

shaped cross sections in the same manner as
customary for solid shafts.

However, if the wall thickness of the body is

small, the foregoing assumption that its cross
sections remain circular when subjected to a

bending moment is no longer justified. Rather the

body is deformed as shown in figure 5-5 (greatly

exaggerated), so that its cross sections do not
remain circular, but become egg-shaped. As a

consequence, there exists a deformation in bending
which would not exist if the cross sections would

remain circular and which is much greater than that
which would exist without out-of-round defor-

mations.

It would be very difficult, if not impossible, to

predict theoretically the bending deformation due
to out-of-round deformations. Certainly, this

theoretical prediction would be too complicated for

preliminary design considerations. Instead it would

be more practical to eliminate out-of-round

deformations by appropriate design measures.

Figure 5-6 shows the most obvious way in which
this can be accomplished, that is, by a flat

diaphragm normal to the axis of rotation. This

diaphragm does not need to be thick to prevent out-
of-round deformations, as long as it is prevented

from buckling by something like the rim on the

inner boundary shown in figure 5-6.

The reinforcement against out-of-round defor-

mation is required only at places where the outer

shell changes its direction in relation to the axis of
rotation. Cylindrical and straight conical shells do

not require such reinforcement.

7j, ,f

X..-

Figure 5-5. -Exaggerated deformation of thin-walled body of revolution under bending moment M.

Figure 5-6. -Reinforcement against out-of-round deformations of thin-walled body of revolution under bending moment.
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.........
Figure 5-7. -Alternative form of deformation of thin-walled

body of revolution under bending moment M.

An alternative form of deformation of a thin-

walled body of revolution is shown in figure 5-7. In

this case, the unacceptable deformation takes place

mainly in a flat, disk-shaped member connecting

two parts of the body having substantially different
diameters.

Again a theoretical prediction of this form of

deformation would be quite complex, certainly too
complicated to be carried out in connection with

preliminary design. Instead one should introduce

some simple form of reinforcement preventing the

deformation shown in figure 5-7. One possible

form of such reinforcement is shown diagram-

matically in figure 5-8. As in the previously
described case, this example is intended to call

attention to certain forms of deformation which

might be overlooked in the process of preliminary
design and to the principles of their prevention.

The foregoing considerations are not limited to

rotating thin-walled bodies of revolution. They

apply to any hollow, fairly thin-walled body of

revolution under bending. In the present case, it is

left to the intuition of the design engineer to decide

Figure 5-8.-Alternative reinforcement of thin-walled

body of revolution against bending moment.

when a body should be considered thin-walled in

the sense of the foregoing considerations. The

examples shown in figures 5-5 and 5-7 certainly
require the reinforcements in figures 5-6 and 5-8.

The axial-flow pump rotor shown in figure 1-39

may be a borderline case, where a detailed defor-

mation analysis is necessary to decide whether

reinforcement against out-of-roundness is required.

5.3 Stress Design of Turbomachinery
Casings

5.3.1 Introduction

The simplest forms of casing design are discussed
in section 1.3.3.3. Among them are the cylindrical

casing form and the spherical casing form. Figure

1-39 gives examples for both, since the discharge

portion of the casing can advantageously be

spherical. The simplicity of the casing design is, in

fact, one very important advantage of multistage

axial-flow pumps for high absolute pressures.

This section deals primarily with the mechanical

design problems of volute casings. Volutes con-
stitute a complex and severe design problem

whenever used in connection with high absolute

casing pressures. They have been used this way for

many years in the field of high-head hydraulic

turbines, where the strength of the volute casing

depends almost entirely on internal vanes called

stay vanes. Volute pumps for pressures of the order

of 1000 pounds per square inch (or more) have been
used in the rocket pump field.

High-pressure volute casings are designed me-

chanically on the basis of three different reinforce-

ment principles: external radial ribs, axial

extensions of the casing with a force-carrying

connection with the end covers, and, finally as

previously mentioned, internal force-carrying

vanes. These three methods of design are described
in sections 5.3.2, 5.3.3, and 5.3.4. Section 5.3.5

deals with some design details. In accordance with

the general philosophy of this compendium, the

stress analysis is restricted to considerations of

sufficient simplicity to be applicable to the

formative phases of preliminary design.

5.3.2 Volute Casings Reinforced Against Internal

Pressure by External Radial Ribs

Pump volute casings without diffuser vanes can

and have been made resistant to high internal
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pressures by selecting a sufficiently large casing wall

thickness. This solution can be used only where
basic specific speeds are low, say 0.06 or less; where

the absolute dimensions are fairly small, where the

wall thickness dictated by foundry considerations is

sufficient to resist the internal pressure; where it is

unnecessary to minimize the weight of the machine;

and where simplicity of form is more important
than the cost of the additional material.

In other instances, it is necessary to make a volute
casing without diffuser vanes resistant to the

internal gage pressure by selecting an external

design form which provides the required strength

without excessive wall thickness. Figure 5-9 shows a

single-volute casing reinforced by external radial

ribs. As shown in figures 4-54 to 4-56, the same

form of reinforcement is applicable to twin- and

multiple-volute casings, which, of course, require

radially smaller ribs than a single-volute casing for
the same total flow areas.

In figure 5-9, the impeller discharge pressurep in

excess of the ambient pressure is assumed to exist

internally between the outer contour of the volute

passage and wearing rings. The pump inlet pressure

inside the wearing rings is assumed to be equal to

the external (ambient) pressure and, therefore, has

no effect on the casing stresses. Departures from
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this assumption are easily considered by applying

the inlet gage pressure inside the wearing rings.

The radial component of the internal pressure is

taken up by approximately circumferential stresses

in the volute walls, which are not considered be-

cause they are of secondary importance compared

with the bending stresses produced by the axial

component of the internal pressure; the latter

produce a toroidal moment tending to open the

horseshoe-shaped radial sections through the volute

casing. The axial pressure forces acting on the end

covers are transmitted to the volute casing by the

net bolt forces A (not including seal pressure). The
stresses in the end covers are discussed in section
5.3.3.

There are two mechanical design characteristics

of the volute casing shown in figure 5-9 which
deserve special consideration:

The first is the tongue, or splitter, of the casing,
which, of course, provides a far stiffer connection

between the two axial halves of the casing than the
external ribs. This stiffness causes a considerable

stress concentration at the tongue. This stress
concentration can never be completely avoided with

this design form, but it can be reduced to a tolerable

level by the design detail shown in figure 5-9, that
is, the cylindrical, axial extensions on both sides of

Axialviewof volutecasingwithoutendcovers Volutecasingwithendcovers

Cylindrical,axialextentionsto reduce Returnofwearing-ring leakage

stressconcentrationat tongue_._.j.. -. "--.r"_._-__ ......

Endcover
I

Wearing ring -_---

-- Wearingring

.-- Endcover

Inflow-_-_-
Bearing

SectionU-V
(neartongue) Volutecasingwithoutendcovers

Figure 5-9. -Single-volute casing reinforced against internal pressure by external ribs.
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the casingwhichcarrythe flangesnecessaryto
attachthe end coversof the casing.If these
cylindricalextensionshavedistinctlylargerradius
thanthedistanceof theendof thetonguefromthe
axis(asshown),theaxialforcetheytransmitdoes
not loadup theendof thetonguebut only the
thickerportionsa fair distancefromits relatively
thinend.Anystressconcentrationatthethinendof
the tongueis, thereby,reducedto a significant
degree.Without this designfeature,the stress
concentrationat theendof thetonguemightwell
leadto localfailure.

The seconddesigncharacteristicthat deserves
consideration,evenin onlypreliminaryphasesof
design,is the effectof beamcurvatureon the
stressesinthecurvedelementsconsistingof aradial
rib andtheconnectedpartof thecasingwall.At
first, it mightappearreasonableto neglectthe
effect of curvaturein a preliminarydesign
consideration.However,asshownbythefollowing
discussion,the effectsof beamcurvatureare
sufficientin this instanceto renderthe results
obtainedonthebasisof astraightbeamnotonly
inaccuratebut alsoincorrectin a fundamental
fashion.Theeffectsof beamcurvature(curvature
of theradialribsandthewallasseenin radial,and
axial,sections)must,therefore,beconsideredeven
for preliminarycalculations.

Stressesin a curvedbeamcanbeanalyzedin a
fairly rigorousfashionon thebasisof thegeneral
theoryof elasticity.Thisanalysismightbequite
complexfor a beamshapedaccordingto radial
sectionsthroughthecasingshownin figure5-9.
Thecrosssectionof thisbeamcoversapproximately
the spacingfrom rib to rib and is, therefore,
T-shaped,with the casingshell forming the
horizontalpartof theT andtheradialrib forming
theverticalpart.Thefollowingsimplifiedanalysis
is carriedout undertheclassicalassumptionthat
planesectionsnormalto the curvedbeam(i.e.,
radialsectionsrelativetothecurvedbeam)continue
to beplaneafter deformation.Thissituationis
shownin figure5-10,whichrepresentsasectionin
theplaneofthecurvedbeam,thatis,intheplaneof
oneof theribsin figure5-9.

To beconsideredis an elementbetweentwo
radialsectionsABandDChavingacircumferential
extentmeasuredbytheangled_. Assume section
DC remains unchanged under the influence of

forces and moments applied to this element; then

section AOB is displaced to A'OB' (vastly exag-

gerated in the figure), that is, AB is rotated about O

by the angle Ad_ b, while, according to the

\

Y
positive

\y
negative

B

AdXb

/
/
/

rmax
/

I

,/

r i

F for a- 0

Figure 5-10. -Diagram for deformations in curved
beam.

foregoing assumption A'OB' continues to be a

straight line. The location of point O, or the

magnitude of the radius r o, is defined as the point

and radius of zero stress, wherever this occurs.
Evidently

dx= (r o + y)d_o

dx o = r od¢

Adx b = y Ad_p b

AdXb _
dx

crb at the same r
E

(5-15)

Hence
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ab - Y IAdcbl -- Y/r° JAd'Pb[ (5-16)
E r o +y d_p 1 +y/r o d¢

where trb is the bending stress only and does not

include the uniformly distributed tensile stress oo.
(Tensile stresses are counted as positive.)

For the total stress o=o o +ab, equation (5-16)
assumes the form

o Adxo Y/ro IAd_b I

= r o d¢ 1 +y/r o d¢ (5-17)

where Adx o is the uniform deformation caused by

% only. If F is the axial force exerted on cross

section U-V (see figs. 5-9 and 5-11), this section
being normal to the axis of rotation of the machine

(right side of fig. 5-9), then

I rmaxF=ao bdy=aoA (5-18)
rmin

where A is the area of a cross section normal to

figure 5-10, and b is the width of the same cross

section as indicated in the right side of figure 5-11.
The moment of this force is

F(r o +a)= - f r'nax obby dy (5-19)
r t

Quasi-radial section x-y Central volute seclion U-V

normal to axis of rotalion

U

"/" 71 " , r . I_

',, Radius of bo t

Mean radius "" - 1' circle tor end

of wearing rings ',, i covers

V y

Figure 5-/1. - Simplified curved-beam approximation of radial

volute section.

where a is the radial distance of the force Ffrom the

center of curvature C, shown in figure 5-10, and the

negative sign results from the definition of +y

given in figure 5-10.

A general solution of equations (5-16) to (5-19) is

attempted here by using two simplifying assump-

tions which were introduced by F6ppl in his

classical treatment of the curved beam in bending,
given in reference 69. It is assumed that the vector

of the force F applied to the curved beam passes
through the center of curvature of the beam, so that

(in eq. (5-19)and fig. 5-10)a=0. Furthermore it is

assumed, according to F6ppl (ref. 69) that the axis

of zero bending stress Orb = 0), designated by O in

figure 5-10, coincides with the center of gravity of

the cross section considered and that its location is,

therefore, known. This assumption cannot be

correct, since according to equations (5-16) and

(5-17) the stress distribution is not linear as usually

assumed for straight beams in bending. This second
assumption by F6ppl is examined critically later in
this section, after some results have been obtained

by using the two simplifications just mentioned.

The first assumption (a=0) is shown in figure

5-11 to be a reasonably good approximation if the
general form of radial volute sections shown in

figure 5-9, and by dashed lines at the left side in

figure 5-11, is replaced by a cross section with

circular contour, shown by solid lines at the left side

in figure 5-11. This approach is quite acceptable.

The internal pressure force per rib acts on the center

of gravity B of the area acdb, whereas the pressure

acting on the casing end covers, area cefd, is

transmitted to the volute casing at the point A,

representing a bolt force at the end flange of the
casing. The center of curvature C of the curved

volute cross section has a very reasonable relation

to the points A and B (with uniform static pressure
assumed), since the distance BC times the area acdb

is approximately equal to the distance AC times the

area cefd. This approximate equality was found,

without being intended, from the assumed layout of

the volute casing. Thus, in equation (5-19), the

assumption a=0 can be used as a fair approx-
imation.

The fact that the reinforcing ribs are not strictly

radial, so that section x-y is not exactly plane, is

ignored in the following considerations, because the
departure of the direction of the ribs from the radial

direction is usually much smaller than shown in

figure 5-11.

Since the solution to the uniform tensile stress ao
is rather trivial on basis of equation (5-18), one is
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concerned primarily with the solution of equations

(5-16) and (5-19) relative to the bending stress ab.
This solution is attempted by introducing the

following dimensionless variables:

T'--Y

YO

and, therefore,

ay,_ dY
ro

b
b'-

b max

ab _ -Ylad¢b [_
aD - E (r o +y)d¢

%

L
I

-y' IAd_bl
1+y' d¢

(5 -20)

With the variables introduced by equations

(5-20) and the assumption a=0, equation (5-19)

appears in the form

lAd,Phi ermax b' Y'
F= E _ bmaxro 3 r_i" l_-_y, y' dy '

(5-21)

Evidently, according to figure 5-11 (right side),

F=pA aefo (5-22)

where p is the internal static pressure above ambient
acting on the area aefb. When the last of the

equations (5-20) is used, that is, applied to Y=Yi

and ri=rmi n (see fig. 5-12), where Ob=tXb, i,

equation (5-21) can be written in the form

where the notation is derived from figure 5-10.

The negative sign results from the deformation

assumed in figure 5-10, which causes tension in the

inner fibers and compression in the outer fibers,
where a negative deformation is associated with the

compression of fibers in the region y>0. As usual,

tensile stresses are considered positive.

i r + ,

bmax ro rmax _, y /(1 y ) , , ,

P=--Ob, i Aaef b rmin 0 _--f-fF)y ay (5-23)

The bending stress Oh,i at the inner boundary of the
beam is expected to be of primary importance since

it is to be added to the uniform tensile stress oo (eq.

__L
y,. l+y'

i

Yi

l+y' i

1.0 .8 .6 .4 .2 0 -.2 -.4 -.6 -.8 -1.0

I * I Z¥'¢

"L:z

N b'Y'y' -,

f T|

c

Center of curvature -,

C i ,

0 -. -.2

-Y'y' or-b'Y'y'

Figure 5-12. -Determination of bending stress in strongly curved beam, for example, in volute casing shown in

figure 5-11.
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(5-18)) and the combination may well be the max-
imum total stress.

The numerical solution of equation (5-23) is
shown in figure 5-12, where

y, _ y' /(l + y')
Yi'/( 1 +Yi')

With the ratios of dimensions scaled from figures

5-11 and 5-12 (the rib and wall thickness from fig.
5-12 only), the following approximate results are
obtained:

yl 1
1 +Yl 2

bmax r° =0.72
A aefb

§5.3.2

The foregoing results were obtained under the

previously mentioned assumptions that (1) the
resultant force vector Fpasses through the center of

curvature C and (2) the neutral axis (ah = 0) passes

through the center of gravity of the T-shaped cross

section of the curved beam (as if it were a straight

beam). While the first assumption was demon-

strated to be reasonable for the configuration

shown in figure 5-11, the second assumption is yet

to be checked. This consideration is given by
Timoshenko in reference 70 in analytical form. In

this section, the required demonstration is given
graphically.

The condition to be satisfied is that the total force

exerted by the bending stresses alone must be zero
(see ref. 70}, that is,

Irma:, _ rmax Obb dy =0 (5-24)
fb' Y'y'dy'= 0.067

rmin r i

the last of which, by equation (5-23), leads to

P =0.72×0.067=0.048
ab, i

trb, i = 20.8 p

To this value of the bending stress, which is a tensile

stress, one must add the uniformly distributed

tensile stress ao, which, according to equations
(5-18) and (5-22) is

F pA aefb
a° - tt - A

With the notation introduced by equations (5-20)
and (5-16), equation (5-24) can be written in the
form

E [Ad_b l lrmax Y/ro
r i 1 +y/r---1--_b dy

E tAd_°b [robma x I rmax Y'
---- Y ri 1 +y' b'dy' =0 (5-25)

where with any substantial pressure loading
E[Ad_ b I/d_o is not zero, so that the condition to be
satisfied reduces to

where A is the area of the T-shaped cross section of

the volute wall. According to figures 5-11 and 5-12,

the area ratio is approximately Aaefb/A =4. Hence
o o = 4 p, and the total maximum stress is

Omax :ix o +(rb, i =4 p + 20.8 p = 24.8 p

It should be understood that the definition of the

positive and negative sign of the pressure p is
opposite to the previously stated definition of the

stress a, where tension is defined as positive,
whereas pressure (compression) is defined as

positive with respect to p.

I rmax y t-- b'dy' = 0 (5-26)r i 1 +y'

This condition is satisfied in figure 5-13 by trial and

error. First, the integrand is plotted against y' for

the neutral axis (AA) running, according to F6ppl's

assumption, through the center of gravity of the

section, which results in the irregular line
A'A'A'A'A'. Numerical integration yields

J--07 I IJy=0 1 +y' Jy=0 1 +y'
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Figure 5-13, -Determination of neutral axis of curved beam.

so that

f r .... Y_' b'dy' <0
ri 1 +y'

which does not satisfy equation (5-24). Second, it is

assumed (arbitrarily) that the distance Yi of the

neutral axis from r i is three-fourths of this distance

Yi previously assumed (fig. 5-12). Under this
assumption, one obtains the irregular line

B'B'B'B'B', with the neutral axis BB, and the

integration yields

Is',=0....y I Is " Il+y,b'dy' ---1.2 y=0 l+y'b'dy'

so that

f rmax y# b'dy'>O
ri 1 + y'

This equation shows that by this assumption one

has overshot the goal set by equation (5-24).

According to equations (5-16) and (5-20), the
relation between the dimensionless variables used in

figure 5-13 and the bending stress ob is

Y' b' = -abb' d_
1 +y' Ad_o b E

or

y' d_
-- Gb

l +y' Ad_b E

where d¢/Ad_ b E = constant for any one geometric

configuration and pressure loading of the casing.

Evidently the irregular lines A'A'A'A'A' and

B'B'B'B'B' in figure 5-13 can be converted by

division by b' into smooth y'/(l+y') curves
A "A'A'A' and B "B'B'B', which represent the

(dimensionless) stress distributions A"A'A'A',
according to the earlier assumption that o b =0 at

the center of gravity, and B "B'B'B', for the
assumed different location of the neutral axis BB.

The preceding evaluation of equation (5-24)
indicates that the true stress distribution must lie

between the smooth curves A "A'A'A' and

B" B' B'B', slightly closer to the B "B' B'B' than
to the A"A'A'A' curve. The dashed curve O"O'

may, therefore, be accepted as an adequate

approximation of the true bending stress
distribution, with a third location of the neutral

(Ob = 0) axis OO.
In order to determine the scale of the new stress

curve O"O', one must introduce the corrected

value of r o (locating the new neutral axis) into
equation (5-23) and into the y' values used therein;

that is, using the corrected ro value, one repeats the

process shown in figure 5-12. This revised
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Figure 5-14. -Determination of bending stresses in strongly curved beam (volute casing section ) with neutral axis corrected
(see fig. 5-13).

determination of the bending stress distribution is

shown in fugure 5-14 and, according to equation

(5-23), leads to the result p/ab, i=O.057 (i.e.,

ab, i = 17.5 p). The comparison with the previous

result orb,i =20.8 p reflects the effect of the shift of

the neutral axis derived from equations (5-25) and

(5 -26).

The addition of the uniform stress a o, of course,

the same as described previously, leads to a total

stress at r i o f ab, i + Oo = (17.5 + 4) p = 21.5 p, which

is by a factor of 21.5/24.8=0.87 lower than the

value obtained when disregarding the shift of the

neutral axis from the axis through the center of

gravity. With the corrected r o value, the bending

stress Ob at the inside wall of the beam is about

equal to the compressive stress at the maximum

distance rma x from the center of curvature, and

even with the departures from the corrected

location (OO) investigated in figure 5-13 (curves

A"A'A' and B"B'B'), the difference in the stress

a b between the inside r i and the outside rma x of the

curved beam does not exceed 25 percent of the

mean value of the stresses at rma x and r i. On the

other hand, if one had ignored the curvature of the

beam completely by assuming a linear stress

distribution, the bending stresses would have been

proportional to the distance from the center of

gravity of the section, that is, 2.25 times greater at

the outermost boundary than at the innermost

boundary• As mentioned previously, this solution

could not be regarded as a useful approximation.

The principal effect of curvature of a beam in

bending is, therefore, the nonlinearity of the

bending-stress distribution rather than the resulting

departure of the neutral axis from the center of

gravity of the section. The original assumption that

the neutral axis passes through the center of gravity

of the cross section considered may, therefore, still

be accepted as a first approximation, but a better

approximation for the location of the neutral axis is

fairly easy to obtain, as shown in figure 5-13.

It is evident that the numerical results, while

dimensionless, nevertheless represent only an

example and will change with departures from the

dimensionless geometric configuration shown in

figures 5-11 and 5-12. In the more general design

process, it may be well to consider two simple

design principles:

(1) If the stresses are obtained for an assumed

configuration and if the wall and rib thicknesses are

not very large compared with other local dimen-
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sions of the casing, stresses may be assumed to be

inversely proportional to the wall and rib thick-
nesses. Thus moderate discrepancies in stresses

encountered with the first approximation of a

design can be corrected approximately by cor-

responding changes in the wall and rib thicknesses.

(2) As a first approximation, one might be

tempted to consider bma x as equal to the cir-
cumferential distance between successive radial

ribs. This assumption would be based on circum-

ferentially uniform bending stresses in the volute

casing between successive ribs. Actually these

bending stresses must be expected to be a maximum
near the juncture between the rib and the casing

wall and to diminish with increasing circumferential

distance from the rib. Therefore, if the calculated

bending stress is to represent the maximum rather
than an average bending stress, bma x, as used in the

foregoing calculations, must be made somewhat
smaller than the circumferential distance between

successive ribs measured along the wall of the

casing.

As already mentioned, in principle, the rein-

forcement of twin or multiple volutes with separate

discharge nozzles can be handled by external ribs

just like this type of reinforcement for single-volute

casings. However, a twin-volute casing with joining

discharge (or inlet) ducts such as shown in figure

4-54 presents a somewhat different problem in the

part where the discharge duct of one volute is
wrapped tightly around the outside of the inner

volute. Figure 5-15 shows the reinforcement of this

type of a twin-volute casing by means of external
radial ribs.

It is immediately evident that in the twin-duct

part of the casing the radial extent of the ribs is

dramatically reduced in comparison with that in a
single-volute casing having the same total duct area.

The radial extent of the ribs at this part of the

casing is even less than the height of the ribs

reinforcing the single-volute part of the casing,

because the outer duct constitutes a very effective
reinforcement of the inner volute of the twin-duct

part. Thus the twin-volute construction shown in

figure 5-15 has not only a hydrodynamic advantage

(the balancing of radial hydrodynamic forces), but

I

__ mq- .....

Figure 5-15. - Twin-volute casing reinforced against internal pressure by external ribs.
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also a major mechanical advantage regarding the

strength of the casing with respect to internal

pressures.
The design shown in figure 5-15 minimizes the

stress concentration at the two tongues (or splitters)

of the casing in the same manner as previously

described in connection with figure 5-9.

5.3.3 Volute Casings Reinforced Against Internal

Pressure by Form of Pressure-Resisting Parts of

Casing

The moments tending to open up a volute casing

under internal pressure can be reduced by in-

creasing the diameter of the axial and cylindrical

extensions shown in figures 5-9 and 5-15 toward

the flanges holding the end covers. In this way, the
toroidal bending load on the volute is replaced by

the axial load on the end covers, and the somewhat

complex stressing of the end covers is increased.
The more-or-less flat end covers can resist an axial

load only by circumferential stresses in a structure

of some axial depth. This is discussed in greater
detail later in this section.

The aforementioned reasoning leads to sur-

rounding the volute casing by an essentially

cylindrical casing covered on both ends by more-or-
less flat covers of sufficient axial depth to resist the

internal pressure. However, there must be a more
favorable shape than the cylindrical shape to

accomplish this purpose. A shape approximating a

sphere would be more favorable, partly because the

spherical shape is most effective against internal

pressure (see sec. 1.3.3.3, eq. (l-121a)) and partly

because an approximately spherical shape results in
a somewhat smaller flange diameter for the end

cover(s). In 1936, this reasoning led to a form of

casing design for the high-head pumps of the

Colorado River Aqueduct which was similar to that

shown in figure 5-16. In this case, the radial rib

construction discussed in the previous section

would have required rib thicknesses which were not
feasible because of foundry considerations. Thus a

combination of external radial ribs and the design

principle shown in figure 5-16 was used. Later this

design principle was used successfully without

external ribs. It is evident that this design principle
uses circumferential stresses to retain the internal

pressure. Figure 5-16 shows the pump with a

vertical shaft merely because the first pumps using

this design principle had this arrangement.
Obviously the direction of the shaft generally has

no effect on the design of the pump casing.

envelope

/

Figure 5-16. - Single-volute casing reinforced against internal

pressure by form of casing and cover.

Figure 5-16 shows how this design conforms to,

and departs from, a spherical envelope. While the

departures are appreciable, the approximation of a
spherical shape is unmistakable. Note that the

regions outside the active flow passages which are

filled with fluid are not expected to transmit shear

forces. In contrast, the regions where there are

radial ribs do transmit significant shear forces and

are connected to the outside pressure. This is

further explored later in this section.
Also note that the upper and lower parts of the

casing shown in the upper drawing in figure 5-16

represent two somewhat different design principles

within the same general design philosophy. It would

have been equally possible to use bolted flanges on

both sides of the casing; however, one removable

cover is sufficient to meet the requirements of

assembly.

The design principles illustrated in figures 5-16
and figures 5-17 are, of course, also applicable to

twin and multiple volutes, with similar advantages

of greater compactness and axial symmetry as for
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Figure 5-17.-Alternative form of volute casing reinforced
against internal pressure by form of casing.

casings reinforced by external ribs (fig. 5-15). With
the twin-volute design shown in figure 4-54, the

external passage of the twin part of the casing

should be placed outside the pressure carrying,

quasi-spherical shell; that is, this shell should be the

dividing wall between the inner volute and the outer

passage and should extend axially (and quasi-
spherically) toward the end covers or form part of

one of these covers as shown in figure 5-16. Twin-

and multiple-volute casings lead to very advan-

tageous design forms in connection with the

principle described in this section. The accom-

panying illustrations show the single-volute casing

form merely because it constitutes the most difficult

application of the design principles described here.
With some fluids, it is necessary to minimize the

fluid volume inside the machine. In particular,

stagnant fluid bodies are sometimes not acceptable.
The fluid-filled regions outside the active flow

passage must in such cases be eliminated or

minimized. Figure 5-17 shows a design form

applicable under this restriction. The fluid-filled

space outside the volute is reduced to the minimum

volume required to avoid a stress concentration at
the tongue (or splitter) of the casing. The rest of the

volume which is filled with fluid in figure 5-16 is

occupied in figure 5-17 by a ring structure with

varying radial cross sections, its inner volume being
connected to the outside of the casing. The core

holes in the outer shell must be minimized in

circumferential extent and in number, because the

outer shell carries the entire axial force resulting

from the internal pressure.

The design principles discussed here are applied

in the design shown in figure 5-17. It is a radial-

flow pump combined with an axial-flow inducer
and has a removable end cover on the inlet side of

the pump, in contrast to the design shown in figure
5-16. None of these variations should interfere with

a clean application of the design principles
described.

The foregoing deliberations of this section are

largely qualitative in nature. Yet to be added are

some simple considerations that can be used to

approximate the stresses generated in the force-

carrying parts of the casing by a given internal gage
pressure. It is even more desirable to obtain infor-

mation regarding the structural form and wall

thicknesses required to withstand the internal

pressure.

The design forms described lead to two different
kinds of considerations. First, in this approach, the

pressure-carrying parts of the casing are shaped in

such a manner as to approximate simple forms with

known stress-pressure relations. The two forms
considered are the circular cylinder and the sphere.

For small wall thickness t, the stress-pressure
relations are

/.

o=p_ (5-27)

for the circular cylinder and

/-

o =p_ (5-28)

for the sphere. Even the thicknesses shown in figure
5-17 are small within the definition of this term as

applicable to the approximate calculations used in

preliminary design.

Obviously no design can achieve the stress-

pressure relation of a thin-walled sphere (eq.

(5-28)). Even the relation for circular cylinders (eq.
(5-27)) may be too optimistic for casings designed

according to the previously described principles.

Yet equation (5-27) may offer a usable first

approximation, if the radius r is interpreted to

apply to the maximum casing radius.
Second, both end covers shown in figure 5-16

and the right end cover in figure 5-17 are essentially
flat structures normal to the axis of rotation and

extending significantly in the axial as well as the

radial direction. This type of structure is called here
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Figure 5-18.-Deformations of ring girder under

axial forces with toroidal moment.

a ring girder (see fig. 5-18). The principal forces

acting on this structure in the applications con-

sidered here are axial; they are the internal pressure

p acting on one face of the ring girder and the

opposing holding force F acting along the outer
periphery of the ring girder (see fig. 5-18(a)). These

forces form a ring-shaped couple, which is called

here a toroidal moment Mt, p in figure 5-18(a).
The most obvious effect of this toroidal moment

is a rotation of all radial sections through the ring

girder by an angle 6, as shown in figure 5-18(b).

This rotation causes an expansion Ar a =6(a/2) of

one side of the ring girder and a corresponding

radial compression on the other side, which
generate circumferential tensile and compressive

stresses and corresponding radial forces Fo with a

toroidal moment Mr, o oppositely equal to the

moment Mt, p of the external force acting on the
ring girder.

In addition to the rotation, the external forces
and the circumferential stresses cause a shear defor-

mation of the ring girder, as shown in figure

5-18(c). The shear deformation increases the axial
deformation Ax and reduces the radial deformation

Ar and thus the toroidal moment opposing the axial

forces; that is, the shear deformation reduces

considerably the elastic resistance of a ring girder to
the axial forces considered here.

Shear deformations of a ring girder can be

reduced substantially by radial, plane ribs. Such

ribs are shown in figures 5-16 and 5-17 in the

regions subject to shear forces and deformations.

With such ribs, it is possible for a first approx-
imation to consider shear deformations negligible,

that is, to calculate the stresses in a ring girder on

the basis of a pure rotation of its radial sections, as

shown in figure 5-18(b).

The ring stresses cr generated by the rotation of

the radial sections can be approximated by

assuming that Ar6 is a function of x only, not of r:

o = E Ar6 (x) _ EX6 (5-29)
r g

where x is the axial distance from the neutral axis

XX, which is a plane normal to the axis of rotation.

The toroidal moment Mr, a of the ring stresses is

Mt'° = IA ax dA = E6 IA x2 dAr
(5-30)

where A is the cross-sectional area of the ring

girder, and the angle of rotation 6 is assumed to be

constant. The toroidal moment Mt, o is (obviously)
oppositely equal to the moment of the applied

forces Mt,p.
The last integral in equation (5-30) is not

commonly encountered in strength of materials, but

can be evaluated numerically for any cross section

of the ring girder if one determines the location of

the neutral axis XX by the condition that
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i x2-- dA (5-31) Crm'max = °max _m (5-35)
r

has the same absolute value to the right and to the
left of the neutral axis. If one assumes first that the

neutral axis runs through the center of gravity of

the cross section, one obtains a better approx-
imation of the location of the neutral axis by

plotting (x2/r)dA as a function of x and r and
dividing this volume into two equal parts by a plane

x = constant.

After the integral (5-31) has been determined in

this manner, one can solve equation (5-30) for the

(small) angle of rotation 5 (in radians), subse-

quently solve equation (5-29) for the ring stress as a
function of x and r, and then obtain the maximum

stress by inspection.

As in other instances discussed previously, the

foregoing solution is not directly applicable to the
solution of the design problem, that is, the

determination of the ring cross section (area and

form) from the allowable stress and the applied

forces. To accomplish this, we introduce a radial
mean value of the ring stress

r
a m = o -- (5-32)

rm

where r m is a mean radius, as shown in figure 5-18.

With this mean stress, equation (5-29) can be
written in the form

am =EAr6,x,t _ _ E x6 (5-33)
r m rm

and equation (5-30) in the form

Mt cr= .fA am Of) x dA = E6• r--mfA x2 dA (5-34)

where the last integral is the familiar moment of
inertia of the cross-sectional area A with respect to

the neutral axis XX, which can now be assumed to

run through the center of gravity of the cross
section.

An allowable maximum value of mean stress am

can be derived by equation (5-32) from the

maximum allowable actual stress areax by the
relation

where r i must be measured near Xma x.

From equation (5-33), one finds

Et_ _ am, ma x

rm Xmax
(5-36)

and, by substitution of this value, equation (5-34)

can be solved for the required moment of inertia of

the cross-sectional area A with respect to the axis

XX. As mentioned previously, the toroidal moment

Mr, o is oppositely equal to the toroidal moment

Mr, p of the applied forces. The moment of inertia
permits the design of the cross-sectional area A

under the geometric constraints of this section of

the casing, as should be clear from figures 5-16 and
5-17.

The casing extension and cover at the left side in

figure 5-17 can in principle be treated in the same
manner as described previously. The ring girder at

the left side comprises the axial extension of the

volute together with the bolted-on insert or end
cover. The difference between this ring girder and

that shown at the right side is mainly that the latter

has a very much smaller, minimum radius r i and

thereby a smaller radius ratio ri/r m . Consequently,

according to equation (5-35), for the same areax,
one obtains a lower allowable maximum mean

stress Om,ma x for the right side of this structure than
for the left.

This reasoning, while correct regarding stresses,

is misleading regarding deformations, which, for

the same maximum stress, might be greater for the

left side than for the right. If this relation is not

acceptable, one would select a somewhat lower

maximum stress areax (in eq.(5-35)) for the design

of the left side than for the right.
These stress determinations constitute a practical

limit of preliminary design considerations. After

the establishment of a general design form, a

deformation analysis can be carried out, and, if

desirable, the design can be corrected mainly by

changes in the wall thicknesses rather than by

changes in the overall design.
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It is evident from figures 5-16 and 5-17 that the

radial sections through the ring girders forming the
end covers are not uniform in the circumferential

direction, particularly where the end cover forms an

integral part of the casing (lower part of the casing

shown in the upper drawing in fig. 5-16 and right
cover in fig. 5-17). In general, one should select the

radial section adjacent to the largest volute section

for design considerations and possibly use reduced
wall thicknesses adjacent to the smaller volute

sections. If this is done, the design procedures
outlined in this section must be carried out for at

least two different radial sections through the

casing, for example, the largest and the smallest

sections shown in figures 5-16 and 5-17.

5.3.4. Volute Casings Reinforced Against Internal

Pressure by Internal Vanes

As mentioned previously, the oldest method of

reinforcing volute casings against high internal

pressures is probably the use of internal guide vanes

of sufficient cross section to carry the axial load

imposed by the internal pressures. This method is

used almost exclusively in the field of hydraulic
turbines.

In pumps, however, contrary to early expec-

tations, volute casings without a multiplicity of

internal guide vanes give higher efficiencies and
usually a smoother head-capacity curve than volute

casings with internal guide vanes. Therefore

external reinforcements against the internal

pressure have been developed and used in the pump
field only. Nevertheless internal guide vanes can be

an important means of reinforcing pump volute

casings against high internal pressures provided

such vane systems are designed hydrodynamically
as well as mechanically more effectively than was

done in some earlier cases. While the hydrodynamic

design of diffuser vane systems is outlined in section

4.5.1, their mechanical design still requires some
careful consideration.

As in sections 5.3.2 and 5.3.3, the consid-

erations presented in this section are limited to cases

where the meridional flow entering and passing
through the vane diffuser into the volute is radial.

The diffuser vanes are formed by generalized

cylindrical surfaces with their generating lines

parallel to the axis of rotation of the machine.

Under these conditions and under the assumption

that the impeller inlet pressure is approximately the

ambient pressure, a section through the diffuser
vane system normal to the axis of rotation carries in

Outside of volute

Figure 5-19. -Axial pressure load on vane system inside volute
casing.

tension the internal pressure load from a radius

halfway between the outside of the volute and the

vane system to some minimum radius determined
by the pressure-breakdown devices around the

impeller. Figure 5-19 shows the pressure area
concerned here including, of course, the load on the
end covers.

The diffuser vanes carry nearly the entire axial

pressure force (unless the casing is reinforced

against the internal pressure by some other means).

Thus the design of the diffuser vane system is

subjected to a mechanical requirement in addition

to the hydrodynamic requirements described in

chapter 4 (sec. 4.5.1).
Let us assume that the diffuser vane sections

derived by hydrodynamic considerations only are

not sufficient to carry the axial pressure force. This

may well be true for the vane systems shown in

figures 4-49 and 4-50. Then the vane design must

be changed to increase the vane thickness. The left

side of figure 5-20 shows such a modification of the

diffuser vane system presented in figure 4-50. An

increase in vane thickness increases the blockage

and, thereby, the meridional velocity component
within the vane system. Therefore the vertical

distance between the zero-blockage curve AB and

the uppermost curve in the velocity diagram in

figure 4-50 must be increased. This increase is

shown in figure 5-20; it results in an increased

steepness in the midsections of the vanes. For the

same ratio of outside to inside radius of the system,
vane length is reduced. The same ratio of vane
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Section A-A
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Section B-B
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Figure 5-20. -Diffuser uanes and supports to carry internal casing pressure. Number of vanes, 10. (For locations of sections A-A and
B-B and for sections W-X and Y-Z. see figs. 5-21 and 5-22. )

length to spacing is maintained by reducing the

circumferential vane spacing proportionately and

increasing the number of vanes in inverse

proportion. In the present case, the number of

vanes is increased from 9 in figure 4-50 to 10 in

figure 5-20.

It is difficult or impossible to predict the

maximum diffuser vane thickness-length ratio that

is achievable in the manner just indicated. The

thickness-length ratio shown in figure 5-20 is

probably not a maximum, but it may not be

possible to increase this ratio a great deal further

before the efficiency of the pump would suffer

significantly. In any event, this writer does not

believe that bolts can be passed axially through

diffuser vanes at high internal pressures without

substantial, and probably intolerable, sacrifices in

efficiency. However, just the use of the diffuser

vanes as force-transmitting members causes

considerable mechanical difficulty, chiefly because

of the danger of stress concentrations at the thin

vane ends. Figures 5-20 and 5-21 show a solution

of this problem which avoids this danger. This

solution is based on the principle that if the force-

transmitting elements to the right and left of the

diffuser passage do not extend to the vane ends,

these ends necessarily have a lower stress than the

,- Section

,' Y-Z

i

L

........ f

Figure 5-21. -Single-volute casing reinforced against internal
pressure by diffuser vanes. (For locations of sections W-X
and Y-Z and for sections A-A and B-B, see fig. 5-20. )

372



central portion of the vane (see sec. B-B at the right

in fig. 5-20). Figure 5-21 shows that section B-B is

gradually tapered into the circular flanges on both
sides of the vane diffuser which transmit the axial

vane forces to the casing and the end cover. Figures

5-19 and 5-21 indicate that the axial pressure forces

applied radially inside and radially outside these
diffuser flanges are approximately equal, so that

the toroidal bending moment at the connection
between the diffuser structure and the end cover or

casing is not excessive and is carried jointly by the

connected parts.

The question arises of whether the vane diffuser

shown in figures 5-20 and 5-21 could be cast

integrally with the volute casing. The answer is

affirmative; such a casting is shown in figure 5-22.

From the point of view of stress design, the only
disadvantage of the integral construction is the fact

that only the inner, not the outer, vane ends are
stress relieved. It is difficult to say how serious the

J

Section W-X -j

III
_vSection Y-Z

III

Figure 5-22.-Single-volute casing cast integrally with

vane diffuser. (For sections A-A and B-B and for

locations of sections W-X and Y-Z, see fig. 5-20. )
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stress concentration at the outer vane ends would

be. This stress concentration could be reduced by

small external ribs (shown in fig. 5-22) located near

the radial sections W-X, which would transmit the

volute force toward the central parts of the diffuser

vanes.

From a practical point of view, the separate dif-

fuser shown in figure 5-21 has distinct advan-

tages. It permits the use of different materials for

the diffuser and the volute casing and greatly

simplifies the foundry and cleaning problems
encountered with the integral construction. In fact,

modern methods would permit machining the

separate diffuser out of a solid ring.

It should be recognized that the radial dimensions

of a volute casing with a vane diffuser are very

much larger than those of a volute casing without a
vane diffuser for the same flow rate and head. This

is due not only to the geometric effect of the
diffuser, which increases the inside diameter of the

volute, but also to the fact that the discharge

velocity of the vane diffuser is much lower than the

discharge velocity of the impeller (for the same
head). One can estimate that, for the same capacity,

head, and specific speed, the flow sections of a

volute with a vane diffuser are about twice as large
as those of a volute without a vane diffuser. The

latter requires, therefore, as a rule, considerable
diffusion after the flow has left the volute.

5.3.5 Concluding Remarks

It is not certain that the following remarks apply

exclusively to the casings of turbomachinery. How-
ever, reference is made primarily to the preceding

sections 5.3.2, 5.3.3, and 5.3.4 on casing design.

Regarding the arrangement of forces, the
reinforcement of a volute casing by internal guide

vanes is the most direct solution of this problem.

Figure 5-19 shows that the diffuser vanes are

located in a favorable position within the area

whose pressure is being carried by these vanes, so

that the vanes are loaded practically in pure tension.
All that needs to be done is to transmit this tension

to the end covers and the inner parts of the volute in

a manner avoiding excessive loading of the rela-

tively thin vane ends. Since the outer wall of the
volute is also loaded in practically pure tension, all

parts carrying the pressure force can be quite

uniformly loaded where these parts pass through

the central plane of the casing.
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In contrast to this favorable situation, the stress

distribution in the central plane of a volute casing

reinforced by external radial ribs (fig. 5-9) is quite
nonuniform. Since the ribs and the joining parts of

the casing are loaded in bending in addition to

tension, the outer parts of the ribs are in com-

pression. The inner parts of the ribs and the casing
wall must, therefore, carry in tension the pressure

load plus the compressive force of the ribs. Hence
the total cross-sectional area required to carry this

load must be substantially greater than in a casing

reinforced by internal vanes, because the distri-
bution of the tensile stresses in a ribbed casing is

quite uneven (figs. 5-11 to 5-14). However, this

judgment is only relative, since under similar
conditions all areas are proportional to one

another, and, as stated previously, the areas of a
volute with diffuser vanes are much larger than

those of a volute without diffuser vanes.

Nevertheless the force transmission can be regarded

as much more efficient in a casing with internal

vanes than in a casing reinforced entirely by
external ribs.

Finally, for volute casings reinforced against the
internal pressure by the shape of the casing, one has
two different situations to consider: The outer shell

of the volute casing is obviously in very nearly pure
tension, as should be obvious from the central

section normal to the axis of rotation, shown in the

lower drawing in figure 5-16. With respect to

pressure resistance, this situation is analogous to
the high efficiency of a spherical casing. On the
other hand, the end covers shown in figures 5-16

and 5-17 do not follow the spherical principle, but

resist the internal pressure as ring girders. A ring

girder resists axial forces by forming a toroidal

moment from tensile and compressive ring stresses
as described in section 5.3.3. It is somewhat

dubious how direct this form of resistance to

internal pressures can be considered.
Thus the three forms of casing design considered

can be regarded as follows with respect to the
directness of the force transmission:

(1) Volute with internal force-carrying guide
vanes: very direct, but the casing size and,

therefore, the pressure forces are relatively large;

indirect in the flat end covers.

(2) Volute reinforced by external radial ribs:

roundabout, mainly by bending stresses; indirect in
the flat end covers.

(3) Volute reinforced by the form of the casing:

very direct in the outer casing shell; indirect in the
flat end covers.

It would be advantageous if the three casing

design forms could be characterized by a common
design principle. Professor Leyer of the Technical

University in Stuttgart, Germany, attempted to do

something along this line by introducing the

concept of force flux into mechanical design.
Unfortunately he did not define this potentially

valuable concept with a reasonable degree of

scientific rigor. As a consequence, the concept was

at times strongly attacked by scientifically oriented

engineers who justly contended that such a concept

must be defined to have any useful meaning.
On the basis of the examples given here, one is

tempted to define directness of force flux through a
mechanical structure by the relative absence of

bending in the structure, or by the uniformity of
stress distribution in the force-transmitting mem-

bers of the structure.
Whenever the cross-sectional dimensions of a

structural element are substantial compared with its

overall dimensions, experienced design engineers
draw lines into the structure to represent something

like a flux of forces in the material. Usually such

lines resemble streamlines of a potential fluid
motion. As such, these flux lines are more closely

spaced at the inside than at the outside of a curved
structural member. If this is meant to indicate

increased local stresses (a stress concentration) near

a concave boundary of a structural member, this

intuitive representation has a qualitative value for

the design engineer and might be associated with the

concept of a force flux in the material. Yet this
intuitive representation of stresses in a structural

member should not be accepted and used without
some critical considerations.

The stress distribution in a solid is not a vector

field like the flow of a frictionless fluid; it is a

tensor field, and, therefore, its representation by

force lines is inherently incorrect. However, if the

force lines are defined to be parallel to the so-called

principal directions which are free from shear

stresses then, under plane, two-dimensional stress
conditions, an orthogonal system of lines has a

definable meaning. If the boundaries of the solid

have no shear stresses (as usual), so that the

boundary has one of the principal directions, and if

the principal stress parallel to the boundary

dominates (as usual), the force lines drawn parallel
to the boundaries have a useful meaning, at least

close to the free boundary. When drawn like

streamlines, these lines indicate correctly a local
stress increase at a concave boundary, but the

magnitude of this stress increase is greater than the
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corresponding velocity increase in a potential flow

field. For example, the stress at a circular hole in an

infinite flat plate in one-dimensional tension is three

times the uniform stress at infinity, whereas the

corresponding fluid velocity increases only by a

factor of 2 (see ref. 71, which is generally very

valuable).
An example of stress design in this sense is the

axial connection between the diffuser vanes and the

force transmitting circular flanges, shown in figures

5-20 to 5-22. The maximum departure from the
axial direction is 15" in sections W-X and Y-Z.

Thus it is possible to use the concept of force flux

also for local design detail by drawing the force flux

lines like streamlines, even though the actual stress
increases are greater than indicated by this picture.

The previously mentioned criterion of directness of

force flux indicated by uniformity of stress distri-

bution and absence of bending moments applies
locally as well as to the force-carrying structure as a
whole.

While the foregoing considerations are only qual-

itative, it is hoped that they will aid in establishing

design forms that are favorable with respect to

stress during the process of preliminary design. It is
obvious that the foregoing considerations regarding

stress concentrations are useful approximations (for

preliminary design) only as long as the stresses are

not expected to exceed (substantially) the yield
stress of the material.

5.4 Hydrostatic Balancing of Axial
Forces Acting on Turbomachinery
Rotors

With single-suction hydrodynamic rotors, there is

generally an unbalanced axial force because the

axial hydrodynamic force acting on the inlet side is

lower than that on the corresponding area on the

opposite side.
For axial-flow machines, the axial thrust of the

rotating vane system is the frontal discharge area

times the static discharge pressure of the system,
minus the frontal inlet area times the static inlet

pressure, plus the difference in axial momentum of
the flow leaving and entering the system. To be

added is the static pressure difference across the

rotor times the hub (and shroud) areas exposed to

the inlet and discharge static pressures. For the
axial-flow shrouded rotor vane system shown in

figure 5-23, this can be expressed as

I p,\

pl I

A
V1 I

Ash, I

Fa
t_2

Figure 5-23. -Meridional view of thrust balance on

axial-flow rotor vane system.

Fa =P2A2 -Pl A l +P2 V2A2

- Pl V2A I + p2(Ah,2 + Ash,2)-Pl (Ah, l +Ash, l)

where F a is the resulting thrust, p and Vare radially

averaged pressure and axial fluid velocity,
respectively, A is annular area as defined in figure

5-23, the subscripts 1 and 2 denote the inlet and

discharge respectively, of the vane system, and the

subscripts h and sh denote hub and shroud,

respectively. The foregoing equation obviously does

not include the axial forces acting on the rotor
inside the hub ring of the vane system.

The right side of figure 1-39 shows the balancing

of the thrust of a multistage axial-flow rotor by
means of a balance drum at the discharge end of the

rotor. The drum diameter is calculated by the

equation just given from the static pressure in the

space behind (to the right of) the drum. The

pressure in this space is slightly higher than the inlet
static pressure, because this space is connected to

the inlet passage of the pump. In the case shown in

figure 1-39, the balance drum has a diameter about

halfway between the hub and tip diameters, which
reflects the assumption that about one-half of the

total pressure rise takes place in the rotor vane
system and one-half in the stator vane system

(symmetrical stages). This may not always be the
case.

Since all static pressures involved are not known

exactly, the thrust balance achievable by the fore-
going considerations can be only approximate. The

unbalanced part of the thrust must be taken up by a

thrust bearing.
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The thrust on single-suction, radial-flow rotors is

usually balanced by a ring-shaped pressure-

breakdown device (wearing ring) on the outside of
the back shroud as shown, for example, at the left

side in figure 1-39 and in figures 5-17 and 5-21. As

a first approximation, one would give the back

wearing ring the same diameter as the suction-side

wearing ring. As shown empirically, for optimum

thrust balance, the back wearing ring should have a

slightly larger diameter than the suction side
wearing ring, because the average static pressure

between the rotating shrouds and the casing covers

is slightly lower on the suction side than on the back
side. This difference can be attributed to the fact

that, on the suction side, the flow in this space

probably has a radially (outward) decreasing angu-
lar momentum and, thereby, an instability which
should increase the disk friction.

The space inside the back wearing ring must, of

course, be connected to the suction side of the

impeller, either by an external passage (or pas-
sages), as shown in figure 5-17, or by axial holes

through the hub of the impeller. (See fig. 5-24,
where this method of venting is applied to a

different form of pressure breakdown, described in

the next paragraph.)
Instead of a back wearing ring, one can use radial

ribs or vanes on the outside of the back shroud in

order to reduce the pressure near the center of the

space outside the back shroud. If it is assumed that
the fluid in this space rotates like a solid body with

the impeller, the radial static head drop from the
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Figure 5-24. -Axial thrust balancing by external vanes on back
shroud of impeller.

outside to the inside of such a vane system can be

expressed as

ah = u2 - (5-37)
2go

where subscript o refers to the outside of the vane

system (except in go=32.2 ft/sec2), and the

subscript i to the inside. This static head change is

actually somewhat less than given by equation 5-37,

since the assumption of solid-body rotation is not
exactly satisfied. Yet the static head change in this

so-called pumpout vane system is approximately

equal to that in the impeller, so that this method of

balancing the axial thrust of radial-flow impellers is

justified, particularly for open impellers, that is,

impellers without a shroud on the suction side (see,

e.g., fig. 4-20). Nevertheless the method of
balancing the axial thrust by means of pumpout

vanes is probably less accurate than when using a

back wearing ring. Furthermore the pressure behind
the back shroud may well depend on the axial

clearance between the pumpout vanes and the

casing wall, and this relation is mechanically

unstable if closing this clearance reduces the

pressure behind the shroud (and vice versa). Finally

pumpout vanes should probably not be used in

connection with diffuser pumps where the diffuser
side walls should be lined up with the inside shroud

walls of the impeller (see fig. 5-21), so that the

pumpout vanes would have to operate in an

essentially closed space and would be in danger of

overheating.

Throttling devices for pressure breakdown (see

figures 1-39 and 5-21) can be made self-balancing if
the clearance in at least one of several throttle

Returnof leakageIo
suctionsideof pump

U
Figure 5-25. - Balance disk and drum.
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surfaceschangesappropriatelyasafunctionof the
axialpositionof therotor.

Figure5-25showstheprincipalandoldestform
of suchaself-balancingdevice,thecombinationof
onethrottlesurfaceA havingconstantclearance
with a planethrottlesurfaceB havingvariable
clearance.If thepumprotormovesto theleft, the
clearanceat B is reduced,andthepressurein the
spaceC buildsup to a highervalue,so that it
automaticallycounteractsthe initial movement.
The oppositemovementproducesthe same
counteractingeffectby loweringthepressurein the
spaceC. With this type of a balancing device, the

thrust of the impeller(s) is balanced exactly, and a

thrust bearing is not required. In the United States,

a thrust bearing is usually used with this type of

balancing device partly as a safety measure and

partly to take care of unsteady operating conditions

(e.g., starting conditions, which can be quite
complex). Originally no thrust bearings were used

in Europe in connection with self-balancing devices.

The particular arrangement shown in figure 5-25
has been used extensively in connection with

multistage radial-flow pumps. However, other

arrangements are certainly possible, for example,
the cylindrical throttle surface after the balance disk

or the disk placed between two cylindrical throttle

surfaces. The principle of the functioning of this

type of balancing device would not be changed by
such modifications of arrangement.

There is a more substantial change in arrange-

ment of liquid rocket pumps that has been used

successfully since the sixties. It is shown in figure

5-26 in connection with a multistage axial-flow

pump such as shown at the right in figure 1-39; it

changes the high-pressure end and the thrust
balancing device of the axial-flow pump shown in

that figure. If there is a small motion to the left (fig.

Figure 5-26. - Double-facing balance disk.
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5-26), the clearance at A decreases while the

clearance at B increases; thus there is a decrease in

pressure in the space C, and the initial axial
movement is counteracted. A motion in the

opposite direction causes an increase in pressure in

the space C and again the initial motion is
counteracted.

The axial force reaction with the arrangement

shown in figure 5-26 should be greater than for the
arrangement shown in figure 5-25, the upstream

motion closing the upstream opening at A also

opens the downstream opening at B. This sequence

causes a very rapid decrease in pressure in the space

C and, thus, strongly counteracts the initial motion.

In figure 5-26, the return of the leakage flow is

shown through the inside of the rotor, although this
return of the flow could be accomplished by an

external passage, as indicated in figure 5-25 (see

also fig. 5-17).
Furthermore the connection of the double-faced

balance disk shown in figure 5-26 with a multistage

axial-flow pump has a purely historic basis, since it

represents the first applications of this balancing

device in the rocket pump field. There is no reason

why the double-faced balance disk could not be

applied as well to single-stage or multistage radial-

flow pumps. For single-stage radial-flow pumps,
the back shroud of the impeller could form a

double-faced balance disk extending radially

somewhat beyond the outside diameter of the

impeller. Of course, this design would involve some
increase in disk friction losses.

Generally, at least the outer balance disk face
operates with very small axial clearance, because
the outside diameter of the disk must be minimized

in order to avoid unnecessary disk friction losses.

(Note that disk friction torque increases with the

fourth power of the disk diameter.) Occasional

contact between the stationary and rotating disk

faces is, therefore, difficult to avoid. Consequently
a great deal of attention must be paid to the

selection of the material for the mating disk faces,

indicated in figure 5-26 by double crosshatching of

the stationary face material. However, any detailed

consideration of this problem falls outside the scope
of this compendium.

The same problem leads to the modification of

the disk shape illustrated in figure 5-27 for the disk

arrangement shown in figure 5-25; this modifi-

cation has been used with gratifying success.
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Figure 5-27.-Effect of rotor deflection on balance disk

design.

In general, the stationary and rotating disk faces
do not remain parallel to each other when the
centerline of the rotor is deflected, as shown at an

enlarged scale in figure 5-27. Since the deflection

may not be constant, the only way to avoid the

resulting difference in disk clearance between
diametrically opposing sides is to give the disk faces

approximately spherical shape, concentric to point
C (fig. 5-27), where a tangent to the deflection
curve of the rotor intersects the straight axis of
rotation. In view of the small amount of actual

deflection, the spherical disk surface can be

approximated by a straight conical surface in order

to simplify the problem of machining. Even if the
curve of elastic deflection of the rotor cannot be

determined with great accuracy, an approximation
of it constitutes a marked improvement over plane
disk surfaces normal to the axis of rotation.

While to the best knowledge of this writer the

foregoing modification of balance disk design has
been used successfully only in connection with the

disk-drum combination shown in figure 5-25, there

is no reason why this modification cannot be used

to good advantage in connection with the double-

faced disk design shown in figure 5-26. Of course,

the angles of the two conical disk surfaces would
not be the same, but they would differ in

proportion to the mean radius rD of each surface

(see fig. 5-27).

There is also the possibility of substantially

reducing the hydrostatic axial thrust on single-
suction rotors by a special arrangement of

successive stages of multistage pumps.

For a two-stage pump, the principle of this
method of thrust reduction is illustrated in figure

5-28. This so-called back-to-back arrangement

reduces the end thrust without any special balancing

I t
t

Figure 5-28.-Back-to-back two-stage radial-flow

pump.

device to a fraction of the unbalanced thrust of one

impeller, depending on the relative diameter of the

pressure-breakdown device between the two stages.

If this diameter is equal to the wearing ring

diameter, the unbalanced thrust is equal to that of

one impeller (i.e., one-half of the total thrust),

whereas the unbalanced thrust approaches zero as

the area inside the pressure-breakdown device
becomes negligibly small compared with the area

inside the wearing ring surfaces.

The crossover passage between the two stages

may be designed similarly to that shown in figure
4-59 and described in connection with that figure.

The same principle of thrust balancing is

applicable to multistage pumps, as shown in figure

5-29. In this case, the diameter of the pressure-

breakdown device between the two central stages is
equal to the wearing ring diameter; this arrange-

ment is mechanically advantageous in order to

I A
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Figure 5-29. -Back-to-back multistage radial-flow pump,
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obtain increased shaft stiffness. The unbalanced

end thrust of the entire pump is, therefore, equal to

the unbalanced thrust of three stages (i.e., to one-

half of that of the entire pump), unless one
introduces a pressure-breakdown device on the

right end of the pump (as shown) with a diameter

equal to the wearing ring diameter. This device

balances the pump completely within the limited

accuracy of cylindrical pressure-breakdown and
balancing devices. In any event, it is desirable to

have a pressure-breakdown device at that end of the

pump, since otherwise the stuffing box or shaft seal

would be subjected to one-half of the total pump

pressure.
The application of the same balancing principle

to multistage axial-flow pumps is illustrated in

figure 5-30. In this case, the balancing of the thrust

on the relatively large hub (of the higher stages)
requires a pressure-breakdown device, as shown at

the right end of the pump.

The residual thrusts of the pumps shown in
figures 5-28 to 5-30 can, of course, be balanced

completely by means of the self-compensating
balancing devices shown in figures 5-25 to 5-27,

except that, with the back-to-back arrangements

§5.4

discussed here, such devices would operate only

under one-half of the total pump pressure, and
there would be a corresponding reduction in

leakage losses. Whether this advantage is sufficient

to justify the complications of the back-to-back
arrangement is questionable and must be decided

primarily on the basis of reliability considerations.

This may be the reason why the arrangement shown

in figure 5-30 has, to the knowledge of this writer,

not yet been used, whereas the design forms shown

in figures 5-28 and 5-29 are frequently employed,

particularly in the commercial pump field.

It should be evident that the foregoing discussion
of axial forces acting on rotors of turbomachines

does not begin to cover all possible configurations

of such forces, nor the various design forms which
have been used, or should be considered, to
minimize or eliminate these forces. At best section

5.4 presents a few solutions in this class of design

problems and perhaps can be expected to stimulate

further developments in this and related fields.

f
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Figure 5-30.-Multistage axial-flow pump with axially opposed rotors.
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